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Consider a lattice Z2 or the honeycomb lattice.

We study quantum
graphs with magnetic field and randomness:

B := B dx1 ∧ dx2 = dA, A = 1
2B (−x2 dx1 + x1 dx2) .

(HB
λ,ωψ)e := (DBDBψ)e+Vψe+Vωψe , (DBψ)e := −iψ′e−Aeψe

v ∈ ∂e1 ∩ ∂e2 ⇒ ψe1(v) = ψe2(v),
∑
∂e3v

(DBψ)e(v) = 0.

The Peierls substitution P : ψe 7→ e iAetψe transforms the magnetic
field into the boundary conditions:

ΛB := P−1HBP, (ΛBψ)e = −ψ′′e + Vψe

∂±e1 = ∂±e2 =: v =⇒ e iδ+±Ae1ψe1(v) = e iδ+±Ae2ψe2(v),∑
∂±e3v

e iδ+±Aeψ′e(v) = 0,

Brüning–Geyler–Pankrashkin ’07
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Roughly speaking, Krein’s formula reduces the study of an
operator on the graph to the study of an operator on Z2

(Qh
�u)(γ) = 1

4 (τ0 + τ∗0 + τ1 + τ∗1 ) u(γ)

(Qh
7u)(γ) = 1

3

(
0 1 + τ0 + τ1

1 + τ∗0 + τ∗1 0

)
u(γ)

with translations given by

τ0(u)(γ) := u(γ1 − 1, γ2) τ1(u)(γ) := e ihγ1u(γ1, γ2 − 1),

here h is the flux through a fundamental cell.
The above operators are equivalent to operators on Z with
c(θ) = 1 + e−2πiθ and v(θ) = 2 cos(2πθ)

(H�u)(n) = u(n + 1) + u(n − 1) + v(k + n h
2π )u(n)

(H7u)(n) = c(k + n h
2π )u(n + 1) + c(k + (n − 1) h

2π )u(n − 1)

+ v(k + n h
2π )u(n).
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Theorem (Helffer-Sjöstrand+ B.-Han-Jitomirskaya)

The spectrum of Qh
� or Qh

7 for h
2π ∈ Q is band spectrum and a.c..

If h
2π ∈ R\Q the spectrum is a Cantor set (closed, nowhere dense,

no isolated points) of Lebesgue measure zero and s.c..

The proof- roughly -relies on three main ideas:

I Exclude point spectrum from regularity properties of the
density of states.

I Get estimates on the Lebesgue measure of the spectrum (as a
set) for rational flux h

2π ∈ Q.
I Prove that the spectrum is Hölder continuous and

approximate irrationals by rationals.
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Theorem (Helffer-Sjöstrand+ B.-Han-Jitomirskaya)

The spectrum of Qh
� or Qh

7 for h
2π ∈ Q is band spectrum and a.c..

If h
2π ∈ R\Q the spectrum is a Cantor set (closed, nowhere dense,

no isolated points) of Lebesgue measure zero and s.c..

The proof- roughly -relies on three main ideas:

I Exclude point spectrum from regularity properties of the
density of states.

I Get estimates on the Lebesgue measure of the spectrum (as a
set) for rational flux h

2π ∈ Q.
I Prove that the spectrum is Hölder continuous and
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This is a plot of the spectrum of HB for the hexagonal graph:
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We know what kind of spectrum there is, but now we want to
know:
Where is the spectrum?-Are there spectral gaps?

-
Therefore, we study the density of states

t̃r f (HB
λ,ω) := lim

R→∞

tr 1B(R)f (HB
λ,ω)

vol(B(R))
=

∫
R
f (E )dρλ(E ).

The limit does exist and is a.s. non random-just like the spectrum
of HB

λ,ω.
Our next goal is to understand this object in the non-random
setting first. The key property is that for γ := (1, 0) and δ := (0, 1)

τ−hγ τ−hδ = e−ihτ−hδ τ−hγ .

This is a version of the canonical commutation relation. In
semiclassical Weyl quantization

(Opw
h (a)u)(x) := 1

2πh

∫
R
∫
R e

i
h 〈x−y ,ξ〉a

( x+y
2 , ξ

)
u(y) dy dξ, the

same commutation relation is satisfied by

Opw
h

(
e ix
)

Opw
h

(
e iξ
)

= e−ih Opw
h

(
e iξ
)

Opw
h

(
e ix
)
.
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of HB

λ,ω.
Our next goal is to understand this object in the non-random
setting first. The key property is that for γ := (1, 0) and δ := (0, 1)

τ−hγ τ−hδ = e−ihτ−hδ τ−hγ .

This is a version of the canonical commutation relation. In
semiclassical Weyl quantization

(Opw
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2πh

∫
R
∫
R e

i
h 〈x−y ,ξ〉a

( x+y
2 , ξ

)
u(y) dy dξ, the

same commutation relation is satisfied by

Opw
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(
e ix
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Opw
h

(
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= e−ih Opw
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(
e iξ
)

Opw
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e ix
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In order to understand

(Qh
�u)(γ) = 1

4 (τ0 + τ∗0 + τ1 + τ∗1 ) u(γ)

(Qh
7u)(γ) = 1

3

(
0 1 + τ0 + τ1

1 + τ∗0 + τ∗1 0

)
u(γ)

we therefore study ΨDOs

Q̂� = 1
2 (cos(x) + cos(hDx))

Q̂7 = 1
3
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1 + e ix + e ihDx 0

)
.

Why does that help? Taylor expansion of cos(x) + cos(ξ) at (π, π)
shows that 1

2(cos(x) + cos(ξ)) = −1 + 1
4

(
x2 + ξ2

)
+O(x4 + ξ4).

Hence, the spectrum should be localized to eigenvalues −1 + nh
2

where n ∈ N.
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The determinant of the symbol Q7 is given by −|1 + e ix + e iξ|2/9,
and it vanishes at

(x , ξ) ∈ Z2
∗ ±

(
2π
3 ,−

2π
3

)
,

that is, at the Dirac points.

In small neighbourhoods of ±(2π3 ,−
2π
3 ) we can make a symplectic

change of variables:

y = a(x + ξ), η = b

(
ξ − x ± 4π

3

)
, 2ab = 1,

and find that

1 + e ix + e iξ = c(η ∓ iy) +O(y2 + η2),

1 + e−ix + e−iξ = c(η ± iy) +O(y2 + η2),

where c = 3
1
4 2−

1
2 by choosing a = ±2−

3
4 3−

1
4 and b = ±2−

1
4 3

1
4 .
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This is a plot of the first two bands of the spectrum of HB=0 on
the hexagonal lattice (cf. Kuchment-Post):
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Theorem[B.-Zworski ’18] For I a neighbourhood of a Dirac
energy, ED , ∆(ED) = 0, and f ∈ Cαc (I ), α > 0,

∫
f (E )dρ(E ) =

h

π |b1 ∧ b2|
∑
n∈Z

f (En(h)) +O‖f ‖Cα (h∞)

∆(En(h)) = κ(nh, h)

F (κ(ζ, h)2, h) = ζ, F (ω, h) ∼
∞∑
j=0

hjFj(ω), Fj ∈ C∞(R),

F0(ω) =
1

4π

∫
γω

ξdx , γω =

{
(x , ξ) ∈ R2/2πZ2 :

|1 + e ix + e iξ|2

9
= ω

}
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∫
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B

π

∑
n∈Z

f (En), En := sign(n)vF
√
|n|B
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Transferring everything to the discrete setting:

For operators A ∈ L(`2(Z2,Cn)) given by

A(s)(γ) :=
∑
β∈Z2

k(γ, β)s(β)

with possibly matrix-valued k(γ, β) := 〈δγ ,Aδβ〉 ∈ Cn×n,

we define

t̂rA := lim
R→∞

1
|B(R)|

∑
γ∈Z2∩B(R)

trCn k(γ, γ)

provided the limit exists.The density of states for the discrete
operators is

t̂rf (Qh) =
h

(2)π

∑
n∈Z

f (En(h)) +O‖f ‖Cα (h∞).
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Quantum Hall effect

For projections P,Q such that P − Q is compact we define

ind(P,Q) := dim ker(P − Q − 1)− dim ker(Q − P − 1).

Let P = 1I (Q
h) be a projection onto an interval I such that ∂I is

in a spectral gap of Qh :

I Streda: σ = d
dh t̂r(P).

I Bellissard: σ = −i t̂r (P[[P, x1], [P, x2]]) .

I Avron, Seiler, Simon: (Uaψ)(x) := e−iθa(x)ψ(x) with
θa(x) := arg(x − a) ∈ (−π, π].

σ = 1
2π ind(P,UaPU

∗
a ) = 1

2π tr(P − UaPU
∗
a )3.
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Would like to use σ = d
dh t̂r1I (Q

h) but only have

t̂rf (Qh) =
h

(2)π

∑
n∈Z

f (En(h)) +O‖f ‖Cα (h∞).

There are two problems

I Don’t know anything about spectral gaps.

I It is unclear whether formula is actually differentiable.

Way out:

I Use results on spectral theory to conclude the existence of
large spectral gaps between Landau levels.

I Use results from non-commutative geometry:
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On `2(Z2) we define the rotation algebra A~ as the operator norm
closure of

A~ :=

T ∈ L(`2(Z2;Cn)); ∃n ∈ N, cγ ∈ C : T =
∑
|γ|≤n

cγτ
h
γ


where τhδ (f )(γ) := e−i

h
2
σsymp(γ,δ)f (γ − δ).

From results by
Voiculescu-Pimser and Rieffel it follows that for any projection
P ∈ A~

t̂r(P) = γ1t̂r(id)+γ2t̂r(PR) = γ1+γ2
h

2π
∈
(
Z +

h

2π
mod 1 Z

)
∩[0, 1]

with γ ∈ Z2.
Combining this with the semiclassical analysis shows that

σ(HB
2 ) = n

2π , n ≥ 1

σ(HB
7 ) =

{
2n+1
2π n ≥ 0

2n−1
2π n < 0.
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The proof of delocalization is then based on the following ideas (cf.
Germinet, Klein, Schenker):

I Show that the Hall conductivity is constant in regions of
strong dynamical localization.

I Hall conductivity jumps in the non-random setting. Use index
theoretic approach to show universality of Hall conductance
under disorder.

We conclude:

Theorem
Between each of the Landau levels of the random Schrödinger
operator HB

λ,ω with B and λ sufficiently small there exists a
mobility edge, i.e. an energy at which delocalization occurs.
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Dynamical delocalization is characterized in terms of

Mh
λ,ω(p, ζ, t) =

∥∥∥〈x〉p/2e−itHh
λ,ωζ(Hh

λ,ω)δ0

∥∥∥2
HS

where ζ ∈ C∞c,+(R). We also consider the averaged expression

Mh
λ(p, ζ,T ) =

1

T

∫ ∞
0

E
(
Mh
λ,ω(p, ζ, t)

)
e−t/T dt.

The (lower) transport exponent is defined by

βhλ(p, ζ) = lim inf
T→∞

log+Mh
λ(p, ζ,T )

p log(T )
, for p > 0, ζ ∈ C∞c,+(R)

and from this one defines the p-th local transport exponent

βhλ(p,E ) = inf
I3E

sup
ζ∈C∞c,+(I )

βhλ(p, ζ) ∈ [0, 1].

The local lower transport exponent is then defined as

βhλ(E ) := sup
p>0

βhλ(p,E ).

The exponent βhλ(E ) is a measure of transport associated with the
energy E .



One then defines two complementary regions, the (relatively open)
region of dynamical localization or insulator region

Σh,DL
λ =

{
E ∈ R;βhλ(E ) = 0

}
(1)

and the (relatively closed) region of dynamical delocalization or
metallic transport

Σh,DD
λ =

{
E ∈ R;βhλ(E ) > 0

}
. (2)


