> Differential Operators on Graphs and Waveguides Graz University of Technology February 26th, 2019

# Spectral geometry in a rotating frame: properties of the ground state

#### Diana Barseghyan

Nuclear Physics Institute of the ASCR, Řež near Prague & University of Ostrava

joint work with Pavel Exner

イロト イポト イヨト イヨト

We consider the spectral properties of the operator (formally) defined by

$$H_{\omega}(x_0, y_0) = -\Delta + i\omega \left( (x - x_0)\partial_y - (y - y_0)\partial_x \right)$$

# on $\Omega\subset\mathbb{R}^2$ subject to the Dirichlet boundary conditions. Here $\omega>0,\quad (x_0,y_0)\in\mathbb{R}^2.$

#### Physical motivations

The above operator describes a quantum particle confined to a planar domain  $\Omega$  rotating around a fixed point with an angular velocity  $\omega$ . Quantum effects associated with rotation attracted a particular attention in connection with properties of ultracold gases.

We consider the spectral properties of the operator (formally) defined by

$$H_{\omega}(x_0, y_0) = -\Delta + i\omega \left( (x - x_0)\partial_y - (y - y_0)\partial_x \right)$$

on  $\Omega \subset \mathbb{R}^2$  subject to the Dirichlet boundary conditions. Here

$$\omega > \mathbf{0}, \quad (\mathbf{x}_0, \mathbf{y}_0) \in \mathbb{R}^2.$$

#### Physical motivations

The above operator describes a quantum particle confined to a planar domain  $\Omega$  rotating around a fixed point with an angular velocity  $\omega$ . Quantum effects associated with rotation attracted a particular attention in connection with properties of ultracold gases.

#### Associated quadratic form

For any  $u \in C_0^\infty(\Omega)$  one has

$$(H_{\omega}(x_0, y_0)u, u)_{L^2(\Omega)} = \int_{\Omega} \left| i\nabla u + \widehat{A}u \right|^2 \mathrm{d}x \,\mathrm{d}y - \frac{\omega^2}{4} \int_{\Omega} ((x - x_0)^2 + (y - y_0)^2) |u|^2 \,\mathrm{d}x \,\mathrm{d}y,$$

where 
$$\widehat{A} = (-y + y_0, x - x_0)$$
.

Boundedness of  $\Omega$  implies that the corresponding operator is bounded from below, hence it allows for Friedrichs extension

$$\widehat{H}_{\omega}(x_0, y_0) = \left(i\nabla + \frac{\omega}{2}\widehat{A}\right)^2 - \frac{\omega^2}{4}\left((x - x_0)^2 + (y - y_0)^2\right)$$

with the domain  $\mathcal{H}^2(\Omega) \cap \mathcal{H}^1_0(\Omega)$ .

Introduction Optimization with respect to  $\omega$ Domain comparison

#### Associated quadratic form

For any  $u \in C_0^{\infty}(\Omega)$  one has

$$(H_{\omega}(x_0, y_0)u, u)_{L^2(\Omega)} = \int_{\Omega} \left| i\nabla u + \widehat{A}u \right|^2 dx dy - \frac{\omega^2}{4} \int_{\Omega} ((x - x_0)^2 + (y - y_0)^2) |u|^2 dx dy,$$

where 
$$\widehat{A} = (-y + y_0, x - x_0)$$
.

Boundedness of  $\Omega$  implies that the corresponding operator is bounded from below, hence it allows for Friedrichs extension

$$\widehat{H}_{\omega}(x_0, y_0) = \left(i\nabla + \frac{\omega}{2}\widehat{A}\right)^2 - \frac{\omega^2}{4}\left((x - x_0)^2 + (y - y_0)^2\right)$$

with the domain  $\mathcal{H}^2(\Omega) \cap \mathcal{H}^1_0(\Omega)$ .

#### Remark

By simple gauge transformation, namely

 $u(x,y)\mapsto u(x,y)\mathrm{e}^{-i\omega(xy_0-yx_0)/2},$ 

the operator  $\widehat{H}_{\omega}(x_0, y_0)$  is unitarily equivalent to

$$\widetilde{H}_{\omega}(x_0, y_0) = \left(i\nabla + \frac{\omega}{2}A\right)^2 - \frac{\omega^2}{4}\left((x - x_0)^2 + (y - y_0)^2\right)$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 のへで

with A := (-y, x).

### The spectrum of $\widetilde{H}_{\omega}(x_0, y_0)$ is purely discrete.

#### The main object of interest in the talk

Our concern will be **the principal eigenvalue**  $\lambda_1^{\omega}(x_0, y_0)$  of  $\widetilde{H}_{\omega}(x_0, y_0)$ .

イロト 不得 とくほ とくほとう

ъ

Existence and uniqueness of maximum, absence of minimums Convex sets Slow rotation

イロト イポト イヨト イヨト

The first problem concerns

# $(\textbf{\textit{x}}_0,\textbf{\textit{y}}_0)\mapsto\lambda_1^\omega(\textbf{\textit{x}}_0,\textbf{\textit{y}}_0)$

for **fixed**  $\Omega$  and  $\omega$ , in particular, the existence of its extrema.

#### Theorem (B.-Exner, 2019)

 $\lambda_1^\omega(\cdot,\cdot)$  as a map  $\mathbb{R}^2\to\mathbb{R}$  has no minima. It has a unique maximum.

#### Remark

 $\lambda_1^{\omega}(x_0, y_0) \to -\infty$  holds as  $(x_0, y_0) \to \infty$ . This guarantees the existence of maxima.

Existence and uniqueness of maximum, absence of minimums Convex sets Slow rotation

The first problem concerns

# $(\mathbf{x}_0, \mathbf{y}_0) \mapsto \lambda_1^{\omega}(\mathbf{x}_0, \mathbf{y}_0)$

for **fixed**  $\Omega$  and  $\omega$ , in particular, the existence of its extrema.

#### Theorem (B.-Exner, 2019)

 $\lambda_1^\omega(\cdot,\cdot)$  as a map  $\mathbb{R}^2\to\mathbb{R}$  has no minima. It has a unique maximum.

#### Remark

 $\lambda_1^{\omega}(x_0, y_0) \rightarrow -\infty$  holds as  $(x_0, y_0) \rightarrow \infty$ .

This guarantees the existence of maxima.

Existence and uniqueness of maximum, absence of minimums Convex sets Slow rotation

### Sketch of the proof

Let  $(x_0, y_0)$  be a possible extrema point.

#### Step 1

We employ normalized eigenfunctions  $u_{\omega}^{(x_0,y_0)}$  and  $v_{\omega}^{(x_0,y_0)}$  corresponding to  $\lambda_1^{\omega}(x_0,y_0)$  such that

$$\begin{split} & u_{\omega}^{(x_0+t,y_0)} = u_{\omega}^{(x_0,y_0)} + \mathcal{O}(t), \\ & v_{\omega}^{(x_0,y_0+s)} = v_{\omega}^{(x_0,y_0)} + \mathcal{O}(s), \end{split}$$

for small values of *t* and *s*, where the error term is understood in the  $L^{\infty}$  sense.

The existence of such eigenfunctions is due to

[N. Raymond: Bound States of the Magnetic Schrödinger Operators, EMS, 2017]

If the eigenvalue  $\lambda_1^{\omega}(x_0, y_0)$  is simple then  $u_{\omega}^{(x_0, y_0)} = v_{\omega}^{(x_0, y_0)}$ . In fact we shall see that this not true in general.

Introduction Existence and uniqueness of maximum, absence of minimums Optimalization of the ground state eigenvalue Optimization with respect to  $\omega$ Domain comparison Step 2 The key point – to prove the following implication:  $(x_0, y_0)$  is an extremum point ∜  $\int_{\Omega} (x - x_0) |u_{\omega}^{(x_0, y_0)}|^2 \, \mathrm{d}x \, \mathrm{d}y = 0 \quad \text{and} \quad \int_{\Omega} (y - y_0) |v_{\omega}^{(x_0, y_0)}|^2 \, \mathrm{d}x \, \mathrm{d}y = 0$ 

Also, using min-max principle, one can deduce for small t > 0 $\lambda_1^{\omega}(x_0, y_0) < \lambda_1^{\omega}(x_0 + t, y_0)$ . **Contradiction** (since  $(x_0, y_0)$  is an extremum).

Existence and uniqueness of maximum, absence of minimums  
Convex sets  
Slow rotation  
Step 2  
The key point – to prove the following implication:  

$$(x_0, y_0)$$
 is an extremum point  
 $\downarrow$   
 $\int_{\Omega} (x - x_0) |u_{\omega}^{(x_0, y_0)}|^2 dx dy = 0$  and  $\int_{\Omega} (y - y_0) |v_{\omega}^{(x_0, y_0)}|^2 dx dy = 0$ 

Idea of its proof: assume that this in not true, for example, one has

$$\int_{\Omega} (x-x_0) \, |u_{\omega}^{(x_0,y_0)}|^2 \, \mathrm{d}x \, \mathrm{d}y > 0.$$

Using min-max principle, one can show that the above inequality implies for any h < 0 small enough  $\lambda_1^{\omega}(x_0 + h, y_0) < \lambda_1^{\omega}(x_0, y_0)$ .

Also, using min-max principle, one can deduce for small t > 0 $\lambda_1^{\omega}(x_0, y_0) < \lambda_1^{\omega}(x_0 + t, y_0).$ 

**Contradiction** (since  $(x_0, y_0)$  is an extremum).

Existence and uniqueness of maximum, absence of minimums Convex sets Slow rotation

イロト イポト イヨト イヨト

3

#### Step 3

Using (cf. Step 2)

$$\int_{\Omega} (x - x_0) |u_{\omega}^{(x_0, y_0)}|^2 \, \mathrm{d}x \, \mathrm{d}y = 0, \quad \int_{\Omega} (y - y_0) |v_{\omega}^{(x_0, y_0)}|^2 \, \mathrm{d}x \, \mathrm{d}y = 0$$

and min-max principle one can prove that for all nonzero and sufficiently small  $\boldsymbol{h}$ 

$$\lambda_1^{\omega}(\mathbf{x}_0 + \mathbf{h}, \mathbf{y}_0) < \lambda_1^{\omega}(\mathbf{x}_0, \mathbf{y}_0).$$

Thus  $(x_0, y_0)$  is a point of maximum.

Existence and uniqueness of maximum, absence of minimums Convex sets Slow rotation

イロト イポト イヨト イヨト

3

#### Theorem (B.-Exner, 2019)

Let  $\Omega$  be convex, then

### $(\textbf{\textit{x}}_0,\textbf{\textit{y}}_0)\mapsto\lambda_1^\omega(\textbf{\textit{x}}_0,\textbf{\textit{y}}_0)$

reaches its maximum at a point belonging to  $\Omega$ .

Existence and uniqueness of maximum, absence of minimums Convex sets Slow rotation

イロト イポト イヨト イヨト

# If $\omega$ is **small** then the position of the maximum can be described more precisely.

#### Definition

Given a region  $\Sigma \subset \mathbb{R}^2$  and a line *P*, we denote by  $\Sigma^P$  the mirror image of  $\Sigma$  with respect to *P*.

#### Theorem (B.-Exner, 2019)

Let  $\Omega$  be convex set and P be a line which divides  $\Omega$  into two parts,  $\Omega_1$  and  $\Omega_2$ , in such a way that  $\Omega_1^P \subset \Omega_2$ . Then for small enough values of  $\omega$  the point at which  $\lambda_1^{\omega}(x_0, y_0)$  attains its maximum does not belong to  $\Omega_1$ .

Existence and uniqueness of maximum, absence of minimums Convex sets Slow rotation

イロト イポト イヨト イヨト

If  $\omega$  is **small** then the position of the maximum can be described more precisely.

#### Definition

Given a region  $\Sigma \subset \mathbb{R}^2$  and a line *P*, we denote by  $\Sigma^P$  the mirror image of  $\Sigma$  with respect to *P*.

#### Theorem (B.-Exner, 2019)

Let  $\Omega$  be convex set and P be a line which divides  $\Omega$  into two parts,  $\Omega_1$  and  $\Omega_2$ , in such a way that  $\Omega_1^P \subset \Omega_2$ . Then for small enough values of  $\omega$  the point at which  $\lambda_1^{\omega}(x_0, y_0)$  attains its maximum does not belong to  $\Omega_1$ .

Existence and uniqueness of maximum, absence of minimums Convex sets Slow rotation

イロト イポト イヨト イヨト

If  $\omega$  is **small** then the position of the maximum can be described more precisely.

#### Definition

Given a region  $\Sigma \subset \mathbb{R}^2$  and a line *P*, we denote by  $\Sigma^P$  the mirror image of  $\Sigma$  with respect to *P*.

#### Theorem (B.-Exner, 2019)

Let  $\Omega$  be convex set and P be a line which divides  $\Omega$  into two parts,  $\Omega_1$  and  $\Omega_2$ , in such a way that  $\Omega_1^P \subset \Omega_2$ . Then for small enough values of  $\omega$  the point at which  $\lambda_1^{\omega}(x_0, y_0)$  attains its maximum does not belong to  $\Omega_1$ .

Existence and uniqueness of maximum, absence of minimums Convex sets Slow rotation

#### Sketch of the proof

Recall:  $H_{\omega}(x_0, y_0) = -\Delta_D^{\Omega} + i\omega((x - x_0)\partial_y - (y - y_0)\partial_x).$ 

Without loss of generality we may suppose that *P* is parallel to the *Y* axis. Let  $(x_0, y_0) \in \Omega_1$  and assume that *P* passes through it.

Consider first the case  $\omega = 0$ . Let  $u_D$  be the ground state eigenfunction of the Dirichlet Laplacian,

 $-\Delta_{\Omega}^{D}u_{D}=\lambda_{1}^{D}u_{D}.$ 

In view of standard perturbation theory for all sufficiently small  $\omega$  the ground state eigenvalue  $\lambda_1^{\omega}(x_0, y_0)$  is simple and the corresponding eigenfunction satisfies

 $u^{\omega}(x_0,y_0)(x,y)=u_D(x,y)+\mathcal{O}(\omega).$ 

Existence and uniqueness of maximum, absence of minimums Convex sets Slow rotation

#### Sketch of the proof

Recall:  $H_{\omega}(x_0, y_0) = -\Delta_D^{\Omega} + i\omega((x - x_0)\partial_y - (y - y_0)\partial_x).$ 

Without loss of generality we may suppose that *P* is parallel to the *Y* axis. Let  $(x_0, y_0) \in \Omega_1$  and assume that *P* passes through it.

Consider first the case  $\omega = 0$ . Let  $u_D$  be the ground state eigenfunction of the Dirichlet Laplacian,

 $-\Delta_{\Omega}^{D}u_{D}=\lambda_{1}^{D}u_{D}.$ 

In view of standard perturbation theory for all sufficiently small  $\omega$  the ground state eigenvalue  $\lambda_1^{\omega}(x_0, y_0)$  is simple and the corresponding eigenfunction satisfies

 $u^{\omega}(x_0,y_0)(x,y)=u_D(x,y)+\mathcal{O}(\omega).$ 

Existence and uniqueness of maximum, absence of minimums Convex sets Slow rotation

#### Sketch of the proof

Recall:  $H_{\omega}(x_0, y_0) = -\Delta_D^{\Omega} + i\omega((x - x_0)\partial_y - (y - y_0)\partial_x).$ 

Without loss of generality we may suppose that *P* is parallel to the *Y* axis. Let  $(x_0, y_0) \in \Omega_1$  and assume that *P* passes through it.

Consider first the case  $\omega = 0$ . Let  $u_D$  be the ground state eigenfunction of the Dirichlet Laplacian,

 $-\Delta_{\Omega}^{D}u_{D} = \lambda_{1}^{D}u_{D}.$ 

In view of standard perturbation theory for all sufficiently small  $\omega$  the ground state eigenvalue  $\lambda_1^{\omega}(x_0, y_0)$  is simple and the corresponding eigenfunction satisfies

$$u^{\omega}(x_0,y_0)(x,y)=u_D(x,y)+\mathcal{O}(\omega).$$

Existence and uniqueness of maximum, absence of minimums Convex sets Slow rotation

#### Key lemma

$$\int_{\Omega} (x-x_0)(u_D(x,y))^2 \,\mathrm{d}x \,\mathrm{d}y > 0.$$

#### Proof: later.

Using the above lemma we conclude (since  $\|u^{\omega}(x_0, y_0) - u_D\|_{L^{\infty}} \ll 1$ )

$$\int_{\Omega}(x-x_0)(u^{\omega}(x_0,y_0)(x,y))^2\,\mathrm{d}x\,\mathrm{d}y>0.$$

But this contradicts to the neccesary condition for the point  $(x_0, y_0)$  to be a point of maximum.

#### Recall

The necessary condition for the maximum is  $\int_{\Omega} (x - x_0) (u^{\omega}(x_0, y_0)(x, y))^2 dx dy = 0$ .

Thus  $(x_0, y_0)$  is not a point of maximum. It remains to prove the above lemma.

Existence and uniqueness of maximum, absence of minimums Convex sets Slow rotation

イロト 不同 とくほ とくほ とう

3

#### **Proof of Lemma**

$$v(x,y) := u_D(x,y) - u_D(x^P,y)$$
 on  $\Omega_1$ ,

where  $(x^{P}, y)$  is the mirror image of (x, y) with respect to *P*.

Positivity of  $u_D$  implies

$$v|_{\partial\Omega_1}\leq 0.$$

Introduction Optimalization of the ground state eigenvalue Domain comparison

Slow rotation

•  $v|_{\partial\Omega_1} \leq 0$ 

- $-\Delta v = \lambda_1^D v$  on  $\Omega_1$
- the maximum principle for the second order elliptic partial differential equations



Our next topic is to compare the ground state eigenvalue of  $H_{\omega}(x_0, y_0)$  with **different values** of  $\omega$ .

Theorem (B.-Exner, 2019)

# $\lambda_1^{\omega}(\mathbf{x}_0, \mathbf{y}_0) \leq \lambda_1^D(\Omega),$

where  $\lambda_1^D(\Omega)$  is the ground state eigenvalue of the Dirichlet Laplacian  $-\Delta_D^{\Omega}$  on  $\Omega$ .

Moreover, the inequality is sharp for  $\omega > 0$  provided the region  $\Omega$  does not have full rotational symmetry (disk or a circular annulus with ( $x_0$ ,  $y_0$ ) being its center).

Let us now look more closely at the situation when the system has a rotational symmetry.

Hereafter in this subsection  $\Omega$  is a **disk** of radius *R* rotating around its center which we identify with the point (0, 0).

In this case the spectrum is

$$\lambda_{m,k}(R,\omega) = rac{j_{m,k}^2}{R^2} - m\omega, \quad m \in \mathbb{Z}, \ k \in \mathbb{N},$$

where  $j_{m,k}$  is the *k*th positive zero of Bessel function of the first kind  $J_m$ .

$$\lambda_1^{\omega}(x_0, y_0) = \inf_{m,k} \lambda_{m,k} = \inf_{m \ge 0} \lambda_{m,1}$$

Let us now look more closely at the situation when the system has a rotational symmetry.

Hereafter in this subsection  $\Omega$  is a **disk** of radius *R* rotating around its center which we identify with the point (0, 0).

In this case the spectrum is

$$\lambda_{m,k}(\boldsymbol{R},\omega) = rac{j_{m,k}^2}{R^2} - m\omega, \quad m \in \mathbb{Z}, \ k \in \mathbb{N},$$

where  $j_{m,k}$  is the *k*th positive zero of Bessel function of the first kind  $J_m$ .

$$\lambda_1^{\omega}(\mathbf{x}_0, \mathbf{y}_0) = \inf_{m,k} \lambda_{m,k} = \inf_{m \ge 0} \lambda_{m,1}$$

イロト イポト イヨト イヨト

Example of a disk

#### Lemma

For each  $m \in \mathbb{N}$  there is positive  $\omega_0 > 0$  such that

$$\lambda_{m,1} \ge \frac{j_{0,1}^2}{R^2}, \quad \omega \le \omega_0.$$

#### Remark

$$\frac{j_{0,1}^2}{R^2} = \lambda_1^D(\Omega).$$

Theorem (B.-Exner, 2019)

 $\lambda_1^{\omega}(x_0, y_0) \leq \lambda_1^D(\Omega).$ 

Corollary (Theorem + Lemma + Remark)

 $\lambda_1^{\omega}(\mathbf{x}_0,\mathbf{y}_0) = \lambda_1^D(\Omega), \quad \omega \in (\mathbf{0},\omega_0].$ 

Example of a disk

#### Lemma

For each  $m \in \mathbb{N}$  there is positive  $\omega_0 > 0$  such that

$$\lambda_{m,1} \geq \frac{j_{0,1}^2}{R^2}, \quad \omega \leq \omega_0.$$

#### Remark

$$\frac{j_{0,1}^2}{R^2} = \lambda_1^D(\Omega).$$

Theorem (B.-Exner, 2019)

 $\lambda_1^{\omega}(\mathbf{x}_0, \mathbf{y}_0) \leq \lambda_1^D(\Omega).$ 

Corollary (Theorem + Lemma + Remark)

 $\lambda_1^\omega(x_0,y_0)=\lambda_1^D(\Omega),\quad\omega\in(0,\omega_0].$ 

Example of a disk

#### Lemma

For each  $m \in \mathbb{N}$  there is positive  $\omega_0 > 0$  such that

$$\lambda_{m,1} \geq \frac{j_{0,1}^2}{R^2}, \quad \omega \leq \omega_0.$$

#### Remark

$$\frac{j_{0,1}^2}{R^2} = \lambda_1^D(\Omega).$$

Theorem (B.-Exner, 2019)

 $\lambda_1^{\omega}(\mathbf{x}_0, \mathbf{y}_0) \leq \lambda_1^D(\Omega).$ 

Corollary (Theorem + Lemma + Remark)

$$\lambda_1^{\omega}(\mathbf{x}_0, \mathbf{y}_0) = \lambda_1^D(\Omega), \quad \omega \in (\mathbf{0}, \omega_0].$$

200

Example of a disk

イロト 不得 とくほと くほとう

3

#### Remark

The ground state eigenvalue of  $\widetilde{H}_{\omega}(0,0)$  becomes degenerate for some  $\omega$ , for example



Example of a disk

・ロト ・ ア・ ・ ヨト ・ ヨト

ъ

#### Remark

The ground state eigenvalue of  $\widetilde{H}_{\omega}(0,0)$  becomes degenerate for some  $\omega$ , for example

$$\omega = \frac{j_{1,1}^2 - j_{0,1}^2}{R^2}.$$

In the last part of the talk we demonstrate an estimate in which the ground state eigenvalue is compared to that of a disk of the same area.

For this purpose we add the index specifying the region writing  $\widetilde{H}_{\omega,\Omega}(x_0, y_0)$  and  $\lambda_{1,\Omega}^{\omega}(x_0, y_0)$ .

We restrict our attention to convex regions with a fixed  $(x_0, y_0) \in \Omega$  which we can write as

 $\Omega = \left\{ (x_0 + r\cos\varphi, y_0 + r\sin\varphi) : \varphi \in [0, 2\pi), \ r \in [0, R(\varphi)) \right\}$ 

イロン 不得 とくほ とくほとう

for a suitable  $2\pi$ -periodic function *R*.

In the last part of the talk we demonstrate an estimate in which the ground state eigenvalue is compared to that of a disk of the same area.

For this purpose we add the index specifying the region writing  $\widetilde{H}_{\omega,\Omega}(x_0, y_0)$  and  $\lambda_{1,\Omega}^{\omega}(x_0, y_0)$ .

We restrict our attention to convex regions with a fixed  $(x_0, y_0) \in \Omega$  which we can write as

$$\Omega = \left\{ (x_0 + r \cos \varphi, y_0 + r \sin \varphi) : \varphi \in [0, 2\pi), r \in [0, \mathcal{R}(\varphi)) \right\}$$

ヘロト ヘ戸ト ヘヨト ヘヨト

for a suitable  $2\pi$ -periodic function *R*.

#### Theorem (B.-Exner, 2019)

Suppose that  $\pi R_0^2 = |\Omega|$  and denote by B the disk of radius  $R_0$  and center in the origin, then

$$\lambda_{1,\Omega}^{\omega}(x_0,y_0) \leq \lambda_{1,B}^{\omega}(0,0) + \left(\int_0^{2\pi} \left(rac{R'(arphi)}{R(arphi)}
ight)^2 \mathrm{d}arphi
ight) \sup_{0\leq m\leq rac{R_0^2\omega+\sqrt{R_0^4\omega^2+4j_{0,1}^2}}{2}} rac{j_{m,1}^2-m^2}{2\pi R_0^2}.$$

For large values of  $\omega$  the right-hand -side behaves as

$$\lambda_{1,B}^{\omega}(0,0) + \mathcal{O}ig( R_0^{2/3} \omega^{4/3} ig) 
ightarrow -\infty \quad \textit{as} \quad \omega 
ightarrow \infty$$

イロト イポト イヨト イヨト

# D. Barseghyan, P. Exner, Spectral geometry in a rotating frame: properties of the ground state, arXiv:1902.03038 [math.SP]

イロン 不得 とくほ とくほとう

ъ

# Thank you for your attention

イロト イポト イヨト イヨト

ъ

Diana Barseghyan 23/23