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SPECTRAL THEORY AND WAVE PHENOMENA

The spectral theory is classically used to study resonance phenomena:

e eigenfrequencies of a string, a @ complex resonances of “open”
closed acoustic cavity, etc... cavities (with leakage)
E(w)

Re o

Im o

A new point of view: find similar spectral approaches to quantify the
efficiency of the transmission phenomena.

This notion of transmission appears naturally in devices involving

waveguides or gratings (intensively used in optics and acoustics).
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SOME TYPICAL DEVICES

— incident wave
——> transmitted wave

— reflected wave i ’{Y T ’é -

—_—

— S .

Perturbed waveguide Grating
\/K _ <}
Junction of waveguides Baffled radiating waveguide

A usual objective is to get a perfect transmission without any reflection.
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TIME-HARMONIC SCATTERING IN WAVEGUIDE

The acoustic waveguide: Q =R x (0,1), k = w/c, e”™*t

0
8—5—0
y
. Au+k2u=0 ]1
x .
1 u
3, =0

e A finite number of propagating modes for k > nm:
uE (x, ) = cos(nmy)et G, = VKT OPLAL
(4/— correspond to right/left going modes)

e An infinity of evanescent modes for k < nm: K

Ut (x,y) = cos(nmy)eTm*  ~, =+/n272 — k2
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TIME-HARMONIC SCATTERING IN WAVEGUIDE

An example with 3 propagating modes:
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TIME-HARMONIC SCATTERING IN WAVEGUIDE

o (C Q ) incident wave
inf(1+p) >0 ’ _
supp(p) C O e RN transmitted wave

e The total field u = uj,c + usca satisfies the equations

Au+K(1+pu=0 (Q) %:0 (092)

e The incident wave is a superposition of propagating modes:

Np
Uinc = Z anur—i_
n=0
e The scattered field v, is outgoing:

YWAAS
Ww—f-./,, . x‘""V\A}‘\F
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NO-REFLECTION

At particular frequencies k , it occurs that, for some uje,
X — —00 Usea — 0

We say that the obstacle O produces no reflection. The wave is totally
transmitted. And the obstacle is invisible for an observer located far at
the left-hand side.

<3 M/‘\ﬂw\/
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NO-REFLECTION

At particular frequencies k , it occurs that, for some uje,
X — —00 Usea — 0

We say that the obstacle O produces no reflection. The wave is totally
transmitted. And the obstacle is invisible for an observer located far at
the left-hand side.

OBJECTIVE

Find a way to compute directly the set .#" of no-reflection frequencies by
solving an eigenvalue problem.
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AN ILLUSTRATION OF NO-REFLECTION PHENOMENON

DAOB

Incident field uj,e = ek

0A12

Total field u

Scattered field wvse,

[212
“F%
EODO

Perturbation p

Eo 00

0401
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THE MAIN IDEA

The total field u always satisfies the homogeneous equations:

Au+ K1 +pu=0 (Q) 25:0 (092)

where k2 plays the role of an eigenvalue.

NO-REFLECTION MODES (k € %)

The total field of the scattering problem u is ingoing at the left-hand side
of O and outgoing at the right-hand side of O.

vt — Oy

7/37



THE MAIN IDEA

The total field v always satisfies the homogeneous equations:
Au+K(1+pu=0 (Q) 5, =0 (09)

where k2 plays the role of an eigenvalue.

NO-REFLECTION MODES (k € %)

The total field of the scattering problem u is ingoing at the left-hand side
of O and outgoing at the right-hand side of O.

T i 1

TRAPPED MODES (k € .7) CrassicAL!

The total field u € L2(Q).
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THE MAIN IDEA

The total field v always satisfies the homogeneous equations:
Au+K(1+pu=0 (Q) 5, =0 (09)

where k2 plays the role of an eigenvalue.

NO-REFLECTION MODES (k € %)

The total field of the scattering problem u is ingoing at the left-hand side
of O and outgoing at the right-hand side of O.

vt —= @

TRAPPED MODES (k € .7) CrassicAL!

The total field u is outgoing on both sides of the obstacle O.

AAA/V+E/”.¥+\AAN>
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THE MAIN IDEA

For both problems, the idea is to use a complex scaling at both sides of
the obstacle, so that propagating waves become evanescent.

TRAPPED MODES
k € 7 u is outgoing on both sides of O.

aww === @ty

NO-REFLECTION MODES

k € ¢ uis ingoing (resp. outgoing) at the left (resp. right) of O.

wwwit—=" @~y

THE NOVELTY

To compute the no-reflection frequencies, use a complex scaling with
complex conjugate parameters at both sides of the obstacle
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THE 1D CASE

The 1D case has been studied with a spectral point of view in:

H. Hernandez-Coronado, D. Krejcirik and P. Siegl,
Perfect transmission scattering as a P -symmetric spectral problem,
Physics Letters A (2011).

Our approach allows us to extend some of their results to higher
dimensions.

An additional complexity comes from the presence of evanescent modes.
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OUTLINE

e SPECTRUM OF TRAPPED MODES FREQUENCIES

a SPECTRUM OF NO-REFLECTION FREQUENCIES

e EXTENSIONS TO OTHER CONFIGURATIONS
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0 SPECTRUM OF TRAPPED MODES FREQUENCIES
e SPECTRUM OF NO-REFLECTION FREQUENCIES

e EXTENSIONS TO OTHER CONFIGURATIONS
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THE SPECTRAL PROBLEM FOR TRAPPED MODES

DEFINITION

A trapped mode of the perturbed waveguide is a solution u # 0 of

Au+ kK (1+pu=0 (Q) o _y (09)

ov
such that u € L%(Q).

@ There is a huge literature on trapped modes: Davies, Evans, Exner,
Levitin, Mclver, Nazarov, Vassiliev, ...

e Existence of trapped modes is proved in specific configurations (for
instance symmetric with respect to the horizontal mid-axis) (Evans,
Levitin and Vassiliev)
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THE SPECTRAL PROBLEM FOR TRAPPED MODES

DEFINITION

A trapped mode of the perturbed waveguide is a solution u # 0 of

Au+ K (1+pu=0 (Q) 9u (09)

%
such that u € L%(Q).

Let us consider the following unbounded operator of L?():
1
D(A)={ue H2(Q);gz—00n oQ} Au:_mAu
Au+ k*(1+4 p)u=0 <= Au = Kk?u
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THE SPECTRAL PROBLEM FOR TRAPPED MODES

DEFINITION

A trapped mode of the perturbed waveguide is a solution u # 0 of

)
Au+K(1+pu=0 (Q) ale:O (99)

such that u € L%(9Q).

Let us consider the following unbounded operator of L?():

ou 1

D(A) ={uc H*(Q); =—— =00n 0Q}  Au=

A
ov Y

14

The trapped modes (k € .7) correspond to real eigenvalues k2 of A.
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THE SPECTRAL PROBLEM FOR TRAPPED MODES

Trapped modes (k € .77) correspond to real eigenvalues k2 of
1 0
Au=—1-—Au  with D(A) = {u € H2(Q); 87“ =0 on 0Q}

For the scalar product of L?(Q2) with weight 1 + p:
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THE SPECTRAL PROBLEM FOR TRAPPED MODES

Trapped modes (k € .77) correspond to real eigenvalues k? of
1
Au = —mAu with D(A) = {u € H*(Q); gZ =0 on 00}

For the scalar product of L2() with weight 1 + p:

SPECTRAL FEATURES OF A

e Ais a positive self-adjoint operator of L2().
@ 0(A) = 0ess(A) = RT and ogisc(A) =0

- e
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THE SPECTRAL PROBLEM FOR TRAPPED MODES

Trapped modes (k € .77) correspond to real eigenvalues k? of
1
Au = —mAu with D(A) = {u € H*(Q); gZ =0 on 00}

For the scalar product of L2() with weight 1 + p:

SPECTRAL FEATURES OF A

e Ais a positive self-adjoint operator of L2().
@ 0(A) = 0ess(A) = RT and ogisc(A) =0
@ Trapped modes are embedded eigenvalues of A !

- e
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THE SPECTRAL PROBLEM FOR TRAPPED MODES

Problem: a direct Finite Element computation in a large bounded domain
produces spurious eigenvalues!

-R +R

ImA
- %.nm.-o& —~ o0 — 0008 ® — — — éReA

Solution: the complex scaling (Aguilar, Balslev, Combes, Simon 70)
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A MAIN TOOL: THE COMPLEX SCALING

The magic idea:

@ consider the second caracterization of trapped modes: u™ outgoing,

@ apply a complex scaling to u™ in the x direction:

R
uf(x,y) =yt <:|:R+ Al ,y> for (x,y) € Q%

«

One can chose o € C such that uF € L2(QF)!
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A MAIN TOOL: THE COMPLEX SCALING

If o =e™!

ut(x,y) = ZHSNP an Cos(mry)e"\/m(X*R) IAANARANA

iV k?—n?x2 (X*R)

uf(x,y) = ZHSNP apcos(nmy)e @
NEZT I

+ D psnpancos(nmy)e” e

and the same for u_ with the same a.

% with 0 < 0 < /2, propagating modes become evanescent :
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A MAIN TOOL: THE COMPLEX SCALING

pML | @D 1 PML

-R +R

Since u™ are exponentially decaying at infinity, one can truncate the

waveguide for numerical purposes !

This is the celebrated method of Perfectly Matched Layers (see Bécache
et al., Kalvin, Lu et al., etc... for scattering in waveguides).

13/37



COMPLEX SCALING FOR TRAPPED MODES

Let us consider now the following unbounded operator:

D(A.) = {uel*(Q);A.ue Q) % =0 on 90}
1 0 ou 0%u
e = w00 (05 + %)
e
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COMPLEX SCALING FOR TRAPPED MODES

SPECTRAL FEATURES OF A,
@ A, is a non self-adjoint operator.
Oess(An) = Upso{n?m? + e 2% t € R} (Weyl sequences)
0(An) = Tess(An) U 0disc(An)
0(Ay) C {z € C; 20 < arg(z) <0}

(see Kalvin, Kim and Pasciak )
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TRAPPED MODES AND COMPLEX RESONANCES

DISCRETE SPECTRUM OF A,
@ Trapped modes correspond to discrete real eigenvalues of A, !

@ Other eigenvalues correspond to complex resonances, with a field u
exponentially growing at infinity.

Spectrum of A,:

etrapped mode
ecomplex resonance

15/ 37



SOME ELEMENTS OF PROOF

Proof of the second item:

UESS(AG) = Uess(*Af)) AV @ + 87)/2
= U O-ess(—Agn)) Agn) _ e—2i9i22 + n2r2
n>0 ox
= U {nPm? + e 212t € R}
n>0

Essential spectrum of A:
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NUMERICAL ILLUSTRATION

The numerical results have been obtained by a finite element
discretization with FreeFem-++-.

Here the scatterer is a non-penetrable rectangular obstacle in the middle
of the waveguide:

We use a complex scaling in the magenta parts:

B B
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NUMERICAL ILLUSTRATION

The numerical results have been obtained by a finite element
discretization with FreeFem-++-.

Here the scatterer is a non-penetrable rectangular obstacle in the middle
of the waveguide:

We use a complex scaling in the magenta parts:

In the next slides, we represent the square-root of the spectrum, which
corresponds to k values.
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NUMERICAL ILLUSTRATION
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NUMERICAL ILLUSTRATION

2 T T T T T T
0
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NUMERICAL ILLUSTRATION

There are two trapped modes:

2 T T T T

o

— 4
* * %

-2+ * *

-6+

* * * *
* *
s *
-8l * % _
* ** *
* O=n/4 *
-10 I I I I * L
0 2 4 6 8 10 12
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e SPECTRUM OF TRAPPED MODES FREQUENCIES
o SPECTRUM OF NO-REFLECTION FREQUENCIES

e EXTENSIONS TO OTHER CONFIGURATIONS
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A NEW COMPLEX SPECTRUM LINKED TO ¢~

WITH ” CONJUGATE” PMLS

A SIMPLE AND IMPORTANT REMARK

For k € 2, the total field is ingoing at the left-hand side of O and
outgoing at the right-hand side of O.

The idea is to use a complex scaling (and numerically PMLs), with
complex conjugate parameters at both sides of the obstacle, so that the
transformed total field u will belong to L2(Q).
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A NEW COMPLEX SPECTRUM LINKED TO ¢~

WITH ” CONJUGATE” PMLS

Let us consider now the following unbounded operator:
D(Az) = {u€l?(Q);Asuc L*(Q); g— =0 on 00}
1 L, 0 0u
Asu = _m ((Y(X)ax< ( ) >+8y2>
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A NEW COMPLEX SPECTRUM LINKED TO ¢
WITH ” CONJUGATE” PMLSs
Let us consider now the following unbounded operator:

D(Az) = {u€l?(Q);Asu e L%(Q); 2% _0on 0}
v

oo =~ (302 (a005) + 54)

SPECTRAL FEATURES OF Az

@ A; is a non self-adjoint operator.
@ 0ess(Az) = Unzo{n2W2 1 2042 ¢ R} U {nzﬂz + e 2042 ¢ ¢ R}
@ ogisc(As) C {z € C; -20 < arg(z) < 20}
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A NEW COMPLEX SPECTRUM LINKED TO ¢~

WITH ” CONJUGATE” PMLS

Typical expected spectrum of A;:

0 0ess(As) = Unzo{”2772 +e20¢2: t € R} U {n2n2 + e 242, t € R}
e 0(As) C{z € C;-20 < arg(z) < 20}

20/37



A NEW COMPLEX SPECTRUM LINKED TO ¢~

WITH ” CONJUGATE” PMLS

Typical expected spectrum of A;:

Difficulty: C\oess(Az) is not a connected set.

U(Ad) = O'ess(A&) O] G'disc(Af\,) if 1% 7& 0
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PATHOLOGICAL CASES

In the unperturbed case (p = 0):

All k2 in the yellow zone are eigenvalues of Aj;!
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PATHOLOGICAL CASES

And the same result holds with horizontal cracks !

c-—-->

)

|
—-R +R

|

|

|

All k% in the yellow zone are eigenvalues of Aj;!
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NUMERICAL ILLUSTRATION

FOR A RECTANGULAR SYMMETRIC CAVITY

10

Square root of the spectrum
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* * * *
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@ The spectrum is symmetric w.r.t. the real axis (P7T-symmetry) .
@ There are much more real eigenvalues than for trapped modes.

22/37



NUMERICAL ILLUSTRATION

FOR A RECTANGULAR SYMMETRIC CAVITY

5

4

In red: classical complex scaling

In blue: conjugate complex scaling
22 /37



NUMERICAL ILLUSTRATION

FOR A RECTANGULAR SYMMETRIC CAVITY

For k? € o4isc(Az) NR, the eigenmode is such that:

WWH =" @@ WA+

u is ingoing u is outgoing

There are two cases:

o Either u contains propagating parts and it is a no-reflection mode:
ke x.

o Either u is evanescent on both sides and it is a trapped mode:
ke 7.

THEOREM

odisc(Az) R ={k? e R; k€ X UT}
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VALIDATION

Red: classical PMLs
Blue: conjugate PMLs
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VALIDATION

Let us focus on the eigenmodes such that 0 < k < m:

_d __N
| __ %
First trapped mode: Second trapped mode:
k =1.2355--. k =2.3897---

Il (TN

First no-reflection mode: Second no-reflection mode:

k =1.4513--. k =2.8896---
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VALIDATION

To validate this result, we compute the amplitude of the reflected plane

wave for 0 < k < 7
/\IR(kn/\
02 L L ::'

15 2

l =mm | e | |
First no-reflection mode: Second no-reflection mode:
k =1.4513... k =2.8896---

There is a perfect agreement!
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NO-REFLECTION MODE IN THE TIME-DOMAIN

—iwty with w...

Below we represent Re(u(x,y)e

...a no-reflection mode:

2

with the corresponding incident propagating mode:

We observe no reflection but a phase shift in the transmitted wave.
24 /37



NO-REFLECTION MODE IN THE TIME-DOMAIN

—iwty with w...

Below we represent Re(u(x,y)e

...a no-reflection mode:

KD pemmmn (D)

with the corresponding incident propagating mode:

Lo m)

We observe no reflection but a phase shift in the transmitted wave.
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PT-SYMMETRY (SPACE-TIME REFLECTION SYMMETRY)

Remember that:

1 L, O (., ou\  d%u
=g (0035 (9057) + 552)

and that
x)

a(—x) =a

O
—
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PT-SYMMETRY (SPACE-TIME REFLECTION SYMMETRY)

Remember that:
1 0 ou d%u
Asu= ——-——— [ a(x)=— [ O(x)=— —
R ) <(}(X) Ox (”(X)BX> " 3y2>

x)

and that

a(—x) =a

O
—

For a symmetric obstacle (i.e. p(—x,y) = p(x,y)), we have
A Q = QA;

where the operator Q is defined by Qu(x,y) = u(—x, y)

25 /37



PT-SYMMETRY (SPACE-TIME REFLECTION SYMMETRY)

Remember that:

1 L, O (., ou\  d%u
=g (0035 (9057) + 552)

and that
x)

a(—x) =a

O
—

For a symmetric obstacle (i.e. p(—x,y) = p(x,y)), we have
A Q = QA;
where the operator Q is defined by Qu(x,y) = u(—x, y)

We say that As is PT-symmetric because @ = PT where

Pu(x,y) = u(—x,y) and Tu(x,y) = u(x,y)

P stands for parity and T for "time reversal”
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PT-SYMMETRY (SPACE-TIME REFLECTION SYMMETRY)

SUMMARY

If the obstacle is symmetric:

AdQ — QAﬁ
where @ = PT is such that

Q(A\u) = A\Qu

Q%=1

CONSEQUENCES

o the spectrum of Aj is stable by complex conjugation:
O_(A(N}') = U(AF\;)
o if A € R is a simple eigenvalue, then for the eigenfield u:

u(, y)| = lu(=x, y)|

26 /37



MODULUS OF EIGENFIELDS

By PT-symmetry, if A € R is a simple eigenvalue, then:

|u(x, y)| = lu(=x,y)|

10 T T T T

T T
* g ¥
*

**
8r * % *
*
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NUMERICAL ILLUSTRATION

IN A NON PT-SYMMETRIC CASE

Here the scatterer is a not symmetric in x, and neither in y:

We expect:
@ No trapped modes

@ No invariance of the spectrum by complex conjugation

28 /37



NUMERICAL ILLUSTRATION

IN A NON PT-SYMMETRIC CASE

Square root of the spectrum

10

@ The spectrum is no longer symmetric w.r.t. the real axis.
@ There are several eigenvalues near the real axis.
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NUMERICAL ILLUSTRATION

IN A NON PT-SYMMETRIC CASE

Again results can be validated by computing R(k) for 0 < k < 7:

o [R(k)I

bt
i
b
b
b
N q
25

(] 05 1 15 2 3

k = 1.2803 + 0.0003/ k = 2.3868 + 0.0004/ k = 2.8650 + 0.0241/

Complex eigenvalues also contain useful information about almost
no-reflection.
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e SPECTRUM OF TRAPPED MODES FREQUENCIES
e SPECTRUM OF NO-REFLECTION FREQUENCIES

© EXTENSIONS TO OTHER CONFIGURATIONS
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DIRICHLET WAVEGUIDES

The same method applies for Dirichlet boundary conditions.

u=20
Au+ k?u=0 . JH
u=20
2
The main difference is the presence of the cut-off value k? = IR
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DIRICHLET WAVEGUIDES

The same method applies for Dirichlet boundary conditions.

Neumann case: Dirichlet case:

The main difference is the presence of the cut-off value k? = ——.
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JUNCTION OF NEUMANN WAVEGUIDES

The same method can be applied to the junction of two different
waveguides.

Let us compare an abrupt junction with an "adiabatic” one :

31/37



JUNCTION OF NEUMANN WAVEGUIDES

As expected:

@ the essential spectrum is no-longer symetric;
@ there are much more eigenvalues close to the real axis for the
"adiabatic” junction.

Our approach can provide a tool to quantify the efficiency of the junction.

31/37



JUNCTION OF DIRICHLET WAVEGUIDES

An interesting configuration is the junction of 2 different Dirichlet
waveguides.

hl

I - I

CONSEQUENCES

@ Now C\oess(As) is a connected set!

@ Our "new" eigenvalues correspond in fact to classical complex
resonances in non-classical sheets of the Riemannn surface......

32/37



A PT-SYMMETRIC JUNCTION

A NEW CHOICE OF PARITY
Here Pu(x,y) = u(—x, —y)
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A PT-SYMMETRIC JUNCTION

In red: classical complex scaling
In blue: conjugate complex scaling

We can check that there are no trapped modes (no red eigenvalues on
the real axis).
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A PT-SYMMETRIC JUNCTION

The modes associated to the 7 first
real eigenvalues :

I - T I

FEENI
-|-|-|-!
%\ i
1
-‘vA.v"rgv,
AINAN TS
N
q
]
-4
?ﬂ\wa
vn&wé
JeIEIITIIAI

»
H A
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A PT-SYMMETRIC JUNCTION

)Pahsa-aamans

AP AN

with the corresponding incident wave (which is a linear combination of 2
propagating modes):

AP AN A AN
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MULTIPORT WAVEGUIDES JUNCTION

OBJECTIVE

Find (k, u) such that v is ingoing in some ports
and outgoing in the others.

For an N-ports junction, there are 2V=1 such problems and
corresponding spectra.
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MULTIPORT WAVEGUIDES JUNCTION

This is a bar-bar example of such problem:

34 /37



MULTIPORT WAVEGUIDES JUNCTION

This is a bar-bar example of such problem:

N

) S

— g =
Y

L’

|

J\

@ There are two axes of P7-symmetry!

@ There is also a (classical) central symmetry.
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MULTIPORT WAVEGUIDES JUNCTION

The eigenmodes are all symmetric or antisymmetric:

u(—=X,-Y)==+u(X,Y)

LT S = S C T S o)
T T T T T T

_ o B
In red: classical complex scaling | 9|
In blue: conjugate complex scaling
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MULTIPORT WAVEGUIDES JUNCTION

I-I-*-I-I
:
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MULTIPORT WAVEGUIDES JUNCTION
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THE BAFFLED WAVEGUIDE

A last (important) application concerns the radiation from a semi-infinite
baffled waveguide:

In the half-space, we apply a complex scaling in the radial cooordinate
(radial PML).
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THE BAFFLED WAVEGUIDE

The geometry:

5 o ® . N :

B ... ... 0 05 15 2 25 3

a IR(K)|

u',:. Again, minima of |R(k)| corre-
. "'N\ spond to eigenvalues near the real
) \ | axis !
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THE BAFFLED WAVEGUIDE

The modes associated to the 6 first ~
eigenvalues near the real axis: i > i
) 00.....0... \\

. e T l-u’ | Emmm)) i
; o.c. : . _i PR . j _/

L %oy, .

2 . L 1A .
: \ =N )
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CONCLUSION

There is still a lot of work to do !

@ Treat the case of diffractive gratings.
o Justify the numerics (absence of spectral pollution).

o Clarify the link between our new spectrum and classical resonance
frequencies.

o Find similar spectral approaches for other phenomena in waveguides
(perfect invisibility, total reflection, modal conversion, etc...)

A part of these results have been published in:

Trapped modes and reflectionless modes as eigenfunctions of the same
spectral problem, Anne-Sophie Bonnet-BenDhia, Lucas Chesnel and
Vincent Pagneux, Proceedings of the Royal Society A, 2018.
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