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The free Dirac operator in R3 is defined by

H0ψ := (−iα · ∇+ mβ)ψ

=

(
− i

3∑
j=1

αj∂j + mβ
)
ψ,

where m ∈ R and αj , β ∈ C4×4, ψ : R3 → C4 ,

β =

(
I2 02
02 −I2

)
, I2 :=

(
1 0
0 1

)
,

α = (α1, α2, α3), αj =

(
02 σj
σj 02

)
(j = 1,2,3),

and σk are the Pauli matrices

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.
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(Just) Some properties of the Dirac Operator

H0 := −iα · ∇+ mβ :

(H0)2 = (−∆ + m2)I4;
H0 is an unbounded linear operator,

essentially self-adjoint on C∞
c (R3;C4),

self-adjoint on H1(R3;C4);

H0 is not positive:

σ(H0) = σess(H0) = (−∞,−m] ∪ [m,+∞).
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Perturbed Dirac operator

Let us add a potential: H := H0 + V, with V = V(x) ∈ C4×4.

For example

V = Vel + Vsc + Vam := vel(x)I4 + vsc(x)β + vam(x)

(
−iα · x

|x |
β

)
,

for real valued vel , vsc , vam, the potentials Vel ,Vsc ,Vam are respectively
an electric, Lorentz scalar, and anomalous magnetic potential.

(For example)2, the Coulomb potential:

VC(x) =
ν

|x |
I4.

(A very basic) Question
Is H = H0 + V self-adjoint (on the appropriate domain)?
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Dirac-Coulomb Self-adjointness (unfair overview)

For |ν| ∈
[
0, 1

2

)
: [Kato, 1951]. For f ∈ C∞c (R3)4, the Hardy inequality

ˆ
R3
|VC f |2 dx ≤

1
4

ˆ
R3

|f |2

|x |2
dx ≤

ˆ
R3
|∇f |2 dx

=

ˆ
R3
| − iα · ∇f |2 dx ,

implies that the Coulomb potential is a (Kato) small perturbation:
H0 + ν/|x | is self-adjoint on H1(R3;C4) and essentially self-adjoint on
C∞c (R3;C4). In fact the optimal range is |ν| ∈ [0,

√
3

2 ), [Rellich,
Jörgens, 1953], [Schmincke, 1972a]

.

For
√

3/2 < |ν| < 1 there are infinite self-adjoint extensions: among
them there is a distinguished one! [Klaus, Wüst, 1979]

ψ ∈ D(Hdist) ⇐⇒
ˆ
R3

|ψ|2

|x |
dx < +∞ ⇐⇒ ψ ∈ Ḣ

1
2 (R3;C4)

ψ ∈ D(Hdist) ⇐⇒ 〈Vψ,ψ〉L2 < +∞
⇐⇒ 〈−i∇ψ,ψ〉L2 < +∞.
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Biagio Cassano (ÚJF Řež) Hardy inequalities and the Dirac operator March 1, 2019 5 / 26



Dirac-Coulomb Self-adjointness (unfair overview)

For |ν| ∈
[
0, 1

2

)
: [Kato, 1951]. For f ∈ C∞c (R3)4, the Hardy inequality

ˆ
R3
|VC f |2 dx ≤ 1

4

ˆ
R3

|f |2

|x |2
dx ≤

ˆ
R3
|∇f |2 dx =

ˆ
R3
| − iα · ∇f |2 dx ,

implies that the Coulomb potential is a (Kato) small perturbation:
H0 + ν/|x | is self-adjoint on H1(R3;C4) and essentially self-adjoint on
C∞c (R3;C4). In fact the optimal range is |ν| ∈ [0,

√
3

2 ), [Rellich,
Jörgens, 1953], [Schmincke, 1972a].
For
√

3/2 < |ν| < 1 there are infinite self-adjoint extensions: among
them there is a distinguished one! [Klaus, Wüst, 1979]

ψ ∈ D(Hdist) ⇐⇒
ˆ
R3

|ψ|2

|x |
dx < +∞ ⇐⇒ ψ ∈ Ḣ
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Self-adjointness with matrix valued potentials

[Kato, 1951] holds for hermitian potentials V ∈ C4×4 such that

|V(x)| ≤ a
1
|x |
, for a <

1
2
.

[Arai, 1975]: for a ≥ 1/2 there exists a matrix valued potential W,
|W(x)| = a/|x | such that H0 + W is not essentially self adjoint.
[Kato, 1981] and [Arrizabalaga, Duoandikoetxea, Vega, 2013]
describe the distinguished extension for general matrix valued
potentials such that

|x ||V(x)| ≤ a, with 0 < a < 1.

Fundamental tool is the Hardy (Kato-Nenciu) inequality: for all
ψ ∈ C∞c (R3;C4)ˆ

R3

1
|x |
|ψ|2 ≤

ˆ
R3
|x ||(−iα · ∇+ mβ ± εi)ψ|2, ε ≥ 0.
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We remind that if |V(x)| ≤ C
|x | , with C > 0, if H0 + V is self-adjoint then

σess(H0 + V) = σess(H0) = (−∞,−m] ∪ [m,+∞).

In [Dolbeault, Esteban, Séré, 2000], it is proved the validity of a
min-max formula to determine the eigenvalues in the gap of the
essential spectrum of the Dirac operator perturbed with Coulomb-like
potentials V such that

V(x) := V (x)I4, lim
|x |→+∞

|V (x)| = 0, − ν

|x |
− c1 ≤ V ≤ c2,

with ν ∈ (0,1) and c1, c2 ≥ 0, c1 + c2 − 1 <
√

1− ν2.
As a consequence of their results, they proved the following
Hardy-type inequality:
ˆ
R3

|σ · ∇ϕ|2

a + 1
|x |

+

ˆ
R3

(
a− 1
|x |

)
|ϕ|2 ≥ 0, for all a > 0, ϕ ∈ C∞c (R3)2.

Later, a later direct analytical proof was given in [Dolbeault, Esteban,
Loss, Vega, 2004].
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Thanks to this inequality, in [Esteban, Loss, 2007] it is considered a
general electrostatic potential V : R3 → R such that for every
ϕ ∈ C∞c (R3,C2)

ˆ
R3

(
|σ · ∇ϕ|2

1 + c(V )− V
+ (1 + c(V ) + V ) |ϕ|2

)
dx ≥ 0,

for some constant c(V ) ∈ (−1,1), Γ := sup(V ) < 1 + c(V ), and for
V := V I4, they proved that the operator H0 + V is self-adjoint on the
appropriate domain.

In particular, they could treat potentials such that

− ν

|x |
≤ V (x) < 1 +

√
1− ν2, with ν ∈ (0,1],

obtaining the distinguished extension in the case that ν < 1, and giving
a definition of distinguished extension in the critical case ν = 1.
The inequality was then used in [Esteban, Lewin, Séré, 2017]: they
provided details on the domain of the distinguished extension and they
showed the validity of a min-max formula for the eigenvalues in the
spectral gap. (For a fair overview see [C., Pizzichillo, 2018a]).
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Theorem ([C., Pizzichillo, Vega, 2018])

Let m > 0 and a ∈ (−m,m). Let ψ be a distribution such that
ˆ
R3
|(−iα · ∇+ mβ − a)ψ|2|x |dx < +∞.

Then ψ ∈ L2(|x |−1)4 and

m2−a2

m2

ˆ
R3

|ψ|2

|x |
dx ≤

ˆ
R3
|(−iα · ∇+ mβ − a)ψ|2|x |dx . (1)

The inequality is sharp, in the sense that the constant on the left hand
side can not be improved.
. . .
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Theorem (addendum)
. . .
If a 6= 0, all the attainers are given by the elements of the
two(complex)-parameter family {ψa

C}C∈C2 , with

ψa
C :=



e−
√

m2−a2|x|

|x |1−
a
m
·

(
C

i
√

m−a
m+a σ ·

x
|x | · C

)
if a > 0,

e−
√

m2−a2|x|

|x |1+
a
m
·

(
−i
√

m+a
m−a σ ·

x
|x | · C

C

)
if a < 0,

∈ L2(|x |−1)4.

In the case that a = 0, the inequality is attained by the functions ψa
C

above, in the sense that

lim
ε→0

ˆ
{|x |>ε}

[
|x |
∣∣∣(−iα · ∇+ mβ)ψ0

C

∣∣∣2 − |ψ0
C |

2

|x |

]
dx = 0.
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Set ν :=
√

m2−a2

m2 ∈ (0,1), then a = ±m
√

1− ν2 ∈ (−m,0) ∪ (0,m).

With explicit computation:(
H0 ∓ ν

|x| − a
)
ψa

C = 0.

The attainers ψa
C of (1) are eigenvectors for the Coulomb operator!

(What about the vice-versa? Be patient!)

Biagio Cassano (ÚJF Řež) Hardy inequalities and the Dirac operator March 1, 2019 11 / 26



Set ν :=
√

m2−a2

m2 ∈ (0,1), then a = ±m
√

1− ν2 ∈ (−m,0) ∪ (0,m).
With explicit computation:(

H0 ∓ ν
|x| − a

)
ψa

C = 0.

The attainers ψa
C of (1) are eigenvectors for the Coulomb operator!

(What about the vice-versa? Be patient!)
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The two inequalities in the proof

The proof descends from the explicit computation of the following
square:

0 ≤
ˆ
R3
|x |
∣∣∣∣(−iα · ∇+ mβ − a)ψ − iα · x

|x |

(
1− a

m
β
)

(1 + 2SL)
ψ

|x |

∣∣∣∣2 dx

=

ˆ
R3
|x ||(−iα · ∇+ mβ − a)ψ|2 dx − m2 − a2

m2

ˆ
R3

|(1 + 2SL)ψ|2

|x |
dx ,

where the spin angular momentum operator S and the orbital angular
momentum L are defined as

S =
1
2

(
σ 0
0 σ

)
and L := −ix ∧∇.

Moreover, since |1 + 2SL| ≥ 1,
ˆ
R3

|ψ|2

|x |
dx ≤

ˆ
R3

|(1 + 2SL)ψ|2

|x |
dx .

Biagio Cassano (ÚJF Řež) Hardy inequalities and the Dirac operator March 1, 2019 12 / 26



Thanks to the previous Theorem, for a ∈ (−m,m)

(H0−a)−1 : L2(|x |)4 → L2(|x |−1)4, u(H0−a)−1v : L2(R3)4 → L2(R3)4,

are well defined and bounded, with

u(x) := |x |1/2V(x) and v(x) := |x |−1/2I4.

Theorem (Birman-Schwinger principle)

Let V be a Hermitian matrix-valued potential such that
supx |x ||V (x)| < 1, and let u,v be defined as above. Let HD be the
distinguished realization and let a ∈ (−m,m). Then

a ∈ σd (HD) ⇐⇒ −1 ∈ σd (u(H0 − a)−1v).

Moreover, the multiplicity of a as an eigenvalue of HD coincides with
the multiplicity of −1 as an eigenvalue of u(H0 − a)−1v.
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For ν ∈ (0,1), the distinguished realization Hν := H0 − ν
|x | verifies:

σ(Hν) = σd (Hν) ∪ σess(Hν) = {a1,a2, . . .} ∪ (−∞,−m] ∪ [m,+∞), (2)

and

m
√

1− ν2 = a1 = a2 <a3 ≤ · · · ≤ an ≤ · · · ≤ m, lim
n→+∞

an = m.

In [Dolbeault, Esteban, Séré, 2000], they considered an electric
potential V := V I4, being V = V (|x |) a radially symmetric function
satisfying

lim
|x |→+∞

|V (x)| = 0, − ν

|x |
− c1 ≤ V ≤ c2

with ν ∈ (0,1) and c1, c2 ≥ 0, c1 + c2 − 1 <
√

1− ν2. By means of
min-max formulas, they proved that the distinguished self-adjoint
realization HD verifies (??), with

m
√

1− ν2 ≤ a1 ≤ a2 ≤a3 ≤ · · · ≤ an ≤ · · · ≤ m, lim
n→+∞

an = m.

In [Esteban, Lewin, Séré, 2017] they could generalise this result,
removing the hypothesis of radial symmetry on V and for ν ∈ (0, 1].
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Let a ∈ (−m,m) be an eigenvalue of H0 + V with multiplicity µ(a) and
let ψ be an associated eigenfunction, that is (H0 − a)ψ = −Vψ.

ˆ
R3
|x ||(H0 − a)ψ|2 dx =

ˆ
R3
|x ||Vψ|2 dx ≤ ν2

ˆ
R3

|ψ|2

|x |
dx < +∞.

Thanks to the Hardy-type inequality we have proved:

ν2
ˆ
R3

|ψ|2

|x |
≥
ˆ
R3
|x ||(H0 − a)ψ|2 dx ≥ m2−a2

m2

ˆ
R3

|ψ|2

|x |
dx

=⇒ |a| ≥ m
√

1− ν2 > 0.

If a = ±m
√

1− ν2, ψ is an attainer and so ψ = ψa
C , for C ∈ C2.

Then 0 =
(

H0 ∓ ν
|x | − a

)
ψa

C = (H0 + V− a)ψa
C =⇒

Vψa
C = ∓ ν

|x|ψ
a
C , µ(a) ≤ 2.
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Biagio Cassano (ÚJF Řež) Hardy inequalities and the Dirac operator March 1, 2019 15 / 26



Let a ∈ (−m,m) be an eigenvalue of H0 + V with multiplicity µ(a) and
let ψ be an associated eigenfunction, that is (H0 − a)ψ = −Vψ.

ˆ
R3
|x ||(H0 − a)ψ|2 dx =

ˆ
R3
|x ||Vψ|2 dx ≤ ν2

ˆ
R3

|ψ|2

|x |
dx < +∞.

Thanks to the Hardy-type inequality we have proved:

ν2
ˆ
R3

|ψ|2

|x |
≥
ˆ
R3
|x ||(H0 − a)ψ|2 dx ≥ m2−a2

m2

ˆ
R3

|ψ|2

|x |
dx

=⇒ |a| ≥ m
√

1− ν2 > 0.

If a = ±m
√

1− ν2, ψ is an attainer and so ψ = ψa
C , for C ∈ C2.

Then 0 =
(

H0 ∓ ν
|x | − a

)
ψa

C = (H0 + V− a)ψa
C

=⇒
Vψa

C = ∓ ν
|x|ψ

a
C , µ(a) ≤ 2.
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Theorem ([C., Pizzichillo, Vega, 2018])
Let V be a Hermitian matrix valued potential such that
supx |x ||V(x)| < 1, and let HD be the distinguished self-adjoint
realization.
Let a ∈ σd (HD), let µ(a) be its multiplicity and let ψ ∈ D(HD) be an
associated eigenfunction. Then:
|a| ≥ m

√
1− ν2;

a = ±m
√

1− ν2 if and only if ψ = ψa
C for some C ∈ C2; in this

case, Vψa
C = ∓ ν

|x |ψ
a
C and µ(a) ≤ 2;

if moreover V is an electric potential, that is V = V (x)I4, then
V (x) = ∓ ν

|x | .
. . .

Biagio Cassano (ÚJF Řež) Hardy inequalities and the Dirac operator March 1, 2019 16 / 26



Theorem (addendum)
. . .

in the case that a = ±m
√

1− ν2, then µ(a) = 2 if and only if

V(x) =



− ν
|x |I4 +

(
N2σ · x

|x |W
+(x)σ · x

|x | iNσ · x
|x |W

+(x)

−iNW+(x)σ · x
|x | W+(x)

)
a > 0,

ν
|x |I4 +

(
W−(x) iNW−(x)σ · x

|x |
−iNσ · x

|x |W
−(x) N2σ · x

|x |W
−(x)σ · x

|x |

)
a < 0,

for x 6= 0,

where N =

√
1−
√

1−ν2

1+
√

1−ν2
, and W+(x) and W−(x) are 2× 2

Hermitian matrices whose eigenvalues are respectively
{λ+j (x)}j=1,2 and {λ−j (x)}j=1,2, and they verify

− ν
|x |(1 +

√
1− ν2) ≤ λ−j (x) ≤ 0 ≤ λ+j (x) ≤ ν

|x |(1 +
√

1− ν2).
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Question
Can we extend these results to the general case when
supx |x ||V(x)| ≥ 1?

An answer
It is not clear what the distinguished extension is in this general case.

When supx |x ||V(x)| = 1 it is no longer true that
D(H0 + V) ⊂ D(r−1/2)4.
For example, when V(x) = VC(x) = 1

|x |

the ground state ψ0
C 6∈ D(r−1/2)4.
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Distinguished extension via quadratic forms

We select a self-adjoint extension T by asking that D(T ) is included in
the domain of an appropriate quadratic form.

Assume that v := supx∈R3 |x ||V(x)| ≤ 1, and let

q(ψ) :=

ˆ
R3

[
|x ||−iα · ∇ψ|2 − |x ||Vψ|2

]
dx , for all ψ ∈ C∞c (R3;C4).

Thanks to the Kato-Nenciu inequality

q(ψ) ≥
ˆ
R3

[
|x ||−iα · ∇ψ|2 − v2 |ψ|2

|x |

]
dx ≥ (1− v2)

ˆ
R3

|ψ|2

|x |
dx , (3)

this form is symmetric and non-negative, and hence closable: we
denote its closure q (with abuse of notation) and its maximal domain Q.
If v < 1, then for all ψ ∈ Q,

´ |ψ(x)|2
|x | dx < +∞, i.e. D(T ) ⊂ Q implies

that T is the distinguished extension ([Kato, 1981],[Arrizabalaga,
Duoandikoetxea, Vega, 2013]).
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Lemma ([C., Pizzichillo, 2018b])
For all ψ ∈ C∞c (R3)4 and R > 0:

ˆ
R3
|x ||−iα · ∇ψ(x)|2 dx ≥

ˆ
R3

|ψ(x)|2

|x |
dx +

ˆ
R3

∣∣∣ψ(x)− R
|x |ψ

(
R x
|x |
)∣∣∣2

4|x | log2(|x |/R)
dx .

Moreover, the inequality is sharp.

Consequently, for all ψ ∈ Q:
ˆ
{|x |<1}

|ψ(x)|2

|x | log2 |x |
dx < +∞.
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In [C., Pizzichillo, 2018b] we describe all the self-adjoint realizations
of the differential operator H0 + V, where

V(x) :=
1
|x |

(
νI4 + µβ + λ

(
−iα · x

|x |
β

))
, for x 6= 0,

with ν, λ, µ ∈ R.

We characterize all the self-adjoint extensions through the behaviour
of the functions in the domain in the origin.
We construct a boundary triple for Hmax
(remind that D(Hmax ) = {ψ ∈ L2(R3)4 : Hψ ∈ L2(R3)4}).
Let

d :=
∑

k∈\{0}
(k+λ)2+µ2−ν2<1/4

2|k | < +∞,

then (Cd , Γ+, Γ−) is a boundary triple for Hmax , for appropriate
Γ+, Γ− : D(Hmax )→ Cd .
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Let us consider VC(x) = ν
|x | .

If 0 < ν < 1 there exists γ > 0 such that for every ψ ∈ D(H0 + V)

as |x | → 0 : ψ(x)∼A|x |γ + B|x |−γ

|x |
∼

{
B|x |−γ−1, if B 6= 0,
A|x |γ−1, if B = 0,

for some A,B ∈ C4.
If ν = 1, for every ψ ∈ D(H0 + V) then

as |x | → 0 : ψ(x)∼A + B log|x |
|x |

∼

{B log|x |
|x | , if B 6= 0,

A
|x | , if B = 0,

for some A,B ∈ C4.
There exists only one extension such that B = 0 for every function ψ:
this is the distinguished one.

Biagio Cassano (ÚJF Řež) Hardy inequalities and the Dirac operator March 1, 2019 22 / 26



If ν > 1 there exists γ > 0 such that for every ψ ∈ D(H0 + V)

as |x | → 0 : ψ(x)∼A|x |iγ + B|x |−iγ

|x |

for some A,B ∈ C4.

No one appears to be distinguished in some sense.
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Let us consider Vam(x) = λ
|x |(iα ·

x
|x |β).

If 0 < λ < 1 there exists γ > 0 such that for every ψ ∈ D(H0 + V)

as |x | → 0 : ψ(x)∼A|x |γ + B|x |−γ

|x |
∼

{
B|x |−γ−1, if B 6= 0,
A|x |γ−1, if B = 0,

for some A,B ∈ C4. The distinguished extension is the unique one
such that B = 0 for all ψs.
If λ = 1, for every ψ ∈ D(H0 + V) then

as |x | → 0 : ψ(x)∼ A
|x |

for some A ∈ C4. No one appears to be distinguished.
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Theorem ([C., Pizzichillo, 2018b])
Let

V(x) :=
1
|x |

(
νI4 + µβ + λ

(
−iα · x

|x |
β

))
, for x 6= 0,

and assume that

sup
x∈R3
|x ||V(x)| ≤ 1, V(x) 6= ±

iα · x
|x |β

|x |
. (4)

Then, there exists only one self-adjoint extension H̊min ⊂ T ⊂ Hmax
such that D(T ) ⊂ Q.
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This is a positive result: we give the definition of distinguished
extension by means of quadratic forms in a bigger class than in
[Esteban, Loss, 2008], [Esteban, Lewin, Séré, 2017].

This is a negative result: the condition D(T ) ⊂ Q does not appear to
select an extension in the general case that supx∈R3 |x ||V(x)| ≤ 1, since
it does not in the case

V(x) = ±
iα · x

|x |β

|x |
.
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Thank you for your attention!

[C.,Pizzichillo, 2018a] Biagio Cassano, and Fabio Pizzichillo. “Self-adjoint extensions
for the Dirac operator with Coulomb-type spherically symmetric potentials.” Letters in
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[C.,Pizzichillo, 2018b] Biagio Cassano, and Fabio Pizzichillo. “Boundary triples for
the Dirac operator with Coulomb-type spherically symmetric perturbations.” To appear
in Journal of Mathematical Physics, arXiv preprint arXiv:1810.01659 (2018).
[C., Pizzichillo, Vega, 2018] Biagio Cassano, Fabio Pizzichillo, and Luis Vega. “A
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The Dirac-Coulomb operator

The Dirac-Coulomb operator describes spin–1
2 particles in the external

electrostatic field of an atomic nucleus of atomic number Z .
In fact

H0 + VC(x) = −ic~α · ∇+ βmc2 +
cν
|x |

I4, ν =
e2Z
~c

= Zαf ,

where
c is the speed of light,
~ is the Plank’s constant,
e is the charge of the electron,
Z is the atomic number,
αf = (137.035 . . . )−1 is the fine-structure constant.

We set ~ = c = e = 1.
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Boundary Triples for Hmax

We write

ψ ∈ D(Hmax ) = {ψ ∈ L2(R3)4 : Hψ ∈ L2(R3)4},

ψ(x) =
∑

j,mj ,kj

1
|x |

(
f+mj ,kj

(|x |)Φ+
mj ,kj

(
x
|x |

)
+ f−mj ,kj

(|x |)Φ−mj ,kj

(
x
|x |

))
.

We have

Hmax ∼=
∞⊕

j= 1
2 ,

3
2 ,...

j⊕
mj=−j

⊕
kj=±(j+1/2)

h∗mj ,kj
,

h∗mj ,kj
(f+, f−) :=

(
m + ν+µ

r −∂r +
kj+λ

r
∂r +

kj+λ
r −m + ν−µ

r

)(
f+

f−

)
.
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Let δkj := (kj + λ)2 + µ2 − ν2, and γkj :=
√
|δkj |.

If δkj ≥
1
4 then h∗mj ,kj

is symmetric.
If 0 < δkj < 1/4 then

lim
r→0

∣∣∣∣∣
(

f+mj ,kj
(r)

f−mj ,kj
(r)

)
− Dkj

(
A+rγkj

A−r−γkj

)∣∣∣∣∣r−1/2 = 0,

being Dkj ∈ R2×2 the invertible matrix

Dkj :=


1

2γ(λ+kj−γkj
)

(
λ+ kj − γkj ν − µ
−(ν + µ) −(λ+ kj − γkj )

)
if λ+ kj − γkj 6= 0,

1
−4γ2

kj

(
µ− ν 2γkj

2γkj −(ν + µ)

)
if λ+ kj − γkj = 0;

we set (
Γ+

mj ,kj
(fmj ,kj )

Γ−mj ,kj
(fmj ,kj )

)
:= Dkj

(
A+

A−

)
.
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If δkj = 0 then

lim
r→0

∣∣∣∣∣
(

f+mj ,kj
(r)

f−mj ,kj
(r)

)
− (Mkj log r + I2)

(
A+

A−

)∣∣∣∣∣r−1/2 = 0,

being Mkj ∈ R2×2, M2
kj

= 0 defined as follows

Mkj :=

(
−(kj + λ) −ν + µ
ν + µ kj + λ

)
;

we set (
Γ+

mj ,kj
(fmj ,kj )

Γ−mj ,kj
(fmj ,kj )

)
:=

(
A+

A−

)
.
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If δkj < 0 then

lim
r→0

∣∣∣∣∣
(

f+mj ,kj
(r)

f−mj ,kj
(r)

)
− Ekj

(
A+r iγkj

A−r−iγkj

)∣∣∣∣∣r−1/2 = 0,

being Ekj ∈ C2×2 the invertible matrix

Ekj :=
1

2iγkj (λ+ k − iγkj )

(
λ+ k − iγkj ν − µ
−(ν + µ) −(λ+ k − iγkj )

)
;

we set (
Γ+

mj ,kj
(fmj ,kj )

Γ−mj ,kj
(fmj ,kj )

)
:= Ekj

(
A+

A−

)
.
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For j = 1
2 ,

3
2 , . . . ,∞; mj = −j , . . . , j ; kj = ±(j + 1/2);

let I := {(j ,mj , kj) : (kj + λ)2 + µ2 − ν2 < 1/4} and d := #I.

Set Γ+, Γ− : D(Hmax )→ Cd

Γ±(ψ) =
(

Γ±mj ,kj
(fmj ,kj )

)
(j,mj ,kj )∈I

∈ Cd .

Theorem ([C., Pizzichillo, 2018b])
(Cd , Γ+, Γ−) is a boundary triple for Hmax .
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