Probabilistic method in combinatorics and algorithmics

WS 2024/25

Exercise sheet 6

Exercises for the exercise session on 4th December 2024

Problem 18. Let $p = \omega\left(\sqrt{\frac{\log(n)}{n}}\right)$. Show that with high probability every edge in G(n,p) is contained in $(1+o(1))p^2n$ many triangles.

Problem 19. Suppose we place *n* points uniformly at random in $[0, 1]^2$. If we consider $[0, 1]^2$ as being composed of $\frac{n}{\log(n)}$ equally sized disjoint squares (ignoring the rounding issues), show that with high probability every square contains a point. Using the Chernoff bound show that for each point, with high probability, the num-

ber of points within distance $10\sqrt{\frac{\log(n)}{n}}$ is at most $c\log(n)$ for an appropriate constant c.

Suppose we form a graph G on these n points by joining each point to the nearest k points to it. Show that, if $k \ge c \log(n)$ then with high probability G is connected.

Problem 20. Let Z_1, \ldots, Z_m be a sequence of mutually independent random variables distributed on \mathbb{Z}^n and let $f: \mathbb{Z}^n \to \mathbb{R}$ be a function such that changing the value of one coordinate can change the value of f by at most c. Let $X_i = \mathbb{E}(f(Z_1, \ldots, Z_m) \mid Z_1, \ldots, Z_i)$ be the associated exposure martingale of f. Show that $|X_i - X_{i-1}| \leq c$ for all $1 \leq i \leq m$.

(Hint : Introduce an independent copy of Z_i to express X_i and X_{i-1} as conditional expectations under the same conditioning.)

Problem 21. Suppose we throw *n* balls into *m* bins independently and uniformly at random. Let *E* be the number of empty bins at the end, what is $\mathbb{E}(E)$? If E_j is the indicator function for the event that the *j*th bin is empty, then $E = \sum_{j=1}^{m} E_j$. Are the E_j independent? Show that

$$\mathbb{P}(|E - \mathbb{E}(E)| \ge \lambda \sqrt{n}) \le 2e^{-\frac{\lambda^2}{2}},$$

and thus conclude that E is tightly concentrated about it's mean if m = n. (Hint: Let Z_i be the bin into which the *i*th ball is thrown and consider the martingale sequence $X_i = \mathbb{E}(E \mid Z_1, \ldots, Z_i)$.)