

## Institut für Diskrete Mathematik

## Seminar für Kombinatorik und Optimierung

Friday 11th December 14:15

Online meeting (Webex)

## Resilience for Hamiltonicity in random hypergraphs

## Olaf Parczyk

(London School of Economics)

Sudakov and Vu introduced the concept of local resilience of graphs for measuring robustness with respect to satisfying a given property. A classical result of Dirac states that any subgraph G of the complete graph  $K_n$  of minimum degree  $\delta(G) \geq \frac{1}{2}n$  contains a Hamilton cycle. In the binomial random graph G(n, p) the threshold for the appearance of a Hamilton cycle is  $p = \log n/n$ . Lee and Sudakov generalised Dirac's result to random graphs by showing that with  $p \geq C \log n/n$  asymptotically almost surely any subgraph G of G(n, p) with minimum degree  $\delta(G) \geq (\frac{1}{2} + \epsilon)n$  contains a Hamilton cycle, where C depends only on  $\epsilon > 0$ . These kind of resilience problems in random graphs received a lot of attention. In this talk we discuss a generalisation of the result of Lee and Sudakov to tight Hamilton cycles in random hypergraphs.

This is joint work with Peter Allen and Vincent Pfenninger.

Meeting link:

https://tugraz.webex.com/tugraz/j.php?MTID=m1cd0904285a119237aa9a7ce985ad803

Meeting number: 137 149 1265 Password: JYc3B3dunG2

Joshua Erde, Mihyun Kang