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In order to understand

(QBu)(3) = 1 (o + 75 + 71+ 70) u()
h 1 0 1+TO+T1
@00 =4 (1 e TR u)

we therefore study WDOs

Qo= % (cos(x) + cos(hDy))

)

W=

o 14 eX 4 oD~ 0

Why does that help? Taylor expansion of cos(x) + cos(§) at (m,7)
shows that 3(cos(x) + cos(€)) = =1+ 1 (x2 + €2) + O(x* + &%).
Hence, the spectrum should be localized to eigenvalues —1 + ”7”
where n € N.
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The determinant of the symbol Q, is given by —|1 4+ ™ + €/¢|?/9,
and it vanishes at

(& €Zi+ (F,-%5),

that is, at the Dirac points.
In small neighbourhoods of i(%”, —%’r) we can make a symplectic
change of variables:

4
y =a(x+§), nzb(&—xi;), 2ab =1,

and find that

1+eX + e =cnFiy)+ 0% +1%),
1+e ™ e =clnLiy)+ 0>+,

where ¢ = 34273 by choosing a = +2731377 and b= +27431,



This is a plot of the first two bands of the spectrum of HE=C on
the hexagonal lattice (cf. Kuchment-Post):
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Transferring everything to the discrete setting:

For operators A € L(¢?(Z?,C")) given by

A(s)(7) = D k(7. B)s(B)

BEZ?

with possibly matrix-valued k(v, 8) := (-, Adg) € C"", we define

A= lim ey > trek(v,7)
¥€Z2NB(R)

provided the limit exists. The density of states for the discrete
operators is

rf(Q") (2 D_ F(En(h)) + Oppca ().

neZ
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Quantum Hall effect

For projections P, Q such that P — Q is compact we define
ind(P, Q) := dim ker(P — Q@ — 1) — dim ker(Q — P — 1).

Let P = 1;(Q") be a projection onto an interval / such that 9/ is
in a spectral gap of Q" :
> Streda: o = SLir(P).
> Bellissard: o = —itr (P[[P, x1], [P, x]]) -
» Avron, Seiler, Simon: (U,¥)(x) := e~%()y(x) with
01(x) := arg(x — a) € (—m, 7.

o = 2 ind(P, U,PU}) = & tr(P — U,PU3)>.
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trf(Q Z F(En(h)) + O)fca (B).
nEZ
There are two problems
» Don’t know anything about spectral gaps.
» It is unclear whether formula is actually differentiable.
Way out:

» Use results on spectral theory to conclude the existence of
large spectral gaps between Landau levels.

> Use results from non-commutative geometry:
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On (?(Z?) we define the rotation algebra Aj; as the operator norm
closure of

A= TeL(P(Z*CN);3neN, ¢, eC:T=>Y ¢l

[vI<n

where 70(£)(7) == ef"g"sy’“"('y"s)f(fy —¢). From results by
Voiculescu-Pimser and Rieffel it follows that for any projection
Pe A

N N N h h
tr(P) = mtr(id)+72tr(Pr) = 714725 € <Z + 5 —mod1 Z) N[0, 1]

with v € Z2.
Combining this with the semiclassical analysis shows that

o(HBY=12.n>1

o2
2n+1
HB)_{ 2:rr n=0

2n—1
5= n<0.
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The proof of delocalization is then based on the following ideas (cf.
Germinet, Klein, Schenker):

» Show that the Hall conductivity is constant in regions of
strong dynamical localization.

» Hall conductivity jumps in the non-random setting. Use index
theoretic approach to show universality of Hall conductance
under disorder.

We conclude:

Theorem

Between each of the Landau levels of the random Schrodinger
operator Hf’w with B and \ sufficiently small there exists a
mobility edge, i.e. an energy at which delocalization occurs.






Dynamical delocalization is characterized in terms of
_pgh 2
MLu(p.C. 8) = || (P2e Rt (L)oo
where ¢ € C2% (R). We also consider the averaged expression
1 [ _
MﬂmQTﬁ=TA E (M(p.C,1)) e™/T dt

The (lower) transport exponent is defined by

b log, ME(p,C, T)

, for p>0,¢ € C5(R)

and from this one defines the p-th local transport exponent

B(p.E) = inf sup B(p.C) €[0.1]
2E cecm ()

The local lower transport exponent is then defined as

BR(E) := sup B1(p, E).
p>0

The exponent Bf\’(E) is a measure of transport associated with the
energy E.



One then defines two complementary regions, the (relatively open)
region of dynamical localization or insulator region

it = {E e ®; Bi(E) = 0} (1)

and the (relatively closed) region of dynamical delocalization or
metallic transport

shPP {EG]R/BA( )>o}. (2)



