



## Institut für Optimierung und Diskrete Mathematik

### Vortrag im Seminar Diskrete Mathematik und Optimierung

Dienstag 28.4.2015, 14:15

Seminarraum C208, Steyrergasse 30, 2. Stock

# Algorithms and automata for the Tower of Hanoi<sup>1</sup>

## ANDREAS HINZ

(LMU Munich & University of Maribor)

Mathematical solitaire games like the Chinese Rings and the Tower of Hanoi can be modelled by state graphs, leading to the two-parameter classes of Sierpiński graphs  $S_p^n$  and Hanoi graphs  $H_p^n$ . Shortest path algorithms can be based on automata in the Sierpiński case, so that the metric properties of  $S_p^n$  (and  $H_3^n \cong S_3^n$ ) are now completely understood. For Hanoi graphs with p > 3, however, the notorious Frame-Stewart Conjecture (1941) is still undecided and unexpected behavior of eccentricities like Korf's Phenomenon (2004) remains unexplained. Wheras diam $(S_p^n) = 2^n - 1$ for all  $p \ge 2$ , the diameter of  $H_p^n$  is known only for small values of the parameters by computer experiments.

#### References.

[1] Hinz, A.M., Klavžar, S., Milutinović, U., Petr, C., The Tower of Hanoi—Myths and Maths, Springer, Basel, 2013.

[2] Hinz, A.M., Holz auf der Heide, C., An efficient algorithm to determine all shortest paths in Sierpiński graphs, Discrete Appl. Math. 177(2014), 111–120.

Mihyun Kang