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Spectral theory and wave phenomena

The spectral theory is classically used to study resonance phenomena:

eigenfrequencies of a string, a
closed acoustic cavity, etc...

complex resonances of “open”
cavities (with leakage)

A new point of view: find similar spectral approaches to quantify the
efficiency of the transmission phenomena.

This notion of transmission appears naturally in devices involving
waveguides or gratings (intensively used in optics and acoustics).
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Some typical devices

incident wave
transmitted wave
reflected wave

Perturbed waveguide Grating

Junction of waveguides Baffled radiating waveguide

A usual objective is to get a perfect transmission without any reflection.

3 / 37



Time-harmonic scattering in waveguide

The acoustic waveguide: Ω = R× (0, 1), k = ω/c , e−iωt

∆u + k2u = 0

∂u
∂ν = 0

∂u
∂ν = 0

1

x

y

• A finite number of propagating modes for k > nπ:
u±n (x , y) = cos(nπy)e±iβnx βn =

√
k2 − n2π2

(+/− correspond to right/left going modes)

• An infinity of evanescent modes for k < nπ:
u±n (x , y) = cos(nπy)e∓γnx γn =

√
n2π2 − k2
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Time-harmonic scattering in waveguide

An example with 3 propagating modes:
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Time-harmonic scattering in waveguide

O ⊂ Ω
inf(1 + ρ) > 0
supp(ρ) ⊂ O

O
incident wave

reflected wave transmitted wave

• The total field u = uinc + usca satisfies the equations

∆u + k2(1 + ρ)u = 0 (Ω)
∂u

∂ν
= 0 (∂Ω)

• The incident wave is a superposition of propagating modes:

uinc =

NP∑
n=0

anu
+
n

• The scattered field usca is outgoing:

O+ +
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No-reflection

At particular frequencies k , it occurs that, for some uinc ,

x → −∞ usca → 0

We say that the obstacle O produces no reflection. The wave is totally
transmitted. And the obstacle is invisible for an observer located far at
the left-hand side.

O
+ +

OBJECTIVE

Find a way to compute directly the set K of no-reflection frequencies by
solving an eigenvalue problem.
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An illustration of no-reflection phenomenon

Incident field uinc = e ikx

Total field u

Scattered field usca

Perturbation ρ
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The main idea

The total field u always satisfies the homogeneous equations:

∆u + k2(1 + ρ)u = 0 (Ω)
∂u

∂ν
= 0 (∂Ω)

where k2 plays the role of an eigenvalue.

No-reflection modes (k ∈ K )

The total field of the scattering problem u is ingoing at the left-hand side
of O and outgoing at the right-hand side of O.

O+ +

Trapped modes (k ∈ T ) Classical!
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The main idea

For both problems, the idea is to use a complex scaling at both sides of
the obstacle, so that propagating waves become evanescent.

Trapped modes

k ∈ T : u is outgoing on both sides of O.

O+ +

No-reflection modes

k ∈ K : u is ingoing (resp. outgoing) at the left (resp. right) of O.

O+ +

The novelty

To compute the no-reflection frequencies, use a complex scaling with
complex conjugate parameters at both sides of the obstacle
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The 1D case

1

O

The 1D case has been studied with a spectral point of view in:

H. Hernandez-Coronado, D. Krejcirik and P. Siegl,
Perfect transmission scattering as a PT -symmetric spectral problem,
Physics Letters A (2011).

Our approach allows us to extend some of their results to higher
dimensions.

An additional complexity comes from the presence of evanescent modes.
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Outline

1 Spectrum of trapped modes frequencies

2 Spectrum of no-reflection frequencies

3 Extensions to other configurations
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The spectral problem for trapped modes

Definition

A trapped mode of the perturbed waveguide is a solution u 6= 0 of

∆u + k2(1 + ρ)u = 0 (Ω)
∂u

∂ν
= 0 (∂Ω)

such that u ∈ L2(Ω).

O

There is a huge literature on trapped modes: Davies, Evans, Exner,
Levitin, McIver, Nazarov, Vassiliev, ...
Existence of trapped modes is proved in specific configurations (for
instance symmetric with respect to the horizontal mid-axis) (Evans,
Levitin and Vassiliev)

Let us consider the following unbounded operator of L2(Ω):

D(A) = {u ∈ H2(Ω);
∂u

∂ν
= 0 on ∂Ω} Au = − 1

1 + ρ
∆u
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The spectral problem for trapped modes

Trapped modes (k ∈ T ) correspond to real eigenvalues k2 of

Au = − 1

1 + ρ
∆u with D(A) = {u ∈ H2(Ω);

∂u

∂ν
= 0 on ∂Ω}

For the scalar product of L2(Ω) with weight 1 + ρ:
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The spectral problem for trapped modes

Problem: a direct Finite Element computation in a large bounded domain
produces spurious eigenvalues!

O

−R +R

<eλ

=mλ

Solution: the complex scaling (Aguilar, Balslev, Combes, Simon 70)
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A main tool: the complex scaling

O
u−

Ω−R
u+

Ω+
R

−R +R

The magic idea:

1 consider the second caracterization of trapped modes: u± outgoing,

2 apply a complex scaling to u± in the x direction:

u±α (x , y) = u±
(
±R +

x ∓ R

α
, y

)
for (x , y) ∈ Ω±R

One can chose α ∈ C such that u±α ∈ L2(Ω±R )!

13 / 37



A main tool: the complex scaling

O
u−

Ω−R
u+

Ω+
R

−R +R

If α = e−iθ with 0 < θ < π/2, propagating modes become evanescent :

u+(x , y) =
∑

n≤NP
an cos(nπy)e i

√
k2−n2π2(x−R)

+
∑

n>NP
an cos(nπy)e−

√
n2π2−k2(x−R)

u+α (x , y) =
∑

n≤NP
an cos(nπy)e

i
√

k2−n2π2

α
(x−R)

+
∑

n>NP
an cos(nπy)e−

√
n2π2−k2

α
(x−R)

and the same for u−α with the same α.

+
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A main tool: the complex scaling

OPML PML

−R +R

Since u±α are exponentially decaying at infinity, one can truncate the
waveguide for numerical purposes !

This is the celebrated method of Perfectly Matched Layers (see Bécache
et al., Kalvin, Lu et al., etc... for scattering in waveguides).
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Complex scaling for trapped modes

Let us consider now the following unbounded operator:

D(Aα) = {u ∈ L2(Ω);Aαu ∈ L2(Ω);
∂u

∂ν
= 0 on ∂Ω}

Aαu = − 1

1 + ρ(x , y)

(
α(x)

∂

∂x

(
α(x)

∂u

∂x

)
+
∂2u

∂y2

)

O

α(x) = 1where α(x) = e−iθ α(x) = e−iθ

−R +R
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Complex scaling for trapped modes

Spectral features of Aα

Aα is a non self-adjoint operator.

σess(Aα) = ∪n≥0{n2π2 + e−2iθt2; t ∈ R} (Weyl sequences)

σ(Aα) = σess(Aα) ∪· σdisc(Aα)

σ(Aα) ⊂ {z ∈ C;−2θ < arg(z) ≤ 0}

(see Kalvin, Kim and Pasciak )

π2 4π2 9π2

2θ
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Trapped modes and complex resonances

Discrete spectrum of Aα

Trapped modes correspond to discrete real eigenvalues of Aα !

Other eigenvalues correspond to complex resonances, with a field u
exponentially growing at infinity.

Spectrum of Aα:

π2 4π2 9π2

complex resonance
trapped mode

2θ
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Some elements of proof

Proof of the second item:

σess(Aα) = σess(−∆θ) ∆θ = e−2iθ
∂2

∂x2
+

∂2

∂y2

=
⋃
n≥0

σess(−∆
(n)
θ ) ∆

(n)
θ = e−2iθ

∂2

∂x2
+ n2π2

=
⋃
n≥0
{n2π2 + e−2iθt2; t ∈ R}

Essential spectrum of Aα:

π2 4π2 9π2

2θ
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Numerical illustration

The numerical results have been obtained by a finite element
discretization with FreeFem++.

Here the scatterer is a non-penetrable rectangular obstacle in the middle
of the waveguide:

We use a complex scaling in the magenta parts:

In the next slides, we represent the square-root of the spectrum, which
corresponds to k values.
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Numerical illustration
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Numerical illustration

There are two trapped modes:
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Outline

1 Spectrum of trapped modes frequencies

2 Spectrum of no-reflection frequencies

3 Extensions to other configurations
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A new complex spectrum linked to K
with ”conjugate” PMLs

A simple and important remark

For k ∈ K , the total field is ingoing at the left-hand side of O and
outgoing at the right-hand side of O.

O
+ +

The idea is to use a complex scaling (and numerically PMLs), with
complex conjugate parameters at both sides of the obstacle, so that the
transformed total field u will belong to L2(Ω).
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A new complex spectrum linked to K
with ”conjugate” PMLs

Let us consider now the following unbounded operator:

D(Aα̃) = {u ∈ L2(Ω);Aα̃u ∈ L2(Ω);
∂u

∂ν
= 0 on ∂Ω}

Aα̃u = − 1

1 + ρ(x , y)

(
α̃(x)

∂

∂x

(
α̃(x)

∂u

∂x

)
+
∂2u

∂y2

)

O

α̃(x) = 1α̃(x) = e iθ α̃(x) = e−iθ

−R +R
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∂
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∂x
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Spectral features of Aα̃

Aα̃ is a non self-adjoint operator.

σess(Aα̃) =
⋃

n≥0{n2π2 + e2iθt2; t ∈ R} ∪ {n2π2 + e−2iθt2; t ∈ R}
σdisc(Aα̃) ⊂ {z ∈ C;−2θ < arg(z) < 2θ}

20 / 37



A new complex spectrum linked to K
with ”conjugate” PMLs

Typical expected spectrum of Aα̃:
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A new complex spectrum linked to K
with ”conjugate” PMLs

Typical expected spectrum of Aα̃:

π2 4π2 9π2

2θ

Difficulty: C\σess(Aα̃) is not a connected set.

Conjecture

σ(Aα̃) = σess(Aα̃) ∪· σdisc(Aα̃) if ρ 6= 0
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Pathological cases

In the unperturbed case (ρ = 0):

−R +R

π2 4π2 9π2

2θ

All k2 in the yellow zone are eigenvalues of Aα̃!
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Pathological cases

And the same result holds with horizontal cracks !

−R +R

π2 4π2 9π2

2θ

All k2 in the yellow zone are eigenvalues of Aα̃!
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Numerical illustration
for a rectangular symmetric cavity

0 2 4 6 8 10 12 14
−10

−8

−6

−4

−2

0

2

4

6

8

10
Square root of the spectrum

 

 

α
PML

=π/4

The spectrum is symmetric w.r.t. the real axis (PT -symmetry) .

There are much more real eigenvalues than for trapped modes.

22 / 37



Numerical illustration
for a rectangular symmetric cavity

0 1 2 3 4 5 6 7 8
-5

-4

-3

-2

-1

0

1

2

3

4

5

In red: classical complex scaling
In blue: conjugate complex scaling
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Numerical illustration
for a rectangular symmetric cavity

For k2 ∈ σdisc(Aα̃) ∩ R, the eigenmode is such that:

O
u is ingoing

+ +
u is outgoing

There are two cases:

Either u contains propagating parts and it is a no-reflection mode:
k ∈ K .

Either u is evanescent on both sides and it is a trapped mode:
k ∈ T .

Theorem

σdisc(Aα̃)∩R = {k2 ∈ R; k ∈ K ∪T }
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Validation

0 1 2 3 4 5 6 7 8
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0
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5

Red: classical PMLs
Blue: conjugate PMLs

23 / 37



Validation

Let us focus on the eigenmodes such that 0 < k < π:

First trapped mode:
k = 1.2355 · · ·

First no-reflection mode:
k = 1.4513 · · ·

Second trapped mode:
k = 2.3897 · · ·

Second no-reflection mode:
k = 2.8896 · · ·
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Validation

To validate this result, we compute the amplitude of the reflected plane
wave for 0 < k < π:

First no-reflection mode:
k = 1.4513 · · ·

Second no-reflection mode:
k = 2.8896 · · ·

There is a perfect agreement!
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No-reflection mode in the time-domain

Below we represent <e(u(x , y)e−iωt) with u...

...a no-reflection mode:

with the corresponding incident propagating mode:

We observe no reflection but a phase shift in the transmitted wave.
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PT -symmetry (Space-time reflection symmetry)

Remember that:

Aα̃u = − 1

1 + ρ(x , y)

(
α̃(x)

∂

∂x

(
α̃(x)

∂u

∂x

)
+
∂2u

∂y2

)
and that

α̃(−x) = α̃(x)

For a symmetric obstacle (i.e. ρ(−x , y) = ρ(x , y)), we have

Aα̃Q = QAα̃

where the operator Q is defined by Qu(x , y) = u(−x , y)

We say that Aα̃ is PT -symmetric because Q = PT where

Pu(x , y) = u(−x , y) and T u(x , y) = u(x , y)

P stands for parity and T for ”time reversal”
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PT -symmetry (Space-time reflection symmetry)

Summary

If the obstacle is symmetric:

Aα̃Q = QAα̃

where Q = PT is such that{
Q(λu) = λQu
Q2 = I

Consequences

the spectrum of Aα̃ is stable by complex conjugation:

σ(Aα̃) = σ(Aα̃)

if λ ∈ R is a simple eigenvalue, then for the eigenfield u:

|u(x , y)| = |u(−x , y)|
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Modulus of eigenfields

By PT -symmetry, if λ ∈ R is a simple eigenvalue, then:

|u(x , y)| = |u(−x , y)|

27 / 37



Numerical illustration
in a non PT -symmetric case

Here the scatterer is a not symmetric in x , and neither in y :

We expect:

No trapped modes

No invariance of the spectrum by complex conjugation
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Numerical illustration
in a non PT -symmetric case
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The spectrum is no longer symmetric w.r.t. the real axis.

There are several eigenvalues near the real axis.
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Numerical illustration
in a non PT -symmetric case

Again results can be validated by computing R(k) for 0 < k < π:

k = 1.2803 + 0.0003i k = 2.3868 + 0.0004i k = 2.8650 + 0.0241i

Complex eigenvalues also contain useful information about almost
no-reflection.

28 / 37



Outline

1 Spectrum of trapped modes frequencies

2 Spectrum of no-reflection frequencies

3 Extensions to other configurations

29 / 37



Dirichlet waveguides

The same method applies for Dirichlet boundary conditions.

∆u + k2u = 0

u = 0

u = 0

H

The main difference is the presence of the cut-off value k2∗ =
π2

H2
.
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Dirichlet waveguides

The same method applies for Dirichlet boundary conditions.

Neumann case:

k2∗ 4k2∗ 9k2∗
2θ

Dirichlet case:

k2∗ 4k2∗ 9k2∗
2θ

The main difference is the presence of the cut-off value k2∗ =
π2

H2
.
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Junction of Neumann waveguides

The same method can be applied to the junction of two different
waveguides.

Let us compare an abrupt junction with an ”adiabatic” one :
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Junction of Neumann waveguides

As expected:

the essential spectrum is no-longer symetric;

there are much more eigenvalues close to the real axis for the
”adiabatic” junction.

Our approach can provide a tool to quantify the efficiency of the junction.
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Junction of Dirichlet waveguides

An interesting configuration is the junction of 2 different Dirichlet
waveguides.

Hh

Consequences

Now C\σess(Aα̃) is a connected set!

Our ”new” eigenvalues correspond in fact to classical complex
resonances in non-classical sheets of the Riemannn surface......
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A PT-symmetric junction

A new choice of Parity

Here Pu(x , y) = u(−x ,−y)
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A PT-symmetric junction
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In red: classical complex scaling
In blue: conjugate complex scaling

We can check that there are no trapped modes (no red eigenvalues on
the real axis).
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A PT-symmetric junction

The modes associated to the 7 first
real eigenvalues :
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A PT-symmetric junction

with the corresponding incident wave (which is a linear combination of 2
propagating modes):
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Multiport waveguides junction

OBJECTIVE

Find (k , u) such that u is ingoing in some ports
and outgoing in the others.

For an N-ports junction, there are 2N−1 such problems and
corresponding spectra.
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Multiport waveguides junction

This is a bar-bar example of such problem:
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Multiport waveguides junction

This is a bar-bar example of such problem:

There are two axes of PT -symmetry!

There is also a (classical) central symmetry.

34 / 37



Multiport waveguides junction

The eigenmodes are all symmetric or antisymmetric:

u(−X ,−Y ) = ±u(X ,Y )

In red: classical complex scaling
In blue: conjugate complex scaling
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Multiport waveguides junction
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Multiport waveguides junction
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The baffled waveguide

A last (important) application concerns the radiation from a semi-infinite
baffled waveguide:

The expected spectrum is as follows:

In the half-space, we apply a complex scaling in the radial cooordinate
(radial PML).
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The baffled waveguide

The geometry:

ρ = 3

|R(k)|

Again, minima of |R(k)| corre-
spond to eigenvalues near the real
axis !
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The baffled waveguide

The modes associated to the 6 first
eigenvalues near the real axis:
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Conclusion

There is still a lot of work to do !

Treat the case of diffractive gratings.

Justify the numerics (absence of spectral pollution).

Clarify the link between our new spectrum and classical resonance
frequencies.

Find similar spectral approaches for other phenomena in waveguides
(perfect invisibility, total reflection, modal conversion, etc...)

...

A part of these results have been published in:

Trapped modes and reflectionless modes as eigenfunctions of the same
spectral problem, Anne-Sophie Bonnet-BenDhia, Lucas Chesnel and
Vincent Pagneux, Proceedings of the Royal Society A, 2018.
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