Ph. Briet¹ J.Dittrich² D. Krejčiřík³

Differential Operators on Graphs and Waveguides
TU-GRAZ 2019

¹Centre de Physique Théorique, CNRS, Marseille-France

²Nuclear Physics Institute ASCR, Řež, Czech Republic

³Czech Technical University in Prague, Czech Republic

Outline

- 1 The Dittrich-Kříž problem
- 2 References
- Questions
- 4 The spectrum
- Mourre estimate

The Dittrich-Kříž twisted problem

Consider the following straight domain Ω in \mathbb{R}^2 :

In this talk we consider the case $\delta = 0$

Consider the Laplace operator defined on $\mathcal{H} = L^2(\Omega)$ with DBC on D and NBC on N.

The Dittrich-Kříž twisted problem

Twisted system

free system

Main problem \rightarrow study of the scattering theory

The Hamiltonian

Let

$$D(h)=\{\psi\in\mathcal{H}^1(\Omega)\;\mid\;\psi_{\lceil D}=0\}$$
 and $h[\psi]:=\int_{\Omega}|
abla\psi|^2dx$

Mourre estimate

Then

$$D(H) = \{ \psi \in \mathcal{H}^{1}(\Omega), \Delta \psi \in \mathcal{H} \mid \psi_{\lceil D \rceil} = 0, \ \partial_{y} \psi_{\lceil N \rceil} = 0 \}$$

$$H\psi = -\Delta \psi$$

The Hamiltonian

00000

In fact we can prove that

If $\psi \in \mathcal{D}(H)$ then $\psi \in \mathcal{H}^2(\Omega_0)$ for every open set $\Omega_0 \subset \Omega$ such that

$$\{(0,0),(0,\textit{d})\}\cap\overline{\Omega_0}=\emptyset$$

References

- J.Dittrich, J.Kříž, Jour. Math. Phys 2002
- Ph Briet, J. Dittrich, E. Soccorsi, Jour. Math Phys, 2014
- D. Krejčiřík, E. Zuazua Jour. Diff. Equat. 2011
- D. Krejčiřík, H. Kovarik Math Nachr. 2008
- ...

Questions

- Point spectrum
- Absence of singular continuous spectrum
- Completeness of the wave operators

Wave operators

The Dittrich-Kříž problem

Let $\Omega_1 = (0, d) \times \mathbb{R}^-$ and $\Omega_2 = (0, d) \times \mathbb{R}^+$ and χ_i the characteristic function of Ω_i .

Let $H_1 = -\Delta$ on Ω with BDC on $\{0\} \times \mathbb{R}$ and NBC on $\{d\} \times \mathbb{R}$,

 $H_2 = -\Delta$ on Ω with BDC on $\{d\} \times \mathbb{R}$ and NBC on $\{0\} \times \mathbb{R}$

Prove the existence of the TWO wave operators : i = 1, 2

$$\Omega_j^{\mp} = s - \lim_{t \to \pm \infty} e^{itH} \chi_j e^{itH_j}$$

and

$$W_j^{\pm} = s - \lim_{t \to \pm \infty} e^{itH_j} \chi_j e^{itH} P_{ac}(H)$$

Here $P_{ac}(H_i) = \mathbb{I}_{\mathcal{H}}$

Completeness

Prove that

$$(\Omega_j^{\pm})^* = W_j^{\pm}$$

and the completeness relation

$$P_{ac}(H) = \Omega_1^{\pm} W_1^{\pm} + \Omega_2^{\pm} W_2^{\pm}$$

If $P_{ac}(H) = \mathbb{I}_{\mathcal{H}}$ i.e. $\sigma_{sing} = \emptyset \rightarrow \text{asymptotic completeness}$

The spectrum

The Dittrich-Kříž problem

Theorem:

$$\sigma_{\rm ess}(H) = [\mathcal{E}, +\infty); \ \mathcal{E} = \frac{\pi^2}{4d^2}$$

Proof: → J.Dittrich, J.Kříž

(See also Ph. Briet, H. Abdou Soimadou, D. Krejčiřík, to appear in ZAMP)

The spectrum

Denote by $\sigma_{pp}(H)$ the set of all eigenvalues of H and $\sigma_d(H)$ the set of discrete eigenvalues of H.

We know from J.Dittrich, J.Kříž that if $\delta > 0$ then $\sigma_d(H) \neq \emptyset$. We show that

Theorem: If $\delta = 0$ then $\sigma_{pp}(H) = \emptyset$

strategy of proof

The Dittrich-Kříž problem

Suppose that there exist an eigenvalue $\lambda \in \mathbb{R}$ and $\psi \in \mathcal{H}$ s.t.

$$H\psi = \lambda \psi$$

Then we construct a sequence $(\varphi_n)_{n\in\mathbb{N}}$ of D(h) s.t.

$$2\|\partial_x\psi\|^2 = \lim_{n\to\infty} (h(\psi,\varphi_n) - \lambda(\psi,\varphi_n)) = 0$$

then regularity properties of ψ and the fact $\psi \in \mathcal{H}^1 \Rightarrow \psi = 0$.

In fact $\varphi_n = (\psi + 2x\partial_x\psi)\chi_n$ where χ_n is an approximation of the identity function

Mourre estimate

The Dittrich-Kříž problem

Let
$$\mathcal{T}:=\{E_k\}_{k\in\mathbb{N}^*}$$
 and let $E\in\mathbb{R}\setminus\mathcal{T}$ and $\eta>0$, s.t.

$$(E - \eta, E + \eta) \cap \mathcal{T} = \emptyset, \quad P_{\eta} := P_{(E - \eta, E + \eta)}$$

The conjugate operator:

$$A = \frac{1}{2}(F(x)i\partial_x + i\partial_x F(x))$$

$$F \in C^2(\mathcal{R}), F(x) \sim x$$
 in a neighbourhoud of $\pm \infty$

Theorem:

• There exists a positive number α and a compact operator K on such that

$$P_{\eta}i[H,A]P_{\eta} \geq \alpha P_{\eta} + P_{\eta}KP_{\eta}$$

It also holds

The Dittrich-Kříž problem

- D(A) ∩ D(H) is a core of H.
- e^{itA} leaves D(H) invariant and $\sup_{|t|<1} \|e^{itA}\psi\| < \infty$, $\psi \in D(H)$,
- the form $i((H\psi, A\psi) (A\psi, H\psi))$ on $D(A) \cap D(H)$ is bounded below. The associate operator B is s.t. $D(B) \supset D(H)$
- The operator associated to $i((B\psi, A\psi) (A\psi, B\psi))$, is bounded from D(H) to $D(H)^*$

See Georgescu-Gerard, JFA (2004) for a details about these conditions.

Mourre estimate

Corollary:

$$\sigma_{sc}(H) = \emptyset$$

So *H* is purely absolutely continuous and the asymptotic completeness holds.

elements of proof

Let $E \in (E_1, E_2)$, η as above and P_n the spectral projector of H_1 . First we consider the operator H_1 (H_2), then choose A as the generator of dilation group.

$$A=\frac{1}{2}(xi\partial_x+i\partial_xx)$$

So a simple calculation shows that in a suitable sense

$$P_{\eta}i[H_{1},A]P_{\eta} = -2P_{\eta}\partial_{x}^{2}P_{\eta} = 2EP_{\eta} + 2(H_{1} - E)P_{\eta} + 2P_{\eta}\partial_{y}^{2}P_{\eta}$$

 $\geq 2(E - E_{1} + o(\eta))P_{\eta}$

 \rightarrow a strict Mourre estimate for H_1 (H_2).

elements of proof

For the twisting model let $F \in C^{\infty}(\mathbb{R})$ st. F(x) = x if |x| > 1 and F(x) = 0 elsewhere, in particular near $\{(0,0),(0,d)\}$. Let

$$A = \frac{1}{2}(F(x)i\partial_x + i\partial_x F(x))$$

So

$$P_{\eta}[H,A]P_{\eta} = -P_{\eta}(F'\partial_{x}^{2} + \partial_{x}^{2}F')P_{\eta} = 2EP_{\eta} + P_{\eta}(F'(H_{1} - E) + (H_{1} - E)F')$$
 $+2P_{\eta}F'\partial_{y}^{2}P_{\eta} + P_{\eta}2E(F' - 1) + \frac{1}{2}F'''P_{\eta}$
 $\geq 2(E - E_{1} + o(\eta))P_{\eta} + P_{\eta}KP_{\eta}$

for some compact operator $K \to a$ Mourre estimate for H.

Thanks for your attention