

Institut für Diskrete Mathematik

Combinatorics Seminar

Friday 15th October 14:15

Online meeting (Webex)

Multitrees in random graphs

Alan Frieze

(Carnegie Mellon University)

Let $N = \binom{n}{2}$ and $s \ge 2$. Let $e_{i,j}$, i = 1, 2, ..., N, j = 1, 2, ..., s be s independent permutations of the edges $E(K_n)$ of the complete graph K_n . A MultiTree is a set $I \subseteq [N]$ such that the edge sets $E_{I,j}$ induce spanning trees for j = 1, 2, ..., s. In this paper we study the following question: what is the smallest m = m(n) such that w.h.p. [m] contains a multitree. We prove a hitting time result for s = 2 and an $O(n \log n)$ bound for $s \ge 3$.

Joint work with Wesley Pegden

Meeting link:

https://tugraz.webex.com/tugraz/j.php?MTID=ma70275cd258e7748417214793956c7bf

Meeting number: 188 980 7021

Password: ahMZ84fJYQ2

Joshua Erde, Mihyun Kang