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We consider the spectral properties of the operator (formally)
defined by

Hω(x0, y0) = −∆ + iω
(
(x − x0)∂y − (y − y0)∂x

)
on Ω ⊂ R2 subject to the Dirichlet boundary conditions. Here

ω > 0, (x0, y0) ∈ R2.

Physical motivations
The above operator describes a quantum particle confined to a
planar domain Ω rotating around a fixed point with an angular
velocity ω. Quantum effects associated with rotation attracted a
particular attention in connection with properties of ultracold
gases.
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Associated quadratic form

For any u ∈ C∞0 (Ω) one has

(Hω(x0, y0)u,u)L2(Ω) =∫
Ω

∣∣∣i∇u + Âu
∣∣∣2 dx dy− ω

2

4

∫
Ω

((x−x0)2 +(y−y0)2)|u|2 dx dy ,

where Â = (−y + y0, x − x0).

Boundedness of Ω implies that the corresponding operator is
bounded from below, hence it allows for Friedrichs extension

Ĥω(x0, y0) =
(

i∇+
ω

2
Â
)2
− ω2

4

(
(x − x0)2 + (y − y0)2

)
with the domain H2(Ω) ∩H1

0(Ω).
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where Â = (−y + y0, x − x0).

Boundedness of Ω implies that the corresponding operator is
bounded from below, hence it allows for Friedrichs extension
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Remark
By simple gauge transformation, namely

u(x , y) 7→ u(x , y)e−iω(xy0−yx0)/2,

the operator Ĥω(x0, y0) is unitarily equivalent to

H̃ω(x0, y0) =
(

i∇+
ω

2
A
)2
− ω2

4

(
(x − x0)2 + (y − y0)2

)
with A := (−y , x).
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The spectrum of H̃ω(x0, y0) is purely discrete.

The main object of interest in the talk

Our concern will be the principal eigenvalue λω1 (x0, y0) of
H̃ω(x0, y0).
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Existence and uniqueness of maximum, absence of minimums
Convex sets
Slow rotation

The first problem concerns

(x0, y0) 7→ λω1 (x0, y0)

for fixed Ω and ω, in particular, the existence of its extrema.

Theorem (B.-Exner, 2019)

λω1 (·, ·) as a map R2 → R has no minima. It has a unique
maximum.

Remark
λω1 (x0, y0)→ −∞ holds as (x0, y0)→∞.
This guarantees the existence of maxima.
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Sketch of the proof
Let (x0, y0) be a possible extrema point.

Step 1

We employ normalized eigenfunctions u(x0,y0)
ω and v (x0,y0)

ω

corresponding to λω1 (x0, y0) such that

u(x0+t,y0)
ω = u(x0,y0)

ω +O(t),

v (x0,y0+s)
ω = v (x0,y0)

ω +O(s),

for small values of t and s, where the error term is understood in the
L∞ sense.

The existence of such eigenfunctions is due to
[N. Raymond: Bound States of the Magnetic Schrödinger Operators, EMS, 2017]

If the eigenvalue λω1 (x0, y0) is simple then u(x0,y0)
ω = v (x0,y0)

ω . In fact we
shall see that this not true in general.
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Step 2

The key point – to prove the following implication:

(x0, y0) is an extremum point
⇓︷ ︸︸ ︷∫

Ω

(x − x0) |u(x0,y0)
ω |2 dx dy = 0 and

∫
Ω

(y − y0) |v (x0,y0)
ω |2 dx dy = 0

Idea of its proof: assume that this in not true, for example, one has∫
Ω

(x − x0) |u(x0,y0)
ω |2 dx dy > 0.

Using min-max principle, one can show that the above inequality
implies for any h < 0 small enough λω1 (x0 + h, y0) < λω1 (x0, y0).

Also, using min-max principle, one can deduce for small t > 0
λω1 (x0, y0) < λω1 (x0 + t , y0).
Contradiction (since (x0, y0) is an extremum).
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Step 3

Using (cf. Step 2)∫
Ω

(x − x0) |u(x0,y0)
ω |2 dx dy = 0,

∫
Ω

(y − y0) |v (x0,y0)
ω |2 dx dy = 0

and min-max principle one can prove that for all nonzero and
sufficiently small h

λω1 (x0 + h, y0) < λω1 (x0, y0).

Thus (x0, y0) is a point of maximum.
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Theorem (B.-Exner, 2019)
Let Ω be convex, then

(x0, y0) 7→ λω1 (x0, y0)

reaches its maximum at a point belonging to Ω.
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If ω is small then the position of the maximum can be
described more precisely.

Definition

Given a region Σ ⊂ R2 and a line P, we denote by ΣP the
mirror image of Σ with respect to P.

Theorem (B.-Exner, 2019)
Let Ω be convex set and P be a line which divides Ω into two
parts, Ω1 and Ω2, in such a way that ΩP

1 ⊂ Ω2. Then for small
enough values of ω the point at which λω1 (x0, y0) attains its
maximum does not belong to Ω1.
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Sketch of the proof

Recall: Hω(x0, y0) = −∆Ω
D + iω((x − x0)∂y − (y − y0)∂x ).

Without loss of generality we may suppose that P is parallel to the Y
axis. Let (x0, y0) ∈ Ω1 and assume that P passes through it.

Consider first the case ω = 0. Let uD be the ground state
eigenfunction of the Dirichlet Laplacian,

−∆D
ΩuD = λD

1 uD.

In view of standard perturbation theory for all sufficiently small ω the
ground state eigenvalue λω1 (x0, y0) is simple and the corresponding
eigenfunction satisfies

uω(x0, y0)(x , y) = uD(x , y) +O(ω).

Diana Barseghyan 12/23



Introduction
Optimalization of the ground state eigenvalue

Optimization with respect to ω

Domain comparison

Existence and uniqueness of maximum, absence of minimums
Convex sets
Slow rotation

Sketch of the proof

Recall: Hω(x0, y0) = −∆Ω
D + iω((x − x0)∂y − (y − y0)∂x ).

Without loss of generality we may suppose that P is parallel to the Y
axis. Let (x0, y0) ∈ Ω1 and assume that P passes through it.

Consider first the case ω = 0. Let uD be the ground state
eigenfunction of the Dirichlet Laplacian,

−∆D
ΩuD = λD

1 uD.

In view of standard perturbation theory for all sufficiently small ω the
ground state eigenvalue λω1 (x0, y0) is simple and the corresponding
eigenfunction satisfies

uω(x0, y0)(x , y) = uD(x , y) +O(ω).

Diana Barseghyan 12/23



Introduction
Optimalization of the ground state eigenvalue

Optimization with respect to ω

Domain comparison

Existence and uniqueness of maximum, absence of minimums
Convex sets
Slow rotation

Sketch of the proof

Recall: Hω(x0, y0) = −∆Ω
D + iω((x − x0)∂y − (y − y0)∂x ).

Without loss of generality we may suppose that P is parallel to the Y
axis. Let (x0, y0) ∈ Ω1 and assume that P passes through it.

Consider first the case ω = 0. Let uD be the ground state
eigenfunction of the Dirichlet Laplacian,

−∆D
ΩuD = λD

1 uD.

In view of standard perturbation theory for all sufficiently small ω the
ground state eigenvalue λω1 (x0, y0) is simple and the corresponding
eigenfunction satisfies

uω(x0, y0)(x , y) = uD(x , y) +O(ω).

Diana Barseghyan 12/23



Introduction
Optimalization of the ground state eigenvalue

Optimization with respect to ω

Domain comparison

Existence and uniqueness of maximum, absence of minimums
Convex sets
Slow rotation

Key lemma ∫
Ω

(x − x0)(uD(x , y))2 dx dy > 0.

Proof: later.

Using the above lemma we conclude (since ‖uω(x0, y0)− uD‖L∞ � 1)∫
Ω

(x − x0)(uω(x0, y0)(x , y))2 dx dy > 0.

But this contradicts to the neccesary condition for the point (x0, y0) to
be a point of maximum.

Recall

The necessary condition for the maximum is
∫

Ω(x − x0)(uω(x0, y0)(x , y))2 dx dy = 0.

Thus (x0, y0) is not a point of maximum. It remains to prove the above
lemma.
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Proof of Lemma

v(x , y) := uD(x , y)− uD(xP , y) on Ω1,

where (xP , y) is the mirror image of (x , y) with respect to P.

Positivity of uD implies
v |∂Ω1 ≤ 0.
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v |∂Ω1 ≤ 0

−∆v = λD
1 v on Ω1

the maximum principle for the second order elliptic partial
differential equations

⇓

v < 0 on Ω1

m

uD(x , y) ≤ uD(xP , y), (x , y) ∈ Ω1.

⇓ΩP
1⊂Ω2∫

Ω

(x − x0)(uD(x , y))2 dx dy > 0

Diana Barseghyan 15/23



Introduction
Optimalization of the ground state eigenvalue

Optimization with respect to ω

Domain comparison

Example of a disk

Our next topic is to compare the ground state eigenvalue of
Hω(x0, y0) with different values of ω.

Theorem (B.-Exner, 2019)

λω1 (x0, y0) ≤ λD
1 (Ω),

where λD
1 (Ω) is the ground state eigenvalue of the Dirichlet

Laplacian −∆Ω
D on Ω.

Moreover, the inequality is sharp for ω > 0 provided the region
Ω does not have full rotational symmetry (disk or a circular
annulus with (x0, y0) being its center).
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Example of a disk

Let us now look more closely at the situation when the system
has a rotational symmetry.

Hereafter in this subsection Ω is a disk of radius R rotating
around its center which we identify with the point (0,0).

In this case the spectrum is

λm,k (R, ω) =
j2m,k
R2 −mω, m ∈ Z, k ∈ N,

where jm,k is the k th positive zero of Bessel function of the first
kind Jm.

λω1 (x0, y0) = infm,kλm,k = infm≥0λm,1

Diana Barseghyan 17/23
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Example of a disk

Lemma
For each m ∈ N there is positive ω0 > 0 such that

λm,1 ≥
j20,1
R2 , ω ≤ ω0.

Remark

j20,1
R2 = λD

1 (Ω).

Theorem (B.-Exner, 2019)

λω1 (x0, y0) ≤ λD
1 (Ω).

Corollary (Theorem + Lemma + Remark)

λω1 (x0, y0) = λD
1 (Ω), ω ∈ (0, ω0].
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Example of a disk

Remark

The ground state eigenvalue of H̃ω(0,0) becomes degenerate
for some ω, for example

ω =
j21,1 − j20,1

R2 .
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In the last part of the talk we demonstrate an estimate in which
the ground state eigenvalue is compared to that of a disk of the
same area.

For this purpose we add the index specifying the region writing
H̃ω,Ω(x0, y0) and λω1,Ω(x0, y0).

We restrict our attention to convex regions with a fixed
(x0, y0) ∈ Ω which we can write as

Ω =
{

(x0 + r cosϕ, y0 + r sinϕ) : ϕ ∈ [0,2π), r ∈ [0,R(ϕ))
}

for a suitable 2π-periodic function R.

Diana Barseghyan 20/23



Introduction
Optimalization of the ground state eigenvalue

Optimization with respect to ω

Domain comparison

In the last part of the talk we demonstrate an estimate in which
the ground state eigenvalue is compared to that of a disk of the
same area.

For this purpose we add the index specifying the region writing
H̃ω,Ω(x0, y0) and λω1,Ω(x0, y0).

We restrict our attention to convex regions with a fixed
(x0, y0) ∈ Ω which we can write as

Ω =
{

(x0 + r cosϕ, y0 + r sinϕ) : ϕ ∈ [0,2π), r ∈ [0,R(ϕ))
}

for a suitable 2π-periodic function R.

Diana Barseghyan 20/23



Introduction
Optimalization of the ground state eigenvalue

Optimization with respect to ω

Domain comparison

Theorem (B.-Exner, 2019)

Suppose that πR2
0 = |Ω| and denote by B the disk of radius R0

and center in the origin, then

λω1,Ω(x0, y0) ≤ λω1,B(0,0)

+

(∫ 2π

0

(
R′(ϕ)

R(ϕ)

)2

dϕ

)
sup

0≤m≤
R2

0ω+

√
R4

0ω
2+4j20,1

2

j2m,1 −m2

2πR2
0

.

For large values of ω the right-hand -side behaves as

λω1,B(0,0) +O
(
R2/3

0 ω4/3 )→ −∞ as ω →∞
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D. Barseghyan, P. Exner, Spectral geometry in a rotating frame:
properties of the ground state, arXiv:1902.03038 [math.SP]
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Thank you for your attention
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