

Institut für Optimierung und Diskrete Mathematik

Vortrag im Seminar Diskrete Mathematik und Optimierung

$20.11.2012,\,14{:}15$

Seminarraum C208, Steyrergasse 30, 2. Stock

Higher Inclusion Matrices

YURY PERSON

(Institut für Mathematik, FU Berlin)

Abstract:

Let $n \ge r \ge s \ge 0$. The higher inclusion matrix $M_s^r(\binom{[n]}{r})$ is a $\{0,1\}$ -matrix whose rows are indexed by all *r*-element subsets of $[n] := \{1, 2, \ldots, n\}$ and and columns are indexed by all *s*-subsets of [n] and the entry corresponding to an *r*-set *R* and an *s*-set *S* is 1 if $S \subseteq R$ and 0 otherwise. Gottlieb's theorem from 1966 states that $M_s^r(\binom{[n]}{r})$ has the rank $\min\{\binom{n}{r}, \binom{n}{s}\}$ over \mathbb{Q} . Keevash asked how many rows one has to delete from $M_s^r(\binom{[n]}{r})$ to reduce its rank by 1. We answer his question for large *n* and study some generalizations of this problem. Joint work with Codruţ Grosu and Tibor Szabó.

Mihyun Kang