
Probabilistic method in
combinatorics and algorithmics

WS 2024/25

Exercise sheet 8
Exercises for the exercise session on 8th January 2025

Problem 25. Let c > 0 be a constant and set p := c
n2/3 . Use Janson’s inequalities

to determine a function q : R>0 → (0, 1) so that

P[G(n, p) contains no clique of size 4]
n→∞−→ q(c).

Problem 26. Let c ≥ 2 be a constant and let p =
(
c lnn
n2

) 1
3 . Show that in G(n, p)

with high probability there is a path of length three between any pair of vertices.

(Hint : Use Janson’s inequality to show that the probability that a fixed pair of
vertices is not joined by such a path is o (n−2).)

Problem 27. Given an integer k = k(n) with 1 ≤ k ≤ n, consider the following
randomised algorithm to determine the k-th smallest element of an arbitrary, but
fixed array (a[1], . . . , a[n]) of distinct numbers.

(i) Like in Randomised QuickSort, pick a pivot element a[q] uniformly at
random and sort all elements smaller than a[q] to appear before a[q] and all
elements larger than a[q] to appear after a[q]. Denote the resulting array by
(b[1], . . . , b[n]) and suppose that a[q] = b[j].

(ii) If j = k, return a[q] = b[j].

(iii) If j < k, go to step (i) for the array (b[j + 1], . . . , b[n]).

(iv) If j > k, go to step (i) for the array (b[1], . . . , b[j − 1]).

Denote by Dn the number of comparisons that this algorithm performs (in the
same sense that comparisons were considered for Randomised QuickSort in the
lecture). Prove that E[Dn] = Θ(n).

Problem 28. Consider the following randomised algorithm which produces a cut
in an n-vertex (multi-)graph G:
We set Gn = G and given Gi we form Gi−1 by choosing an edge of G uniformly at
random and contracting that edge (that is, identify its two endpoints). We keep any
parallel edges formed, and we note that every edge in Gi−1 comes from a unique
edge in Gi. We continue until G2, where there are two vertices remaining. Let F be
the set of edges of G associated to the edges of G2.

(i) Show that F is a cut in G, that is, the removal of F splits G into multiple
components;

(ii) Show that the probability that F is the smallest cut in G is at least 2
n2 ;

(iii) Devise a randomised algorithm which find the smallest cut in a graph whp.

(*Optional*) : Can this algorithm be implemented in polynomial time?


