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The free Dirac operator in R® is defined by

How = (—ia -V + mB)y
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The free Dirac operator in R® is defined by

Hoy = (—iac- V + mp)y <—/Za/a/+m5>'¢)

Jj=1

where me R and o, 8 € C*4, ¢ : R® — C*
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The free Dirac operator in R? is defined by

Hov = (—ia- V + mB)y <_’ZO‘/8 +m5>¢)

Jj=1

where me Rand aj, 8 € CH4, ¢ : R3 — C*,

_ (I 0 _ 10
5_<og—b)’ﬂf—<o1>’
o = (01,042,043), QO = < oj 02 > (j = 17273)a

and oy are the Pauli matrices

0 1 0 —i 1 0
“=\10) 27 i o) 7 \o 1)
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(Just) Some properties of the Dirac Operator

Hy .= —ia -V 4+ mg:
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(Just) Some properties of the Dirac Operator

Hy .= —ia -V 4+ mg:

0 (Ho)? = (-4 + mP)ly;
@ Hp is an unbounded linear operator,
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(Just) Some properties of the Dirac Operator

Hy .= —ia -V 4+ mg:

0 (Ho)? = (-4 + mP)ly;
@ Hp is an unbounded linear operator,
e essentially self-adjoint on C3°(R3; C*),
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(Just) Some properties of the Dirac Operator

Hy .= —ia -V 4+ mg:

o (Ho)? = (—A + m?)ly;
@ Hp is an unbounded linear operator,

e essentially self-adjoint on C3°(R3; C*),
e self-adjoint on H'(R3; C*);
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(Just) Some properties of the Dirac Operator

Hy .= —ia -V 4+ mg:

o (Ho)? = (—A + m?)ly;
@ Hp is an unbounded linear operator,

e essentially self-adjoint on C3°(R3; C*),
e self-adjoint on H'(R3; C*);

@ Hp is not positive:

o(Ho) = oess(Ho) = (=00, —m] U [m, +00)
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Perturbed Dirac operator

Let us add a potential: H := Hy + V, with V = V(x) € C**4,
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Perturbed Dirac operator

Let us add a potential: H := Hy + V, with V = V(x) € C**4,
For example

X

for real valued vy, Vsc, Vam, the potentials Vo, Vg, Vam are respectively
an electric, Lorentz scalar, and anomalous magnetic potential.
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Perturbed Dirac operator

Let us add a potential: H := Hy + V, with V = V(x) € C**4,
For example

X

for real valued vy, Vsc, Vam, the potentials Vo, Vg, Vam are respectively
an electric, Lorentz scalar, and anomalous magnetic potential.

(For example)?, the Coulomb potential-

v
VC(X) = ML‘”

(A very basic) Question

Is H = Hy + V self-adjoint (on the appropriate domain)?
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Dirac-Coulomb Self-adjointness (unfair overview)

For |v| € [0,}): [Kato, 1951]. For f € C3°(R®)*, the Hardy inequality

11

4 e dx</ VFP dx
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Dirac-Coulomb Self-adjointness (unfair overview)

For |v| € [0,}): [Kato, 1951]. For f € C3°(R®)*, the Hardy inequality

2
/!V f\zdx<4 ||;||2 dx</ |Vf]2dx_/ | —ia - V|2 dx,
R3
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Dirac-Coulomb Self-adjointness (unfair overview)

For |v| € [0,}): [Kato, 1951]. For f € C3°(R®)*, the Hardy inequality

2
/yv f\zdx<4 |‘;||2 dx</ |Vf]2dx_/ | —ia - V|2 dx,
R3

implies that the Coulomb potential is a (Kato) small perturbation:
Ho + v/|x| is self-adjoint on H'(R3; C*) and essentially self-adjoint on
C(R3; CH).

Biagio Cassano (UJF Rez) Hardy inequalities and the Dirac operator

March 1, 2019 5/26



Dirac-Coulomb Self-adjointness (unfair overview)
For |v| € [0,}): [Kato, 1951]. For f € C3°(R®)*, the Hardy inequality

2

/ Vef2dx < T g < / |Vf[? dx _/ | —ia - V|2 dx,
R3 4 Jps |x[2

implies that the Coulomb potential is a (Kato) small perturbation:

Ho + v/|x| is self-adjoint on H'(R3; C*) and essentially self-adjoint on

C°(R3; C*). In fact the optimal range is |v| € [0, ), [Rellich,

Jorgens, 1953], [Schmincke, 1972a].
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Dirac-Coulomb Self-adjointness (unfair overview)
For |v| € [0,}): [Kato, 1951]. For f € C3°(R®)*, the Hardy inequality

2

/ Vef2dx < T g < / |Vf[? dx _/ | —ia - V|2 dx,
R3 4 Jps |x[2

implies that the Coulomb potential is a (Kato) small perturbation:

Ho + v/|x| is self-adjoint on H'(R3; C*) and essentially self-adjoint on

C°(R3; C*). In fact the optimal range is |v| € [0, ), [Rellich,

Jorgens, 1953], [Schmincke, 1972a].

For v/3/2 < |v| < 1 there are infinite self-adjoint extensions: among

them there is a distinguished one! [Klaus, Wiist, 1979]

[v1?

Y € D(Hyist) <=
R3 \X|

X < +o0 <= o € Hz(R3;CY)
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Dirac-Coulomb Self-adjointness (unfair overview)
For |v| € [0,}): [Kato, 1951]. For f € C3°(R®)*, the Hardy inequality

2

/ Vef2dx < T g < / |Vf[? dx _/ | —ia - V|2 dx,
R3 4 Jps |x[2

implies that the Coulomb potential is a (Kato) small perturbation:

Ho + v/|x| is self-adjoint on H'(R3; C*) and essentially self-adjoint on

C°(R3; C*). In fact the optimal range is |v| € [0, ), [Rellich,

Jorgens, 1953], [Schmincke, 1972a].

For v/3/2 < |v| < 1 there are infinite self-adjoint extensions: among

them there is a distinguished one! [Klaus, Wiist, 1979]

[v1?

Y € D(Hyist) <=
R3 \X|

X < +o0 <= o € Hz(R3;CY)

¥ € D(Haist) <= (Vi),9) 2 < +00
= (—iV, )2 < Fo0.
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Self-adjointness with matrix valued potentials

[Kato, 1951] holds for hermitian potentials V € C**# such that

1 1
<a— =.
V(x)| < a|X|, fora < 5

Biagio Cassano (UJF Rez) Hardy inequalities and the Dirac operator March 1, 2019 6/26



Self-adjointness with matrix valued potentials

[Kato, 1951] holds for hermitian potentials V € C**# such that

1 1
<a— =.
V(x)| < a|X|, fora < 5

[Arai, 1975]: for a > 1/2 there exists a matrix valued potential W,
|[W(x)| = a/|x| such that Hy + W is not essentially self adjoint.
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Self-adjointness with matrix valued potentials

[Kato, 1951] holds for hermitian potentials V € C**# such that

1 1
<a— =.
V(x)| < a|X|, fora < 5

[Arai, 1975]: for a > 1/2 there exists a matrix valued potential W,
|[W(x)| = a/|x| such that Hy + W is not essentially self adjoint.
[Kato, 1981] and [Arrizabalaga, Duoandikoetxea, Vega, 2013]
describe the distinguished extension for general matrix valued
potentials such that

Ix[|[V(x)| <a, with 0<a<T.
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Self-adjointness with matrix valued potentials

[Kato, 1951] holds for hermitian potentials V € C**# such that

1 1
<a— =.
V(x)| < a|X|, fora < 5

[Arai, 1975]: for a > 1/2 there exists a matrix valued potential W,
|[W(x)| = a/|x| such that Hy + W is not essentially self adjoint.
[Kato, 1981] and [Arrizabalaga, Duoandikoetxea, Vega, 2013]
describe the distinguished extension for general matrix valued
potentials such that

Ix[|[V(x)| <a, with 0<a<T.
Fundamental tool is the Hardy (Kato-Nenciu) inequality: for all
) € C°(R?; C*)

/lw?s/ XI|(—iar- ¥ + mB £ eiypl2, 0.
R R3

s |x|
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We remind that if [V(x)| < &, with C > 0, if Hy + V is self-adjoint then

x|

oess(Ho + V) = 0ess(Hp) = (—o0, —m] U [m, 4+00).
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We remind that if [V(x)| < &, with C > 0, if Hy 4 V is self-adjoint then

x|’
oess(Ho + V) = 0ess(Hp) = (—o0, —m] U [m, 4+00).

In [Dolbeault, Esteban, Séré, 2000], it is proved the validity of a
min-max formula to determine the eigenvalues in the gap of the
essential spectrum of the Dirac operator perturbed with Coulomb-like
potentials V such that

V(x):= V(x)s, lim |[V(x)|=0, —— —¢<V<o,

[X|—+00 x|

withv € (0,1)and ¢y,c, >0,¢1 + o — 1 < V1 — 12,
As a consequence of their results, they proved the following
Hardy-type inequality:

V|2 1
/M+/ <a—> lp|2 >0, foralla>0,pec CE(R?)?2
R 8+ g R3 |X|
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We remind that if [V(x)| < &, with C > 0, if Hy 4 V is self-adjoint then

x|’
oess(Ho + V) = 0ess(Hp) = (—o0, —m] U [m, 4+00).

In [Dolbeault, Esteban, Séré, 2000], it is proved the validity of a
min-max formula to determine the eigenvalues in the gap of the
essential spectrum of the Dirac operator perturbed with Coulomb-like
potentials V such that

V(x):= V(x)s, lim |[V(x)|=0, —— —¢<V<o,
|X|—+o00 |x]
withv € (0,1)and ¢y,c, >0,¢1 + o — 1 < V1 — 12,
As a consequence of their results, they proved the following
Hardy-type inequality:

Vol2 1
/W+/ <a—> P >0, foralla>0,¢ e CP(R%)>
RS A+ R3 x|

Later, a later direct analytical proof was given in [Dolbeault, Esteban,
Loss, Vega, 2004].
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Thanks to this inequality, in [Esteban, Loss, 2007] it is considered a
general electrostatic potential V : R® — R such that for every
p € CZ(R®,C?)

o- 2
/Rs (% +(1+e(V) + V)\so!2> dx > 0,

for some constant ¢(V) € (—1,1), I :=sup(V) < 1+ ¢(V), and for
V := VI, they proved that the operator Hy + V is self-adjoint on the
appropriate domain.
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Thanks to this inequality, in [Esteban, Loss, 2007] it is considered a
general electrostatic potential V : R® — R such that for every
p € CZ(R®,C?)

o- 2
/Rs (dqmv +(1+e(V) + V)\so!2> dx > 0,

for some constant ¢(V) € (—1,1), I :=sup(V) < 1+ ¢(V), and for
V := VI, they proved that the operator Hy + V is self-adjoint on the
appropriate domain.
In particular, they could treat potentials such that

—ﬁ <V(xX)<1+V1 -2  withv e (0,1],
obtaining the distinguished extension in the case that v < 1, and giving
a definition of distinguished extension in the critical case v = 1.
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Thanks to this inequality, in [Esteban, Loss, 2007] it is considered a
general electrostatic potential V : R® — R such that for every
p € CZ(R®,C?)

o - 2
/Rs (uc(z;p‘—\/ +(1+e(V) + V)\so!2> dx > 0,

for some constant ¢(V) € (—1,1), I :=sup(V) < 1+ ¢(V), and for
V := VI, they proved that the operator Hy + V is self-adjoint on the
appropriate domain.
In particular, they could treat potentials such that

—ﬁ <V(xX)<1+V1 -2  withv e (0,1],
obtaining the distinguished extension in the case that v < 1, and giving
a definition of distinguished extension in the critical case v = 1.
The inequality was then used in [Esteban, Lewin, Séré, 2017]: they
provided details on the domain of the distinguished extension and they
showed the validity of a min-max formula for the eigenvalues in the
spectral gap.
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Thanks to this inequality, in [Esteban, Loss, 2007] it is considered a
general electrostatic potential V : R® — R such that for every
p € CZ(R®,C?)

o - 2
/Rs (uc(z;p‘—\/ +(1+e(V) + V)\so!2> dx > 0,

for some constant ¢(V) € (—1,1), I :=sup(V) < 1+ ¢(V), and for
V := VI, they proved that the operator Hy + V is self-adjoint on the
appropriate domain.
In particular, they could treat potentials such that

—ﬁ <V(xX)<1+V1 -2  withv e (0,1],
obtaining the distinguished extension in the case that v < 1, and giving
a definition of distinguished extension in the critical case v = 1.
The inequality was then used in [Esteban, Lewin, Séré, 2017]: they
provided details on the domain of the distinguished extension and they
showed the validity of a min-max formula for the eigenvalues in the
spectral gap. (For a fair overview see [C., Pizzichillo, 2018a]).
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Theorem ([C., Pizzichillo, Vega, 2018])

Letm > 0 and a € (—m, m). Let be a distribution such that
/ (=ia -V + mB — a)b[2|x| dx < 400,
R3

Then € L2(]x|~")* and

2
%/ o dx</| oV +mp—a)ufx|dx. (1)

x|

The inequality is sharp, in the sense that the constant on the left hand
side can not be improved.
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Theorem (addendum)

If a # 0, all the attainers are given by the elements of the
two(complex)-parameter family {13} ccce, with

(

e—\/mz—a2|x| C f 0

w2 moc) T80
+a” x|

_j /mta . x .
@( VEELR: C) e
\

a
‘X|1+m C

e L2(Ix|7H*.

In the case that a = 0, the inequality is attained by the functions 2

above, in the sense that

el
x|

e—0

lim /{|X|>E} [\x|‘(—ia -V + mp) wgr _

]dx:o.
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Setv := /=% ¢ (0,1), then a= +mv/T— 12 € (—m,0) U (0, m).
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Setv = /™5 € (0,1), then a= +mv1 — 12 € (—m,0) U (0, m).

m?2
With explicit computation:

(Ho:|:|—;|—a)1/)g=0.
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Setv = /™5 € (0,1), then a= +mv1 — 12 € (—m,0) U (0, m).

m?2
With explicit computation:

(Ho:|:|—)';|—a)1/)g=0.

The attainers 2 of (1) are eigenvectors for the Coulomb operator!
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Setv = /™5 € (0,1), then a= +mv1 — 12 € (—m,0) U (0, m).

m?2
With explicit computation:

(Ho:|:|—)';|—a>1/)g=0.
The attainers 2 of (1) are eigenvectors for the Coulomb operator!

(What about the vice-versa? Be patient!)
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The two inequalities in the proof

The proof descends from the explicit computation of the following

square:
, ¢ v
0< /Rs|x| (—ia-V+mp—a)y —ia- MO — Eﬁ)“ +2$L)m dx

2 A2 2
:/ Xl\(—iar- 7+ mB — a2 dx — T2 / (1 +28L)0?
R3 = o ]

a 2

where the spin angular momentum operator S and the orbital angular
momentum L are defined as

1/0 0 ,
S_E(O U) and L:=—ixAV.

Moreover, since [1 +2SL| > 1,

2 2
[ g [ 102808 o
R R3

s |x| |X]
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Thanks to the previous Theorem, for a € (—m, m)
(Ho—a)~ ' L2(Ix])* — L2(Ix|™ )%, u(Ho—a) v : LB(R®)* — [A(R®)*,
are well defined and bounded, with

u(x) = \XWZV(X) and v(x):= \x]—1/2]14‘
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Thanks to the previous Theorem, for a € (—m, m)
(Ho—a)~ ' L2(Ix])* — L2(Ix|™ )%, u(Ho—a) v : LB(R®)* — [A(R®)*,
are well defined and bounded, with

u(x) = \X|1/2V(X) and v(x):= \x]—1/2]14‘

Theorem (Birman-Schwinger principle)

LetV be a Hermitian matrix-valued potential such that
sup,|X||V(x)| < 1, and letu, v be defined as above. Let Hp be the
distinguished realization and let a € (—m, m). Then

1

aec O'd(HD) — —1¢€ (Td(U(Ho = a)_ V).

Moreover, the multiplicity of a as an eigenvalue of Hp coincides with
the multiplicity of —1 as an eigenvalue of u(Hg — a)~'v.
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For v € (0, 1), the distinguished realization H, := Hy — ™ verifies:
o(Hy) = 0a(H,) Uoess(H,) ={a1, a,...} U (—o0,—m] U [m, +o0), (2)
and

m/1—12=ag=a<a3<---<ap<---<m, lim a,=m.
n

—+00
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For v € (0, 1), the distinguished realization H, := Hy — ™ verifies:
o(Hy) = 0a(H,) Uoess(H,) ={a1, a,...} U (—o0,—m] U [m, +o0), (2)
and

m/1—12=ag=a<a3<---<ap<---<m, lim a,=m.
n

— 400
In [Dolbeault, Esteban, Séré, 2000], they considered an electric
potential V := VI, being V = V(|x|) a radially symmetric function
satisfying
im [V(X)|=0, - —-¢<V<o
[x|—+o0 X
with v € (0,1) and ¢y,¢2 > 0, ¢ + ¢ — 1 < v/1 — 2. By means of
min-max formulas, they proved that the distinguished self-adjoint
realization Hp verifies (??), with
m/1—v2<ag <a<a< ---<ap<---<m, lim a,=m.

n—-+o00
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For v € (0, 1), the distinguished realization H, := Hy — ™ verifies:
o(Hy) = 0a(H,) Uoess(H,) ={a1, a,...} U (—o0,—m] U [m, +o0), (2)
and

m/1—12=ag=a<a3<---<ap<---<m, lim a,=m.
n

— 400
In [Dolbeault, Esteban, Séré, 2000], they considered an electric
potential V := VI, being V = V(|x|) a radially symmetric function
satisfying
im [V(X)|=0, - —-¢<V<o
[x|—+o0 X
with v € (0,1) and ¢y,¢2 > 0, ¢ + ¢ — 1 < v/1 — 2. By means of
min-max formulas, they proved that the distinguished self-adjoint
realization Hp verifies (??), with
m/1—v2<ag <a<a< ---<ap<---<m, lim a,=m.

n—-+o00

In [Esteban, Lewin, Séré, 2017] they could generalise this result,
removing the hypothesis of radial symmetry on V and for v € (0, 1].
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Let a € (—m, m) be an eigenvalue of Hy + V with multiplicity x(a) and
let ¢» be an associated eigenfunction, that is (Hy — a)y = —V4.
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Let a € (—m, m) be an eigenvalue of Hy + V with multiplicity x(a) and
let ¢» be an associated eigenfunction, that is (Hy — a)y = —V4.

/ |X||(Ho — a)i|? dx = / |X||V|2 dx < uz/ ',w" dx < +oo.
RS RS
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Let a € (—m, m) be an eigenvalue of Hy + V with multiplicity x(a) and
let ¢» be an associated eigenfunction, that is (Hy — a)y = —V4.

/Ra |X||(Ho — a)i|? dx = /Rs |X||V|2 dx < uz/ ”w" dx < +oo.

Thanks to the Hardy-type inequality we have proved:

L Lt e 5
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Let a € (—m, m) be an eigenvalue of Hy + V with multiplicity x(a) and
let ¢» be an associated eigenfunction, that is (Hy — a)y = —V4.

/Ra |X||(Ho — a)i|? dx = /Rs |X||V|2 dx < uz/ ”w" dx < +oo.

Thanks to the Hardy-type inequality we have proved:

L Lt e 5

= |a] > my/1—1v2>0.
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Let a € (—m, m) be an eigenvalue of Hy + V with multiplicity x(a) and
let ¢» be an associated eigenfunction, that is (Hy — a)y = —V.

[ ko~ aiax = [ v ax <2 [ o< o,
R0 R x]
Thanks to the Hardy-type inequality we have proved:
[¢? / 2 - a2/ WI
>
2 [ [ it - aae = g [ -
— |a| > mm > 0.

If a = +m\/1 — 12, v is an attainer and so ¢ = ¢4, for C € C2.
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Let a € (—m, m) be an eigenvalue of Hy + V with multiplicity x(a) and
let ¢» be an associated eigenfunction, that is (Hy — a)y = —V.

/ |x||(Ho — a)v|? dx:/ ||| V|2 dxgyz/ [P dx < 4oo0.
R3 R3 r3 |X]

Thanks to the Hardy-type inequality we have proved:
[¢? / 2 gy > M= a2/ WI
>
2 [ [ it - aae = g [ -
= |a] > my/1—1v2>0.

If a = +m\/1 — 12, v is an attainer and so ¢ = ¢4, for C € C2.
Then 0= (Ho ¥ % — @) ¥& = (Ho +V — )y
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Let a € (—m, m) be an eigenvalue of Hy + V with multiplicity x(a) and
let ¢» be an associated eigenfunction, that is (Hy — a)y = —V.

/ |X||(Ho — a)i|? dx = / |X||V|2 dx < Uz/ [P dx < 4oo0.
R3 R3 R

s ||

Thanks to the Hardy-type inequality we have proved:

[ / 2 gy > M= a2/ WI
>
2 [ [ it - aae = g [ -
= |a] > my/1—1v2>0.
If a = +m\/1 — 12, v is an attainer and so ¢ = ¢4, for C € C2.
Then 0 = (Hozpﬁ—a)z/}ac:(HojLVfa)qbgi
VY = Fqve. ma) <2
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Theorem ([C., Pizzichillo, Vega, 2018])

LetV be a Hermitian matrix valued potential such that
sup,|Xx||V(x)| < 1, and let Hp be the distinguished self-adjoint
realization.
Leta € o4(Hp), let n(a) be its multiplicity and let «» € D(Hp) be an
associated eigenfunction. Then:
o |a| > mv1—v2;
e a=+mv1—v2ifand only ify = ¢ for some C € C?; in this
case, VY3 = IFﬁi/}é and p(a) < 2;
if moreoverV is an electric potential, that is V = V(x)l, then
V(x) = =P
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Theorem (addendum)

@ in the case that a= +mv/1 — 12, then p(a) = 2 if and only if

( 2, . X \W+ LX X W+
vy N<¢o |X|W (X)o ] INo- |X|W (x) 250
Xl —INWF(x)o - % W (x) ’
V(x) =
5, W-(x) INW=(x)o - 25 ac0
\A —iNo - ZW=(x) NP0 KW~ (x)o - & ’

where N = % VT”i and W+ (x) and W~ (x) are2 x 2

Hermitian matrices whose eigenvalues are respectively
{\ (0)}j=1.2 and {\; (x)}=1.2, and they verify

— L1+ VT =12) <A () S0 <A (x) < (1 +VI—12).
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Can we extend these results to the general case when
supy |x[[V(x)| = 17
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Can we extend these results to the general case when
supy |x[[V(x)| = 17

It is not clear what the distinguished extension is in this general case.
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Can we extend these results to the general case when
supy |x[[V(x)| = 17

It is not clear what the distinguished extension is in this general case

When sup, |x||V(x)| = 1 itis no longer true that
D(Ho + V) C D(r=1/2)4,
For example, when V(x) = V¢(x) =

the ground state 4% ¢ D(r~1/2)%.
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Distinguished extension via quadratic forms

We select a self-adjoint extension T by asking that D(T) is included in
the domain of an appropriate quadratic form.
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Distinguished extension via quadratic forms

We select a self-adjoint extension T by asking that D(T) is included in
the domain of an appropriate quadratic form.
Assume that v := sup,ps|X||V(x)| < 1, and let

q(v) = /RS [|x||—ia V|2 — yxuwyz] dx, forally € CP(R3;CH).
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Distinguished extension via quadratic forms

We select a self-adjoint extension T by asking that D(T) is included in
the domain of an appropriate quadratic form.
Assume that v := sup,ps|X||V(x)| < 1, and let

q(v) = /Ra [|X||—ia V|2 — yxuwyz] dx, forally € CP(R3;CH).

Thanks to the Kato-Nenciu inequality

q(¢)2/ Dxu—ia.w\z—vz‘ﬁ] dx > (1 —v2)/ %dx, (3)
R3 R

X s ]

this form is symmetric and non-negative, and hence closable: we
denote its closure g (with abuse of notation) and its maximal domain Q.
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Distinguished extension via quadratic forms

We select a self-adjoint extension T by asking that D(T) is included in
the domain of an appropriate quadratic form.
Assume that v := sup,ps|X||V(x)| < 1, and let

q(v) = /Rs [|X||—ia V|2 — yxuwyz] dx, forally € CP(R3;CH).

Thanks to the Kato-Nenciu inequality

i w2 2 lYF ey [P

qw) > | |Ixll—ia- VR —vA) dx > (1 v2) dx. (3)
R X e |X]

this form is symmetric and non-negative, and hence closable: we

denote its closure g (with abuse of notation) and its maximal domain Q.

If v<1,thenforally € Q, [ % dx < oo, i.e. D(T) C Qimplies

that T is the distinguished extension ([Kato, 1981],[Arrizabalaga,

Duoandikoetxea, Vega, 2013]).
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Lemma ([C., Pizzichillo, 2018b])
For all ) € C*(R3)* and R > 0:

2
o Tl ()2 w00 - Fv(RE)|
/Rslxll i Vip(x)] dXZ/Rs ] dx+/Rs X o)

Moreover, the inequality is sharp.

Consequently, for all ¢ € Q:

2
[
{

x|<1} |X|log? x|
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In [C., Pizzichillo, 2018b] we describe all the self-adjoint realizations
of the differential operator Hy + V, where

Vuy:&wéh+ﬂB+A<4aw;ﬁ>),fmx#O

with v, \, 1 € R.
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In [C., Pizzichillo, 2018b] we describe all the self-adjoint realizations
of the differential operator Hy + V, where

V(x) = <yﬂ4+u5+A <—ia- Xﬁ)) , forx #0,
X x|

with v, \, u € R.

We characterize all the self-adjoint extensions through the behaviour

of the functions in the domain in the origin.

We construct a boundary triple for Hpax

(remind that D(Hmax) = {v € L2(R3)* : Hy € L2(R3)4}).
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In [C., Pizzichillo, 2018b] we describe all the self-adjoint realizations
of the differential operator Hy + V, where

V(x) = <yﬂ4+u5+x <—ia- Xﬁ)) , forx #0,
x| |X]
with v, A\, € R.
We characterize all the self-adjoint extensions through the behaviour
of the functions in the domain in the origin.
We construct a boundary triple for Hnmax
(remind that D(Hmax) = {v € L2(R3)* : Hy € L2(R3)4}).
Let
d:= > 2/k| < +o0,
ke\{0}
(KX pP—12<1/4
then (C9,I*,T~) is a boundary triple for Hnax, for appropriate
M+,7~ : D(Hmax) — CY.
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Let us consider Vg (x) = |”7‘
@ If 0 < v < 1 there exists v > 0 such that for every ¢ € D(Hy + V)

AX[+Blx|™  [Bix|',  i#B#0
as [x| = 0: ¢(X)~—|X’ + Blx] N{ i ’ tB#0,

| X| Alx[71, if B=0,

for some A, B € C*.
o Ifv =1, for every ¢» € D(Hy + V) then

Blog|x| :
A+ B glell it B#£0,
aﬂﬂ%O:wQ%+(mﬂm{ﬂ 7

|X| A if B=0,

ma

for some A, B € C*.

There exists only one extension such that B = 0 for every function 1:
this is the distinguished one.
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@ If v > 1 there exists v > 0 such that for every ¢ € D(Hy + V)

Alx|" + B|x|~™
x|

as x| - 0: (x)

for some A, B € C*.

No one appears to be distinguished in some sense.
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Let us consider Vam(x) = |7>“(ia - p1B)-
@ If 0 < X\ < 1 there exists v > 0 such that for every ¢ € D(Hp + V)

Ax|” +B|x|7 [ B|x|77~! if B#0
as x| = 0: ¢(X)Nm+|x|w{|x\ . ifB#0,

x| Alx[71, if B=0,

for some A, B € C*. The distinguished extension is the unique one
such that B = 0 for all vs.

o If A\ =1, forevery v € D(Hy + V) then

A
as x| - 0: w(x)wm

for some A € C*. No one appears to be distinguished.
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Theorem ([C., Pizzichillo, 2018b])
Let

V(x) == ||<1/H4+uﬁ+)\( @ﬁ)), for x # 0,

and assume that

ia-ﬁ,@
sup |x[[V(x)| <1, V(x)#+ :
XER3 |X|

Then, there exists only one self-adjoint extension Flm,-,, C T C Hmax
such that D(T) C Q.

(4)
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This is a positive result: we give the definition of distinguished
extension by means of quadratic forms in a bigger class than in
[Esteban, Loss, 2008], [Esteban, Lewin, Séré, 2017].

This is a negative result: the condition D(T) C Q does not appear to
select an extension in the general case that sup,gs|Xx||V(x)| < 1, since
it does not in the case

H X

|X]

V(x) ==+
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Thank you for your attention!
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Thank you for your attention!
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The Dirac-Coulomb operator

The Dirac-Coulomb operator describes spin—% particles in the external
electrostatic field of an atomic nucleus of atomic number Z.
In fact

cv e’Z
1 =— =7
‘X| 4, 4 FLC af?

Ho + V(X) = —icha - V 4 Smc? +
where
@ cis the speed of light,
@ his the Plank’s constant,
@ e is the charge of the electron,
@ Zis the atomic number,

@ o = (137.035...) " is the fine-structure constant.
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The Dirac-Coulomb operator

The Dirac-Coulomb operator describes spin—% particles in the external
electrostatic field of an atomic nucleus of atomic number Z.
In fact

cv e’z

Ho + V¢(x) = —icha - V + Bmc? + ‘X|114, v=""="Zay,

where

@ cis the speed of light,

@ his the Plank’s constant,

@ e is the charge of the electron,

@ Zis the atomic number,

@ o = (137.035...) " is the fine-structure constant.
Wesethi=c=e=1.
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Boundary Triples for Hpax
We write

Y € D(Hmax) = {1 € L2(R®)* : Hy e [3(R3)*},

w(x):/% |)1(| (m,,k(| DT & (|X|)+f‘ (IxDer, (x))

||
We have

1

et © D @ n

mj,kj»
j=1.3.. m=—j k=£(j+1/2)

() M H 0 SR (1
mj, k+>\ my s )
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Let 6k, := (kj + )2 + p? — 12, and Yig = /0]
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Let 6k, := (kj + )2 + p? — 12, and Yig = /0]
If 65, > 7 then hy;, . is symmetric.
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Let 6k, := (kj + )2 + p? — 12, and Yig = /0]
If o, > then h, 1k is symmetric.
If0 < 6k!. <1/4 then

=+ Yk:
fm/"kf(r) — Dk- A+r_k] I'_1/2 =0
Foy i (1) I\ATr ’

J

lim
r—0

being Dy, € R?*2 the invertible matrix

A+ K — v v— .
N N i if A+ ki — v %0,
b 2'Y<*+k”kf><—(v+u) —(\+ K= %) w7
by =
1 H—V 27/(/' . .
ifA+k —v =0;
~ (2% —(v+p) I

we set

(o) =, (1),
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If Jkl. = 0 then

being My, € R**2, M,fj = 0 defined as follows

J

v+ p ki + A

(i) = ()

we set

fr;;,-, j(r) AT
<fn_7] :(I’)) — (Mkj |0gf—|—]12) <A> r

My — (—(k,- +A) —v+ u) ;

—1/2

=0,
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If cSkj. < 0 then

lim
r—0

f= . (r) K\ Ao =ik =9
my.kj ATr

being Ey, € C2*2 the invertible matrix

E, 1 ()x—i-k—i’y;(l. v— >
BT 2k — i) \ —( ) (At ki)

r%f’k’(fmj’kj) = Ey (AJ—F) )
rmj,;g(fm,-,lg-) T\A

we set
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Forj=3%.3,...,00,m= j, i k= £+ 1/2);
let I:={(j, m;, k) : (k+>\) +u? -2 <1/4} and d = #1.

Set r+, M~ ‘D(Hmax) — Cd

@) = (% 4 (fmk)) €.

(J?mjvkj)el

Theorem ([C., Pizzichillo, 2018b])

(C9,T*,T) is a boundary triple for Hpmax.
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