Self-adjointness and spectral properties for the Dirac operator with Coulomb-type perturbations

Biagio Cassano

Joint work with Fabio Pizzichillo (CEREMADE) and Luis Vega (BCAM)

March 1, 2019

Biagio Cassano (ÚJF Řež)

Hardy inequalities and the Dirac operator

The free Dirac operator in \mathbb{R}^3 is defined by

 $H_0\psi := (-i\alpha \cdot \nabla + m\beta)\psi$

The free Dirac operator in \mathbb{R}^3 is defined by

$$H_0\psi := (-i\alpha \cdot \nabla + m\beta)\psi = \bigg(-i\sum_{j=1}^3 \alpha_j\partial_j + m\beta\bigg)\psi,$$

where $m \in \mathbb{R}$ and $\alpha_j, \beta \in \mathbb{C}^{4 \times 4}$, $\psi : \mathbb{R}^3 \to \mathbb{C}^4$

The free Dirac operator in \mathbb{R}^3 is defined by

$$H_0\psi := (-i\alpha \cdot \nabla + m\beta)\psi = \bigg(-i\sum_{j=1}^3 \alpha_j\partial_j + m\beta\bigg)\psi,$$

where $m\in\mathbb{R}$ and $lpha_j,eta\in\mathbb{C}^{4 imes 4}$, $\psi:\mathbb{R}^3 o\mathbb{C}^4$,

$$\begin{split} \beta &= \begin{pmatrix} \mathbb{I}_2 & \mathbf{0}_2 \\ \mathbf{0}_2 & -\mathbb{I}_2 \end{pmatrix}, \quad \mathbb{I}_2 := \begin{pmatrix} \mathbf{1} & \mathbf{0} \\ \mathbf{0} & \mathbf{1} \end{pmatrix}, \\ \alpha &= (\alpha_1, \alpha_2, \alpha_3), \quad \alpha_j = \begin{pmatrix} \mathbf{0}_2 & \sigma_j \\ \sigma_j & \mathbf{0}_2 \end{pmatrix} \quad (j = \mathbf{1}, \mathbf{2}, \mathbf{3}), \end{split}$$

and σ_k are the *Pauli matrices*

$$\sigma_1 = \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right), \quad \sigma_2 = \left(\begin{array}{cc} 0 & -i \\ i & 0 \end{array}\right), \quad \sigma_3 = \left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array}\right).$$

$$H_0 := -i\alpha \cdot \nabla + m\beta :$$

$$H_0 := -i\alpha \cdot \nabla + m\beta :$$

•
$$(H_0)^2 = (-\Delta + m^2)\mathbb{I}_4;$$

$$H_0 := -i\alpha \cdot \nabla + m\beta :$$

- $(H_0)^2 = (-\Delta + m^2)\mathbb{I}_4;$
- *H*₀ is an unbounded linear operator,

$$H_0 := -i\alpha \cdot \nabla + m\beta$$
:

- $(H_0)^2 = (-\Delta + m^2)\mathbb{I}_4;$
- H_0 is an unbounded linear operator,
 - essentially self-adjoint on $C^{\infty}_{c}(\mathbb{R}^{3}; \mathbb{C}^{4})$,

$$H_0 := -i\alpha \cdot \nabla + m\beta$$
:

- $(H_0)^2 = (-\Delta + m^2)\mathbb{I}_4;$
- *H*₀ is an unbounded linear operator,
 - essentially self-adjoint on $C_c^{\infty}(\mathbb{R}^3; \mathbb{C}^4)$,
 - self-adjoint on $H^1(\mathbb{R}^3; \mathbb{C}^4)$;

$$H_0 := -i\alpha \cdot \nabla + m\beta$$
:

- $(H_0)^2 = (-\Delta + m^2)\mathbb{I}_4;$
- *H*₀ is an unbounded linear operator,
 - essentially self-adjoint on C[∞]_c(ℝ³; ℂ⁴),
 - self-adjoint on $H^1(\mathbb{R}^3; \mathbb{C}^4)$;
- *H*₀ is not positive:

$$\sigma(H_0) = \sigma_{ess}(H_0) = (-\infty, -m] \cup [m, +\infty).$$

Let us add a potential: $H := H_0 + \mathbb{V}$, with $\mathbb{V} = \mathbb{V}(x) \in \mathbb{C}^{4 \times 4}$.

Let us add a potential: $H := H_0 + \mathbb{V}$, with $\mathbb{V} = \mathbb{V}(x) \in \mathbb{C}^{4 \times 4}$. For example

$$\mathbb{V} = \mathbb{V}_{el} + \mathbb{V}_{sc} + \mathbb{V}_{am} := \mathbf{v}_{el}(\mathbf{x})\mathbb{I}_4 + \mathbf{v}_{sc}(\mathbf{x})\beta + \mathbf{v}_{am}(\mathbf{x})\left(-i\alpha \cdot \frac{\mathbf{x}}{|\mathbf{x}|}\beta\right),$$

for real valued v_{el} , v_{sc} , v_{am} , the potentials \mathbb{V}_{el} , \mathbb{V}_{sc} , \mathbb{V}_{am} are respectively an *electric*, *Lorentz scalar*, and *anomalous magnetic* potential.

Let us add a potential: $H := H_0 + \mathbb{V}$, with $\mathbb{V} = \mathbb{V}(x) \in \mathbb{C}^{4 \times 4}$. For example

$$\mathbb{V} = \mathbb{V}_{el} + \mathbb{V}_{sc} + \mathbb{V}_{am} := \mathbf{v}_{el}(\mathbf{x})\mathbb{I}_4 + \mathbf{v}_{sc}(\mathbf{x})\beta + \mathbf{v}_{am}(\mathbf{x})\left(-i\alpha \cdot \frac{\mathbf{x}}{|\mathbf{x}|}\beta\right),$$

for real valued v_{el} , v_{sc} , v_{am} , the potentials \mathbb{V}_{el} , \mathbb{V}_{sc} , \mathbb{V}_{am} are respectively an *electric*, *Lorentz scalar*, and *anomalous magnetic* potential.

 $(For example)^2$, the *Coulomb potential*:

$$\mathbb{V}_C(\mathbf{x}) = rac{
u}{|\mathbf{x}|}\mathbb{I}_4.$$

Let us add a potential: $H := H_0 + \mathbb{V}$, with $\mathbb{V} = \mathbb{V}(x) \in \mathbb{C}^{4 \times 4}$. For example

$$\mathbb{V} = \mathbb{V}_{el} + \mathbb{V}_{sc} + \mathbb{V}_{am} := \mathbf{v}_{el}(\mathbf{x})\mathbb{I}_4 + \mathbf{v}_{sc}(\mathbf{x})\beta + \mathbf{v}_{am}(\mathbf{x})\left(-i\alpha \cdot \frac{\mathbf{x}}{|\mathbf{x}|}\beta\right),$$

for real valued v_{el} , v_{sc} , v_{am} , the potentials \mathbb{V}_{el} , \mathbb{V}_{sc} , \mathbb{V}_{am} are respectively an *electric*, *Lorentz scalar*, and *anomalous magnetic* potential.

 $(For example)^2$, the *Coulomb potential*:

$$\mathbb{V}_C(x) = \frac{\nu}{|x|}\mathbb{I}_4.$$

(A very basic) Question

Is $H = H_0 + \mathbb{V}$ self-adjoint (on the appropriate domain)?

Biagio Cassano (ÚJF Řež)

Hardy inequalities and the Dirac operator

For $|\nu| \in [0, \frac{1}{2})$: [Kato, 1951]. For $f \in C_c^{\infty}(\mathbb{R}^3)^4$, the Hardy inequality

$$\frac{1}{4}\int_{\mathbb{R}^3}\frac{|f|^2}{|x|^2}\,dx\leq\int_{\mathbb{R}^3}|\nabla f|^2\,dx$$

.

For $|\nu| \in [0, \frac{1}{2})$: **[Kato, 1951]**. For $f \in C_c^{\infty}(\mathbb{R}^3)^4$, the Hardy inequality $\frac{1}{4} \int_{\mathbb{R}^3} \frac{|f|^2}{|x|^2} dx \leq \int_{\mathbb{R}^3} |\nabla f|^2 dx = \int_{\mathbb{R}^3} |-i\alpha \cdot \nabla f|^2 dx,$

.

For $|\nu| \in [0, \frac{1}{2})$: [Kato, 1951]. For $f \in C_c^{\infty}(\mathbb{R}^3)^4$, the Hardy inequality $\int_{\mathbb{R}^3} |\nabla_C f|^2 dx \leq \frac{1}{4} \int_{\mathbb{R}^3} \frac{|f|^2}{|x|^2} dx \leq \int_{\mathbb{R}^3} |\nabla f|^2 dx = \int_{\mathbb{R}^3} |-i\alpha \cdot \nabla f|^2 dx,$

.

For $|\nu| \in [0, \frac{1}{2})$: [Kato, 1951]. For $f \in C_c^{\infty}(\mathbb{R}^3)^4$, the Hardy inequality

$$\int_{\mathbb{R}^3} |\mathbb{V}_C f|^2 \, dx \leq \frac{1}{4} \int_{\mathbb{R}^3} \frac{|f|^2}{|x|^2} \, dx \leq \int_{\mathbb{R}^3} |\nabla f|^2 \, dx = \int_{\mathbb{R}^3} |-i\alpha \cdot \nabla f|^2 \, dx,$$

implies that the Coulomb potential is a (Kato) small perturbation: $H_0 + \nu/|x|$ is self-adjoint on $H^1(\mathbb{R}^3; \mathbb{C}^4)$ and essentially self-adjoint on $C_c^{\infty}(\mathbb{R}^3; \mathbb{C}^4)$.

For $|\nu| \in [0, \frac{1}{2})$: [Kato, 1951]. For $f \in C_c^{\infty}(\mathbb{R}^3)^4$, the Hardy inequality

$$\int_{\mathbb{R}^3} |\mathbb{V}_C f|^2 \, dx \leq \frac{1}{4} \int_{\mathbb{R}^3} \frac{|f|^2}{|x|^2} \, dx \leq \int_{\mathbb{R}^3} |\nabla f|^2 \, dx = \int_{\mathbb{R}^3} |-i\alpha \cdot \nabla f|^2 \, dx,$$

implies that the Coulomb potential is a (Kato) small perturbation: $H_0 + \nu/|x|$ is self-adjoint on $H^1(\mathbb{R}^3; \mathbb{C}^4)$ and essentially self-adjoint on $C_c^{\infty}(\mathbb{R}^3; \mathbb{C}^4)$. In fact the optimal range is $|\nu| \in [0, \frac{\sqrt{3}}{2})$, [Rellich, Jörgens, 1953], [Schmincke, 1972a].

For $|\nu| \in [0, \frac{1}{2})$: [Kato, 1951]. For $f \in C_c^{\infty}(\mathbb{R}^3)^4$, the Hardy inequality

$$\int_{\mathbb{R}^3} |\mathbb{V}_C f|^2 \, dx \leq \frac{1}{4} \int_{\mathbb{R}^3} \frac{|f|^2}{|x|^2} \, dx \leq \int_{\mathbb{R}^3} |\nabla f|^2 \, dx = \int_{\mathbb{R}^3} |-i\alpha \cdot \nabla f|^2 \, dx,$$

implies that the Coulomb potential is a (Kato) small perturbation: $H_0 + \nu/|x|$ is self-adjoint on $H^1(\mathbb{R}^3; \mathbb{C}^4)$ and essentially self-adjoint on $C_c^{\infty}(\mathbb{R}^3; \mathbb{C}^4)$. In fact the optimal range is $|\nu| \in [0, \frac{\sqrt{3}}{2})$, [Rellich, Jörgens, 1953], [Schmincke, 1972a]. For $\sqrt{3}/2 < |\nu| < 1$ there are infinite self-adjoint extensions: among them there is a *distinguished* one! [Klaus, Wüst, 1979]

$$\psi \in \mathcal{D}(\mathcal{H}_{\mathsf{dist}}) \iff \int_{\mathbb{R}^3} \frac{|\psi|^2}{|x|} \, dx < +\infty \iff \psi \in \dot{\mathcal{H}}^{\frac{1}{2}}(\mathbb{R}^3; \mathbb{C}^4)$$

For $|\nu| \in [0, \frac{1}{2})$: [Kato, 1951]. For $f \in C_c^{\infty}(\mathbb{R}^3)^4$, the Hardy inequality

$$\int_{\mathbb{R}^3} |\mathbb{V}_C f|^2 \, dx \leq \frac{1}{4} \int_{\mathbb{R}^3} \frac{|f|^2}{|x|^2} \, dx \leq \int_{\mathbb{R}^3} |\nabla f|^2 \, dx = \int_{\mathbb{R}^3} |-i\alpha \cdot \nabla f|^2 \, dx,$$

implies that the Coulomb potential is a (Kato) small perturbation: $H_0 + \nu/|x|$ is self-adjoint on $H^1(\mathbb{R}^3; \mathbb{C}^4)$ and essentially self-adjoint on $C_c^{\infty}(\mathbb{R}^3; \mathbb{C}^4)$. In fact the optimal range is $|\nu| \in [0, \frac{\sqrt{3}}{2})$, [Rellich, Jörgens, 1953], [Schmincke, 1972a]. For $\sqrt{3}/2 < |\nu| < 1$ there are infinite self-adjoint extensions: among them there is a *distinguished* one! [Klaus, Wüst, 1979]

$$\begin{split} \psi \in \mathcal{D}(\mathcal{H}_{\mathsf{dist}}) & \longleftrightarrow \int_{\mathbb{R}^3} \frac{|\psi|^2}{|x|} \, dx < +\infty \iff \psi \in \dot{\mathcal{H}}^{\frac{1}{2}}(\mathbb{R}^3; \mathbb{C}^4) \\ \psi \in \mathcal{D}(\mathcal{H}_{\mathsf{dist}}) \iff \langle \mathbb{V}\psi, \psi \rangle_{L^2} < +\infty \end{split}$$

$$\iff \langle -i\nabla\psi,\psi\rangle_{L^2}<+\infty.$$

[Kato, 1951] holds for hermitian potentials $\mathbb{V} \in \mathbb{C}^{4 \times 4}$ such that

$$|\mathbb{V}(x)| \leq a \frac{1}{|x|}, \quad \text{ for } a < \frac{1}{2}.$$

[Kato, 1951] holds for hermitian potentials $\mathbb{V} \in \mathbb{C}^{4 \times 4}$ such that

$$|\mathbb{V}(x)| \leq a rac{1}{|x|}, \quad ext{ for } a < rac{1}{2}.$$

[Arai, 1975]: for $a \ge 1/2$ there exists a matrix valued potential \mathbb{W} , $|\mathbb{W}(x)| = a/|x|$ such that $H_0 + \mathbb{W}$ is not essentially self adjoint.

[Kato, 1951] holds for hermitian potentials $\mathbb{V} \in \mathbb{C}^{4 \times 4}$ such that

$$|\mathbb{V}(x)| \leq a rac{1}{|x|}, \quad ext{ for } a < rac{1}{2}.$$

[Arai, 1975]: for $a \ge 1/2$ there exists a matrix valued potential \mathbb{W} , $|\mathbb{W}(x)| = a/|x|$ such that $H_0 + \mathbb{W}$ is not essentially self adjoint. **[Kato, 1981]** and **[Arrizabalaga, Duoandikoetxea, Vega, 2013]** describe the distinguished extension for general matrix valued potentials such that

$$|x||\mathbb{V}(x)| \leq a$$
, with $0 < a < 1$.

[Kato, 1951] holds for hermitian potentials $\mathbb{V} \in \mathbb{C}^{4 \times 4}$ such that

$$|\mathbb{V}(x)| \leq a rac{1}{|x|}, \quad ext{ for } a < rac{1}{2}.$$

[Arai, 1975]: for $a \ge 1/2$ there exists a matrix valued potential \mathbb{W} , $|\mathbb{W}(x)| = a/|x|$ such that $H_0 + \mathbb{W}$ is not essentially self adjoint. **[Kato, 1981]** and **[Arrizabalaga, Duoandikoetxea, Vega, 2013]** describe the distinguished extension for general matrix valued potentials such that

 $|x||\mathbb{V}(x)| \leq a$, with 0 < a < 1.

Fundamental tool is the Hardy (Kato-Nenciu) inequality: for all $\psi \in C_c^{\infty}(\mathbb{R}^3; \mathbb{C}^4)$

$$\int_{\mathbb{R}^3} \frac{1}{|x|} |\psi|^2 \leq \int_{\mathbb{R}^3} |x|| (-i\alpha \cdot \nabla + m\beta \pm \epsilon i) \psi|^2, \quad \epsilon \geq 0.$$

We remind that if $|\mathbb{V}(x)| \leq \frac{C}{|x|}$, with C > 0, if $H_0 + \mathbb{V}$ is self-adjoint then

$$\sigma_{ess}(H_0 + \mathbb{V}) = \sigma_{ess}(H_0) = (-\infty, -m] \cup [m, +\infty).$$

We remind that if $|\mathbb{V}(x)| \leq \frac{C}{|x|}$, with C > 0, if $H_0 + \mathbb{V}$ is self-adjoint then

$$\sigma_{ess}(H_0 + \mathbb{V}) = \sigma_{ess}(H_0) = (-\infty, -m] \cup [m, +\infty).$$

In **[Dolbeault, Esteban, Séré, 2000]**, it is proved the validity of a min-max formula to determine the eigenvalues in the gap of the essential spectrum of the Dirac operator perturbed with Coulomb-like potentials \mathbb{V} such that

$$\mathbb{V}(x):=V(x)\mathbb{I}_4,\quad \lim_{|x| o+\infty}|V(x)|=0,\quad -rac{
u}{|x|}-c_1\leq V\leq c_2,$$

with $\nu \in (0, 1)$ and $c_1, c_2 \ge 0$, $c_1 + c_2 - 1 < \sqrt{1 - \nu^2}$. As a consequence of their results, they proved the following Hardy-type inequality:

$$\int_{\mathbb{R}^3} \frac{|\sigma \cdot \nabla \varphi|^2}{a + \frac{1}{|x|}} + \int_{\mathbb{R}^3} \left(a - \frac{1}{|x|}\right) |\varphi|^2 \ge 0, \quad \text{ for all } a > 0, \varphi \in C^\infty_c(\mathbb{R}^3)^2.$$

We remind that if $|\mathbb{V}(x)| \leq \frac{C}{|x|}$, with C > 0, if $H_0 + \mathbb{V}$ is self-adjoint then

$$\sigma_{ess}(H_0 + \mathbb{V}) = \sigma_{ess}(H_0) = (-\infty, -m] \cup [m, +\infty).$$

In **[Dolbeault, Esteban, Séré, 2000]**, it is proved the validity of a min-max formula to determine the eigenvalues in the gap of the essential spectrum of the Dirac operator perturbed with Coulomb-like potentials \mathbb{V} such that

$$\mathbb{V}(x):=V(x)\mathbb{I}_4,\quad \lim_{|x| o+\infty}|V(x)|=0,\quad -rac{
u}{|x|}-c_1\leq V\leq c_2,$$

with $\nu \in (0, 1)$ and $c_1, c_2 \ge 0$, $c_1 + c_2 - 1 < \sqrt{1 - \nu^2}$. As a consequence of their results, they proved the following Hardy-type inequality:

$$\int_{\mathbb{R}^3} \frac{|\sigma \cdot \nabla \varphi|^2}{a + \frac{1}{|x|}} + \int_{\mathbb{R}^3} \left(a - \frac{1}{|x|}\right) |\varphi|^2 \ge 0, \quad \text{ for all } a > 0, \varphi \in C^\infty_c(\mathbb{R}^3)^2.$$

Later, a later direct analytical proof was given in **[Dolbeault, Esteban, Loss, Vega, 2004]**.

Biagio Cassano (ÚJF Řež)

$$\int_{\mathbb{R}^3} \left(\frac{|\sigma \cdot \nabla \varphi|^2}{1 + c(V) - V} + (1 + c(V) + V) |\varphi|^2 \right) dx \ge 0,$$

for some constant $c(V) \in (-1, 1)$, $\Gamma := \sup(V) < 1 + c(V)$, and for $\mathbb{V} := V\mathbb{I}_4$, they proved that the operator $H_0 + \mathbb{V}$ is self-adjoint on the appropriate domain.

$$\int_{\mathbb{R}^3} \left(\frac{|\sigma \cdot \nabla \varphi|^2}{1 + c(V) - V} + (1 + c(V) + V) |\varphi|^2 \right) dx \ge 0,$$

for some constant $c(V) \in (-1, 1)$, $\Gamma := \sup(V) < 1 + c(V)$, and for $\mathbb{V} := V\mathbb{I}_4$, they proved that the operator $H_0 + \mathbb{V}$ is self-adjoint on the appropriate domain.

In particular, they could treat potentials such that

$$-\frac{\nu}{|x|} \le V(x) < 1 + \sqrt{1 - \nu^2}, \quad \text{with } \nu \in (0, 1],$$

obtaining the distinguished extension in the case that $\nu < 1$, and giving a definition of distinguished extension in the critical case $\nu = 1$.

$$\int_{\mathbb{R}^3} \left(\frac{|\sigma \cdot \nabla \varphi|^2}{1 + c(V) - V} + (1 + c(V) + V) |\varphi|^2 \right) dx \ge 0,$$

for some constant $c(V) \in (-1, 1)$, $\Gamma := \sup(V) < 1 + c(V)$, and for $\mathbb{V} := V\mathbb{I}_4$, they proved that the operator $H_0 + \mathbb{V}$ is self-adjoint on the appropriate domain.

In particular, they could treat potentials such that

$$-\frac{\nu}{|x|} \le V(x) < 1 + \sqrt{1 - \nu^2}, \quad \text{with } \nu \in (0, 1],$$

obtaining the distinguished extension in the case that $\nu < 1$, and giving a definition of distinguished extension in the critical case $\nu = 1$. The inequality was then used in **[Esteban, Lewin, Séré, 2017]**: they provided details on the domain of the distinguished extension and they showed the validity of a min-max formula for the eigenvalues in the spectral gap.

$$\int_{\mathbb{R}^3} \left(\frac{|\sigma \cdot \nabla \varphi|^2}{1 + c(V) - V} + (1 + c(V) + V) |\varphi|^2 \right) dx \ge 0,$$

for some constant $c(V) \in (-1, 1)$, $\Gamma := \sup(V) < 1 + c(V)$, and for $\mathbb{V} := V\mathbb{I}_4$, they proved that the operator $H_0 + \mathbb{V}$ is self-adjoint on the appropriate domain.

In particular, they could treat potentials such that

$$-rac{
u}{|x|} \le V(x) < 1 + \sqrt{1 -
u^2}, \quad ext{with }
u \in (0, 1],$$

obtaining the distinguished extension in the case that $\nu < 1$, and giving a definition of distinguished extension in the critical case $\nu = 1$. The inequality was then used in **[Esteban, Lewin, Séré, 2017]**: they provided details on the domain of the distinguished extension and they showed the validity of a min-max formula for the eigenvalues in the spectral gap. (For a fair overview see **[C., Pizzichillo, 2018a]**).

Theorem ([C., Pizzichillo, Vega, 2018])

Let m > 0 and $a \in (-m, m)$. Let ψ be a distribution such that

$$\int_{\mathbb{R}^3} |(-i\alpha \cdot \nabla + m\beta - a)\psi|^2 |x| \, dx < +\infty.$$

Then $\psi \in L^2(|x|^{-1})^4$ and

$$\frac{m^2-a^2}{m^2}\int_{\mathbb{R}^3}\frac{|\psi|^2}{|x|}\,dx\leq \int_{\mathbb{R}^3}|(-i\alpha\cdot\nabla+m\beta-a)\psi|^2|x|\,dx.$$
 (1)

The inequality is sharp, in the sense that the constant on the left hand side can not be improved.

• • •

Theorem (addendum)

. . .

If $a \neq 0$, all the attainers are given by the elements of the two(complex)-parameter family $\{\psi_C^a\}_{C \in \mathbb{C}^2}$, with

$$\psi_C^a := \begin{cases} \frac{e^{-\sqrt{m^2 - a^2}|x|}}{|x|^{1-\frac{a}{m}}} \cdot \begin{pmatrix} C \\ i\sqrt{\frac{m-a}{m+a}}\sigma \cdot \frac{x}{|x|} \cdot C \end{pmatrix} & \text{if } a > 0, \\ \\ \frac{e^{-\sqrt{m^2 - a^2}|x|}}{|x|^{1+\frac{a}{m}}} \cdot \begin{pmatrix} -i\sqrt{\frac{m+a}{m-a}}\sigma \cdot \frac{x}{|x|} \cdot C \\ C \end{pmatrix} & \text{if } a < 0, \end{cases}$$

In the case that a = 0, the inequality is attained by the functions ψ_C^a above, in the sense that

$$\lim_{\epsilon \to 0} \int_{\{|x| > \epsilon\}} \left[|x| \left| \left(-i\alpha \cdot \nabla + m\beta \right) \psi_C^0 \right|^2 - \frac{|\psi_C^0|^2}{|x|} \right] dx = 0.$$

Set
$$\nu := \sqrt{\frac{m^2 - a^2}{m^2}} \in (0, 1)$$
, then $a = \pm m\sqrt{1 - \nu^2} \in (-m, 0) \cup (0, m)$.

Set $\nu := \sqrt{\frac{m^2 - a^2}{m^2}} \in (0, 1)$, then $a = \pm m\sqrt{1 - \nu^2} \in (-m, 0) \cup (0, m)$. With explicit computation:

$$\left(H_0 \mp \frac{\nu}{|\mathbf{x}|} - \mathbf{a}\right)\psi_{\mathbf{C}}^{\mathbf{a}} = \mathbf{0}.$$
Set $\nu := \sqrt{\frac{m^2 - a^2}{m^2}} \in (0, 1)$, then $a = \pm m\sqrt{1 - \nu^2} \in (-m, 0) \cup (0, m)$. With explicit computation:

$$\left(H_0\mp\frac{\nu}{|\mathbf{x}|}-\mathbf{a}\right)\psi_{\mathbf{C}}^{\mathbf{a}}=\mathbf{0}.$$

The attainers ψ_C^a of (1) are eigenvectors for the Coulomb operator!

Set $\nu := \sqrt{\frac{m^2 - a^2}{m^2}} \in (0, 1)$, then $a = \pm m\sqrt{1 - \nu^2} \in (-m, 0) \cup (0, m)$. With explicit computation:

$$\left(H_0\mp\frac{\nu}{|\mathbf{x}|}-\mathbf{a}\right)\psi_{\mathbf{C}}^{\mathbf{a}}=\mathbf{0}.$$

The attainers ψ_C^a of (1) are eigenvectors for the Coulomb operator!

(What about the vice-versa? Be patient!)

The two inequalities in the proof

The proof descends from the explicit computation of the following square:

$$0 \leq \int_{\mathbb{R}^3} |x| \left| (-i\alpha \cdot \nabla + m\beta - a)\psi - i\alpha \cdot \frac{x}{|x|} \left(1 - \frac{a}{m}\beta\right) (1 + 2\mathbf{S}L) \frac{\psi}{|x|} \right|^2 dx$$
$$= \int_{\mathbb{R}^3} |x| |(-i\alpha \cdot \nabla + m\beta - a)\psi|^2 dx - \frac{m^2 - a^2}{m^2} \int_{\mathbb{R}^3} \frac{|(1 + 2\mathbf{S}L)\psi|^2}{|x|} dx,$$

where the *spin angular momentum operator* \mathbf{S} and the *orbital angular momentum L* are defined as

$$\mathbf{S} = rac{1}{2} \left(egin{array}{cc} \sigma & 0 \ 0 & \sigma \end{array}
ight) \quad ext{and} \quad L := -ix \wedge \nabla.$$

Moreover, since $|1 + 2SL| \ge 1$,

$$\int_{\mathbb{R}^3} \frac{|\psi|^2}{|x|} \, dx \leq \int_{\mathbb{R}^3} \frac{|(1+2\mathbf{S}L)\psi|^2}{|x|} \, dx.$$

~

Thanks to the previous Theorem, for $a \in (-m, m)$

$$(H_0-a)^{-1}: L^2(|x|)^4 \to L^2(|x|^{-1})^4, \quad \mathbf{u}(H_0-a)^{-1}\mathbf{v}: L^2(\mathbb{R}^3)^4 \to L^2(\mathbb{R}^3)^4,$$

are well defined and bounded, with

Thanks to the previous Theorem, for $a \in (-m, m)$

$$(H_0-a)^{-1}: L^2(|x|)^4 \to L^2(|x|^{-1})^4, \quad \mathbf{u}(H_0-a)^{-1}\mathbf{v}: L^2(\mathbb{R}^3)^4 \to L^2(\mathbb{R}^3)^4,$$

are well defined and bounded, with

$$\mathbf{u}(x) := |x|^{1/2} \mathbb{V}(x)$$
 and $\mathbf{v}(x) := |x|^{-1/2} \mathbb{I}_4$.

Theorem (Birman-Schwinger principle)

Let \mathbb{V} be a Hermitian matrix-valued potential such that $\sup_{x}|x||V(x)| < 1$, and let \mathbf{u}, \mathbf{v} be defined as above. Let H_D be the distinguished realization and let $a \in (-m, m)$. Then

$$\mathbf{a} \in \sigma_d(H_D) \iff -1 \in \sigma_d(\mathbf{u}(H_0 - \mathbf{a})^{-1}\mathbf{v}).$$

Moreover, the multiplicity of *a* as an eigenvalue of H_D coincides with the multiplicity of -1 as an eigenvalue of $\mathbf{u}(H_0 - a)^{-1}\mathbf{v}$.

For $\nu \in (0, 1)$, the distinguished realization $H_{\nu} := H_0 - \frac{\nu}{|x|}$ verifies: $\sigma(H_{\nu}) = \sigma_d(H_{\nu}) \cup \sigma_{ess}(H_{\nu}) = \{a_1, a_2, \ldots\} \cup (-\infty, -m] \cup [m, +\infty), (2)$ and

 $m\sqrt{1-\nu^2} = a_1 = a_2 < a_3 \leq \cdots \leq a_n \leq \cdots \leq m, \lim_{n \to +\infty} a_n = m.$

For $\nu \in (0, 1)$, the distinguished realization $H_{\nu} := H_0 - \frac{\nu}{|x|}$ verifies: $\sigma(H_{\nu}) = \sigma_d(H_{\nu}) \cup \sigma_{ess}(H_{\nu}) = \{a_1, a_2, \ldots\} \cup (-\infty, -m] \cup [m, +\infty), (2)$ and

$$m\sqrt{1-\nu^2} = a_1 = a_2 < a_3 \leq \cdots \leq a_n \leq \cdots \leq m, \lim_{n \to +\infty} a_n = m.$$

In **[Dolbeault, Esteban, Séré, 2000]**, they considered an *electric* potential $\mathbb{V} := V\mathbb{I}_4$, being V = V(|x|) a *radially symmetric* function satisfying

$$\lim_{|x|\to+\infty}|V(x)|=0, \qquad -\frac{\nu}{|x|}-c_1\leq V\leq c_2$$

with $\nu \in (0, 1)$ and $c_1, c_2 \ge 0$, $c_1 + c_2 - 1 < \sqrt{1 - \nu^2}$. By means of **min-max** formulas, they proved that the distinguished self-adjoint realization H_D verifies (**??**), with

$$m\sqrt{1-\nu^2} \leq a_1 \leq a_2 \leq a_3 \leq \cdots \leq a_n \leq \cdots \leq m, \lim_{n \to +\infty} a_n = m.$$

For $\nu \in (0, 1)$, the distinguished realization $H_{\nu} := H_0 - \frac{\nu}{|x|}$ verifies: $\sigma(H_{\nu}) = \sigma_d(H_{\nu}) \cup \sigma_{ess}(H_{\nu}) = \{a_1, a_2, \ldots\} \cup (-\infty, -m] \cup [m, +\infty), (2)$ and

$$m\sqrt{1-\nu^2} = a_1 = a_2 < a_3 \leq \cdots \leq a_n \leq \cdots \leq m, \lim_{n \to +\infty} a_n = m.$$

In **[Dolbeault, Esteban, Séré, 2000]**, they considered an *electric* potential $\mathbb{V} := V\mathbb{I}_4$, being V = V(|x|) a *radially symmetric* function satisfying

$$\lim_{|x|\to+\infty}|V(x)|=0, \qquad -\frac{\nu}{|x|}-c_1\leq V\leq c_2$$

with $\nu \in (0, 1)$ and $c_1, c_2 \ge 0$, $c_1 + c_2 - 1 < \sqrt{1 - \nu^2}$. By means of **min-max** formulas, they proved that the distinguished self-adjoint realization H_D verifies (**??**), with

$$m\sqrt{1-\nu^2} \leq a_1 \leq a_2 \leq a_3 \leq \cdots \leq a_n \leq \cdots \leq m, \lim_{n \to +\infty} a_n = m.$$

In **[Esteban, Lewin, Séré, 2017]** they could generalise this result, removing the hypothesis of radial symmetry on \mathbb{V} and for $\nu \in (0, 1]$.

Biagio Cassano (ÚJF Řež)

$$\int_{\mathbb{R}^3} |x|| (H_0-a)\psi|^2 \, dx = \int_{\mathbb{R}^3} |x|| \mathbb{V}\psi|^2 \, dx \leq \nu^2 \int_{\mathbb{R}^3} \frac{|\psi|^2}{|x|} \, dx < +\infty.$$

$$\int_{\mathbb{R}^3} |x|| (\mathcal{H}_0 - a)\psi|^2 \, dx = \int_{\mathbb{R}^3} |x|| \mathbb{V}\psi|^2 \, dx \leq \nu^2 \int_{\mathbb{R}^3} \frac{|\psi|^2}{|x|} \, dx < +\infty.$$

Thanks to the Hardy-type inequality we have proved:

$$\nu^2 \int_{\mathbb{R}^3} \frac{|\psi|^2}{|x|} \ge \int_{\mathbb{R}^3} |x| |(H_0 - a)\psi|^2 \, dx \ge \frac{m^2 - a^2}{m^2} \int_{\mathbb{R}^3} \frac{|\psi|^2}{|x|} \, dx$$

•

$$\int_{\mathbb{R}^3} |x|| (\mathcal{H}_0 - a)\psi|^2 \, dx = \int_{\mathbb{R}^3} |x|| \mathbb{V}\psi|^2 \, dx \leq \nu^2 \int_{\mathbb{R}^3} \frac{|\psi|^2}{|x|} \, dx < +\infty.$$

Thanks to the Hardy-type inequality we have proved:

$$\nu^2 \int_{\mathbb{R}^3} \frac{|\psi|^2}{|x|} \ge \int_{\mathbb{R}^3} |x| |(H_0 - a)\psi|^2 dx \ge \frac{m^2 - a^2}{m^2} \int_{\mathbb{R}^3} \frac{|\psi|^2}{|x|} dx$$
$$\implies |a| \ge m\sqrt{1 - \nu^2} > 0.$$

•

$$\int_{\mathbb{R}^3} |x|| (\mathcal{H}_0 - a)\psi|^2 \, dx = \int_{\mathbb{R}^3} |x|| \mathbb{V}\psi|^2 \, dx \leq \nu^2 \int_{\mathbb{R}^3} \frac{|\psi|^2}{|x|} \, dx < +\infty.$$

Thanks to the Hardy-type inequality we have proved:

$$\nu^2 \int_{\mathbb{R}^3} \frac{|\psi|^2}{|x|} \ge \int_{\mathbb{R}^3} |x| |(H_0 - a)\psi|^2 dx \ge \frac{m^2 - a^2}{m^2} \int_{\mathbb{R}^3} \frac{|\psi|^2}{|x|} dx$$
$$\implies |a| \ge m\sqrt{1 - \nu^2} > 0.$$

If $\mathbf{a} = \pm m \sqrt{1 - \nu^2}$, ψ is an attainer and so $\psi = \psi_C^a$, for $C \in \mathbb{C}^2$.

$$\int_{\mathbb{R}^3} |x|| (\mathcal{H}_0 - a)\psi|^2 \, dx = \int_{\mathbb{R}^3} |x|| \mathbb{V}\psi|^2 \, dx \leq \nu^2 \int_{\mathbb{R}^3} \frac{|\psi|^2}{|x|} \, dx < +\infty.$$

Thanks to the Hardy-type inequality we have proved:

$$\nu^2 \int_{\mathbb{R}^3} \frac{|\psi|^2}{|x|} \ge \int_{\mathbb{R}^3} |x| |(H_0 - a)\psi|^2 dx \ge \frac{m^2 - a^2}{m^2} \int_{\mathbb{R}^3} \frac{|\psi|^2}{|x|} dx$$
$$\implies |a| \ge m\sqrt{1 - \nu^2} > 0.$$

If $\mathbf{a} = \pm m \sqrt{1 - \nu^2}$, ψ is an attainer and so $\psi = \psi_C^a$, for $C \in \mathbb{C}^2$. Then $0 = \left(H_0 \mp \frac{\nu}{|\mathbf{x}|} - \mathbf{a}\right) \psi_C^a = (H_0 + \mathbb{V} - \mathbf{a}) \psi_C^a$

$$\int_{\mathbb{R}^3} |x|| (\mathcal{H}_0 - a)\psi|^2 \, dx = \int_{\mathbb{R}^3} |x|| \mathbb{V}\psi|^2 \, dx \leq \nu^2 \int_{\mathbb{R}^3} \frac{|\psi|^2}{|x|} \, dx < +\infty.$$

Thanks to the Hardy-type inequality we have proved:

$$\nu^2 \int_{\mathbb{R}^3} \frac{|\psi|^2}{|x|} \ge \int_{\mathbb{R}^3} |x| |(H_0 - a)\psi|^2 dx \ge \frac{m^2 - a^2}{m^2} \int_{\mathbb{R}^3} \frac{|\psi|^2}{|x|} dx$$
$$\implies |a| \ge m\sqrt{1 - \nu^2} > 0.$$

If $\mathbf{a} = \pm m \sqrt{1 - \nu^2}$, ψ is an attainer and so $\psi = \psi_C^a$, for $C \in \mathbb{C}^2$. Then $0 = \left(H_0 \mp \frac{\nu}{|\mathbf{x}|} - a\right) \psi_C^a = (H_0 + \mathbb{V} - a) \psi_C^a \Longrightarrow$ $\mathbb{V} \psi_C^a = \mp \frac{\nu}{|\mathbf{x}|} \psi_C^a$, $\mu(a) \le 2$.

Theorem ([C., Pizzichillo, Vega, 2018])

Let \mathbb{V} be a Hermitian matrix valued potential such that $\sup_{x} |x| |\mathbb{V}(x)| < 1$, and let H_D be the distinguished self-adjoint realization.

Let $a \in \sigma_d(H_D)$, let $\mu(a)$ be its multiplicity and let $\psi \in \mathcal{D}(H_D)$ be an associated eigenfunction. Then:

•
$$|a| \geq m\sqrt{1-\nu^2};$$

a = ±m√1 - ν² if and only if ψ = ψ^a_C for some C ∈ C²; in this case, Vψ^a_C = ∓^ν_{|x|}ψ^a_C and μ(a) ≤ 2; if moreover V is an electric potential, that is V = V(x)I₄, then V(x) = ∓^ν_{|x|}.

. . .

Theorem (addendum)

. . .

• in the case that $a = \pm m\sqrt{1 - \nu^2}$, then $\mu(a) = 2$ if and only if

$$\mathbb{V}(x) = \begin{cases} -\frac{\nu}{|x|} \mathbb{I}_4 + \begin{pmatrix} N^2 \sigma \cdot \frac{x}{|x|} \mathbf{W}^+(x) \sigma \cdot \frac{x}{|x|} & i N \sigma \cdot \frac{x}{|x|} \mathbf{W}^+(x) \\ -i N \mathbf{W}^+(x) \sigma \cdot \frac{x}{|x|} & \mathbf{W}^+(x) \end{pmatrix} & a > 0, \\\\ \frac{\nu}{|x|} \mathbb{I}_4 + \begin{pmatrix} \mathbf{W}^-(x) & i N \mathbf{W}^-(x) \sigma \cdot \frac{x}{|x|} \\ -i N \sigma \cdot \frac{x}{|x|} \mathbf{W}^-(x) & N^2 \sigma \cdot \frac{x}{|x|} \mathbf{W}^-(x) \sigma \cdot \frac{x}{|x|} \end{pmatrix} & a < 0, \end{cases}$$
where $N = \sqrt{\frac{1 - \sqrt{1 - \nu^2}}{1 + \sqrt{1 - \nu^2}}}$, and $\mathbf{W}^+(x)$ and $\mathbf{W}^-(x)$ are 2×2

Hermitian matrices whose eigenvalues are respectively $\{\lambda_i^+(x)\}_{j=1,2}$ and $\{\lambda_i^-(x)\}_{j=1,2}$, and they verify

$$-rac{
u}{|x|}(1+\sqrt{1-
u^2}) \leq \lambda_j^-(x) \leq 0 \leq \lambda_j^+(x) \leq rac{
u}{|x|}(1+\sqrt{1-
u^2}).$$

Question

Can we extend these results to the general case when $\sup_{x} |x| |\mathbb{V}(x)| \ge 1$?

Question

Can we extend these results to the general case when $\sup_{x} |x| |\mathbb{V}(x)| \ge 1$?

An answer

It is not clear what the distinguished extension is in this general case.

Question

Can we extend these results to the general case when $\sup_{x} |x| |\mathbb{V}(x)| \ge 1$?

An answer

It is not clear what the distinguished extension is in this general case.

When $\sup_{x} |x| |\mathbb{V}(x)| = 1$ it is no longer true that $\mathcal{D}(H_0 + \mathbb{V}) \subset \mathcal{D}(r^{-1/2})^4$. For example, when $\mathbb{V}(x) = \mathbb{V}_C(x) = \frac{1}{|x|}$

the ground state $\psi_{\mathcal{C}}^0 \notin \mathcal{D}(r^{-1/2})^4$.

We select a self-adjoint extension T by asking that $\mathcal{D}(T)$ is included in the domain of an appropriate quadratic form.

We select a self-adjoint extension T by asking that $\mathcal{D}(T)$ is included in the domain of an appropriate quadratic form. Assume that $v := \sup_{x \in \mathbb{R}^3} |x| |\mathbb{V}(x)| \le 1$, and let

$$q(\psi) := \int_{\mathbb{R}^3} \left[|x|| - i\alpha \cdot \nabla \psi|^2 - |x|| \nabla \psi|^2 \right] dx, \quad \text{ for all } \psi \in C^\infty_c(\mathbb{R}^3; \mathbb{C}^4).$$

We select a self-adjoint extension T by asking that $\mathcal{D}(T)$ is included in the domain of an appropriate quadratic form. Assume that $v := \sup_{x \in \mathbb{R}^3} |x| |\mathbb{V}(x)| \le 1$, and let

$$q(\psi) := \int_{\mathbb{R}^3} \left[|x|| - i\alpha \cdot \nabla \psi|^2 - |x|| \mathbb{V} \psi|^2 \right] dx, \quad \text{ for all } \psi \in C^\infty_c(\mathbb{R}^3; \mathbb{C}^4).$$

Thanks to the Kato-Nenciu inequality

$$q(\psi) \ge \int_{\mathbb{R}^3} \left[|x|| - i\alpha \cdot \nabla \psi|^2 - v^2 \frac{|\psi|^2}{|x|} \right] \, dx \ge (1 - v^2) \int_{\mathbb{R}^3} \frac{|\psi|^2}{|x|} \, dx, \quad (3)$$

this form is symmetric and non-negative, and hence closable: we denote its closure q (with abuse of notation) and its maximal domain Ω .

We select a self-adjoint extension T by asking that $\mathcal{D}(T)$ is included in the domain of an appropriate quadratic form. Assume that $v := \sup_{x \in \mathbb{R}^3} |x| |\mathbb{V}(x)| \le 1$, and let

$$q(\psi) := \int_{\mathbb{R}^3} \left[|x|| - i\alpha \cdot \nabla \psi|^2 - |x|| \mathbb{V} \psi|^2 \right] dx, \quad \text{ for all } \psi \in C^\infty_c(\mathbb{R}^3; \mathbb{C}^4).$$

Thanks to the Kato-Nenciu inequality

$$q(\psi) \ge \int_{\mathbb{R}^3} \left[|x|| - i\alpha \cdot \nabla \psi|^2 - v^2 \frac{|\psi|^2}{|x|} \right] \, dx \ge (1 - v^2) \int_{\mathbb{R}^3} \frac{|\psi|^2}{|x|} \, dx, \quad (3)$$

this form is symmetric and non-negative, and hence closable: we denote its closure q (with abuse of notation) and its maximal domain Ω . If v < 1, then for all $\psi \in \Omega$, $\int \frac{|\psi(x)|^2}{|x|} dx < +\infty$, i.e. $\mathcal{D}(T) \subset \Omega$ implies that T is the distinguished extension ([Kato, 1981],[Arrizabalaga, Duoandikoetxea, Vega, 2013]).

Lemma ([C., Pizzichillo, 2018b])

For all $\psi \in C^{\infty}_{c}(\mathbb{R}^{3})^{4}$ and R > 0:

$$\int_{\mathbb{R}^3} |x|| - i\alpha \cdot \nabla \psi(x)|^2 dx \ge \int_{\mathbb{R}^3} \frac{|\psi(x)|^2}{|x|} dx + \int_{\mathbb{R}^3} \frac{\left|\psi(x) - \frac{R}{|x|}\psi(R\frac{x}{|x|})\right|^2}{4|x|\log^2(|x|/R)} dx.$$

Moreover, the inequality is sharp.

Consequently, for all $\psi \in \Omega$:

$$\int_{\{|x|<1\}} \frac{|\psi(x)|^2}{|x|\log^2 |x|} \, dx < +\infty.$$

. 0

In **[C., Pizzichillo, 2018b]** we describe all the self-adjoint realizations of the differential operator $H_0 + \mathbb{V}$, where

$$\mathbb{V}(x) := \frac{1}{|x|} \left(\nu \mathbb{I}_4 + \mu \beta + \lambda \left(-i\alpha \cdot \frac{x}{|x|} \beta \right) \right), \quad \text{for } x \neq 0,$$

with $\nu, \lambda, \mu \in \mathbb{R}$.

In **[C., Pizzichillo, 2018b]** we describe all the self-adjoint realizations of the differential operator $H_0 + \mathbb{V}$, where

$$\mathbb{V}(x) := \frac{1}{|x|} \left(\nu \mathbb{I}_4 + \mu \beta + \lambda \left(-i\alpha \cdot \frac{x}{|x|} \beta \right) \right), \quad \text{for } x \neq 0,$$

with $\nu, \lambda, \mu \in \mathbb{R}$.

We characterize all the self-adjoint extensions through the behaviour of the functions in the domain in the origin.

We construct a **boundary triple** for *H_{max}*

(remind that $\mathcal{D}(\mathcal{H}_{max}) = \{\psi \in L^2(\mathbb{R}^3)^4 : H\psi \in L^2(\mathbb{R}^3)^4\}$).

In **[C., Pizzichillo, 2018b]** we describe all the self-adjoint realizations of the differential operator $H_0 + \mathbb{V}$, where

$$\mathbb{V}(x) := \frac{1}{|x|} \left(\nu \mathbb{I}_4 + \mu \beta + \lambda \left(-i\alpha \cdot \frac{x}{|x|} \beta \right) \right), \quad \text{for } x \neq 0,$$

with $\nu, \lambda, \mu \in \mathbb{R}$.

We characterize all the self-adjoint extensions through the behaviour of the functions in the domain in the origin.

We construct a **boundary triple** for H_{max} (remind that $\mathcal{D}(H_{max}) = \{\psi \in L^2(\mathbb{R}^3)^4 : H\psi \in L^2(\mathbb{R}^3)^4\}$). Let

$$d:=\sum_{\substack{k\in \setminus\{0\}\ (k+\lambda)^2+\mu^2-
u^2<1/4}}2|k|<+\infty,$$

then $(\mathbb{C}^d, \Gamma^+, \Gamma^-)$ is a boundary triple for H_{max} , for appropriate $\Gamma^+, \Gamma^- : \mathcal{D}(H_{max}) \to \mathbb{C}^d$.

Let us consider $\mathbb{V}_C(x) = \frac{\nu}{|x|}$.

• If $0 < \nu < 1$ there exists $\gamma > 0$ such that for every $\psi \in \mathcal{D}(H_0 + \mathbb{V})$

as
$$|x| \to 0$$
: $\psi(x) \sim \frac{A|x|^{\gamma} + B|x|^{-\gamma}}{|x|} \sim \begin{cases} B|x|^{-\gamma-1}, & \text{if } B \neq 0, \\ A|x|^{\gamma-1}, & \text{if } B = 0, \end{cases}$

for some $A, B \in \mathbb{C}^4$.

• If
$$u = 1$$
, for every $\psi \in \mathcal{D}(H_0 + \mathbb{V})$ then

as
$$|x| \to 0$$
: $\psi(x) \sim \frac{A + B\log|x|}{|x|} \sim \begin{cases} \frac{B\log|x|}{|x|}, & \text{if } B \neq 0, \\ \frac{A}{|x|}, & \text{if } B = 0, \end{cases}$

for some $A, B \in \mathbb{C}^4$.

There exists only one extension such that B = 0 for every function ψ : this is the distinguished one.

• If $\nu > 1$ there exists $\gamma > 0$ such that for every $\psi \in \mathcal{D}(H_0 + \mathbb{V})$

as
$$|x|
ightarrow 0$$
 : $\psi(x) \sim rac{A|x|^{i\gamma} + B|x|^{-i\gamma}}{|x|}$

for some $A, B \in \mathbb{C}^4$.

No one appears to be distinguished in some sense.

Let us consider $\mathbb{V}_{am}(x) = \frac{\lambda}{|x|} (i\alpha \cdot \frac{x}{|x|}\beta).$

• If $0 < \lambda < 1$ there exists $\gamma > 0$ such that for every $\psi \in \mathcal{D}(H_0 + \mathbb{V})$

$$\text{as } |x| \to 0: \quad \psi(x) {\sim} \frac{\mathcal{A} |x|^{\gamma} + \mathcal{B} |x|^{-\gamma}}{|x|} {\sim} \begin{cases} \mathcal{B} |x|^{-\gamma-1}, & \text{ if } B \neq 0, \\ \mathcal{A} |x|^{\gamma-1}, & \text{ if } B = 0, \end{cases}$$

for some $A, B \in \mathbb{C}^4$. The distinguished extension is the unique one such that B = 0 for all ψ s.

• If $\lambda = 1$, for every $\psi \in \mathcal{D}(H_0 + \mathbb{V})$ then

as
$$|x| \to 0$$
: $\psi(x) \sim \frac{A}{|x|}$

for some $A \in \mathbb{C}^4$. No one appears to be distinguished.

Theorem ([C., Pizzichillo, 2018b])

Let

$$\mathbb{V}(x) := \frac{1}{|x|} \left(\nu \mathbb{I}_4 + \mu \beta + \lambda \left(-i\alpha \cdot \frac{x}{|x|} \beta \right) \right), \quad \text{for } x \neq 0,$$

and assume that

$$\sup_{x\in\mathbb{R}^3} |x||\mathbb{V}(x)| \le 1, \quad \mathbb{V}(x) \neq \pm \frac{i\alpha \cdot \frac{x}{|x|}\beta}{|x|}. \tag{4}$$

Then, there exists only one self-adjoint extension $\mathring{H}_{min} \subset T \subset H_{max}$ such that $\mathfrak{D}(T) \subset \mathfrak{Q}$.

This is a positive result: we give the definition of *distinguished* extension by means of quadratic forms in a bigger class than in **[Esteban, Loss, 2008]**, **[Esteban, Lewin, Séré, 2017]**.

This is a negative result: the condition $\mathcal{D}(T) \subset \mathcal{Q}$ does not appear to select an extension in the general case that $\sup_{x \in \mathbb{R}^3} |x| |\mathbb{V}(x)| \le 1$, since it does not in the case

$$\mathbb{V}(\mathbf{x}) = \pm \frac{i\alpha \cdot \frac{\mathbf{x}}{|\mathbf{x}|}\beta}{|\mathbf{x}|}.$$

Thank you for your attention!

Thank you for your attention!

[C.,Pizzichillo, 2018a] Biagio Cassano, and Fabio Pizzichillo. *"Self-adjoint extensions for the Dirac operator with Coulomb-type spherically symmetric potentials."* Letters in Mathematical Physics 108.12 (2018): 2635-2667.

[C.,Pizzichillo, 2018b] Biagio Cassano, and Fabio Pizzichillo. *"Boundary triples for the Dirac operator with Coulomb-type spherically symmetric perturbations."* To appear in Journal of Mathematical Physics, arXiv preprint arXiv:1810.01659 (2018). **[C., Pizzichillo, Vega, 2018]** Biagio Cassano, Fabio Pizzichillo, and Luis Vega. *"A*

Hardy-type inequality and some spectral characterizations for the Dirac-Coulomb operator." arXiv preprint arXiv:1810.01309 (2018).

The Dirac-Coulomb operator describes spin $-\frac{1}{2}$ particles in the external electrostatic field of an atomic nucleus of atomic number *Z*. In fact

$$H_0 + \mathbb{V}_C(\mathbf{x}) = -ic\hbar\alpha \cdot \nabla + \beta mc^2 + \frac{c\nu}{|\mathbf{x}|}\mathbb{I}_4, \quad \nu = \frac{e^2Z}{\hbar c} = Z\alpha_f,$$

where

- c is the speed of light,
- \hbar is the Plank's constant,
- e is the charge of the electron,
- Z is the atomic number,
- $\alpha_f = (137.035...)^{-1}$ is the fine-structure constant.
The Dirac-Coulomb operator describes spin $-\frac{1}{2}$ particles in the external electrostatic field of an atomic nucleus of atomic number *Z*. In fact

$$H_0 + \mathbb{V}_C(\mathbf{x}) = -ic\hbar\alpha \cdot \nabla + \beta mc^2 + \frac{c\nu}{|\mathbf{x}|}\mathbb{I}_4, \quad \nu = \frac{e^2Z}{\hbar c} = Z\alpha_f,$$

where

- c is the speed of light,
- \hbar is the Plank's constant,
- e is the charge of the electron,
- Z is the atomic number,
- $\alpha_f = (137.035...)^{-1}$ is the fine-structure constant.

We set $\hbar = c = e = 1$.

~

We write

$$\psi \in \mathcal{D}(\mathcal{H}_{max}) = \{\psi \in L^2(\mathbb{R}^3)^4 : \mathcal{H}\psi \in L^2(\mathbb{R}^3)^4\},$$

$$\psi(\mathbf{x}) = \sum_{j,m_j,k_j} \frac{1}{|\mathbf{x}|} \left(f_{m_j,k_j}^+(|\mathbf{x}|) \Phi_{m_j,k_j}^+\left(\frac{\mathbf{x}}{|\mathbf{x}|}\right) + f_{m_j,k_j}^-(|\mathbf{x}|) \Phi_{m_j,k_j}^-\left(\frac{\mathbf{x}}{|\mathbf{x}|}\right) \right).$$

We have

$$H_{max} \cong \bigoplus_{j=\frac{1}{2},\frac{3}{2},\dots}^{\infty} \bigoplus_{m_j=-j}^{j} \bigoplus_{k_j=\pm(j+1/2)} h_{m_j,k_j}^*,$$
$$h_{m_j,k_j}^*(f^+,f^-) := \begin{pmatrix} m + \frac{\nu+\mu}{r} & -\partial_r + \frac{k_j+\lambda}{r} \\ \partial_r + \frac{k_j+\lambda}{r} & -m + \frac{\nu-\mu}{r} \end{pmatrix} \begin{pmatrix} f^+ \\ f^- \end{pmatrix}.$$

Let
$$\delta_{k_j} := (k_j + \lambda)^2 + \mu^2 - \nu^2$$
, and $\gamma_{k_j} := \sqrt{|\delta_{k_j}|}$.

Let $\delta_{k_j} := (k_j + \lambda)^2 + \mu^2 - \nu^2$, and $\gamma_{k_j} := \sqrt{|\delta_{k_j}|}$. If $\delta_{k_j} \ge \frac{1}{4}$ then h_{m_j,k_j}^* is symmetric. Let $\delta_{k_j} := (k_j + \lambda)^2 + \mu^2 - \nu^2$, and $\gamma_{k_j} := \sqrt{|\delta_{k_j}|}$. If $\delta_{k_j} \ge \frac{1}{4}$ then $h^*_{m_j,k_j}$ is symmetric. If $0 < \delta_{k_j} < 1/4$ then

$$\lim_{r\to 0}\left|\begin{pmatrix}f_{m_j,k_j}^+(r)\\f_{m_j,k_j}^-(r)\end{pmatrix}-D_{k_j}\begin{pmatrix}A^+r^{\gamma_{k_j}}\\A^-r^{-\gamma_{k_j}}\end{pmatrix}\right|r^{-1/2}=0,$$

being $D_{k_j} \in \mathbb{R}^{2 \times 2}$ the invertible matrix

$$D_{k_j} := \begin{cases} \frac{1}{2\gamma(\lambda+k_j-\gamma_{k_j})} \begin{pmatrix} \lambda+k_j-\gamma_{k_j} & \nu-\mu \\ -(\nu+\mu) & -(\lambda+k_j-\gamma_{k_j}) \end{pmatrix} & \text{if } \lambda+k_j-\gamma_{k_j} \neq \mathbf{0}, \\ \frac{1}{-4\gamma_{k_j}^2} \begin{pmatrix} \mu-\nu & 2\gamma_{k_j} \\ 2\gamma_{k_j} & -(\nu+\mu) \end{pmatrix} & \text{if } \lambda+k_j-\gamma_{k_j} = \mathbf{0}; \end{cases}$$

we set

$$\begin{pmatrix} \Gamma^+_{m_j,k_j}(f_{m_j,k_j}) \\ \Gamma^-_{m_j,k_j}(f_{m_j,k_j}) \end{pmatrix} := D_{k_j} \begin{pmatrix} A^+ \\ A^- \end{pmatrix}.$$

If $\delta_{k_i} = 0$ then

$$\lim_{r\to 0}\left|\begin{pmatrix}f^+_{m_j,k_j}(r)\\f^-_{m_j,k_j}(r)\end{pmatrix}-(M_{k_j}\log r+\mathbb{I}_2)\begin{pmatrix}A^+\\A^-\end{pmatrix}\right|r^{-1/2}=0,$$

being $M_{k_j} \in \mathbb{R}^{2 imes 2}$, $M_{k_j}^2 = 0$ defined as follows

$$M_{k_j} := egin{pmatrix} -(k_j+\lambda) & -
u+\mu \
u+\mu & k_j+\lambda \end{pmatrix};$$

we set

$$\begin{pmatrix} \Gamma^+_{m_j,k_j}(f_{m_j,k_j}) \\ \Gamma^-_{m_j,k_j}(f_{m_j,k_j}) \end{pmatrix} := \begin{pmatrix} \mathsf{A}^+ \\ \mathsf{A}^- \end{pmatrix}.$$

If $\delta_{k_i} < 0$ then

$$\lim_{r\to 0}\left|\begin{pmatrix}f^+_{m_j,k_j}(r)\\f^-_{m_j,k_j}(r)\end{pmatrix}-E_{k_j}\begin{pmatrix}A^+r^{i\gamma_{k_j}}\\A^-r^{-i\gamma_{k_j}}\end{pmatrix}\right|r^{-1/2}=0,$$

being $\textit{E}_{\textit{k}_{j}} \in \mathbb{C}^{2 \times 2}$ the invertible matrix

$$E_{k_j} := \frac{1}{2i\gamma_{k_j}(\lambda + k - i\gamma_{k_j})} \begin{pmatrix} \lambda + k - i\gamma_{k_j} & \nu - \mu \\ -(\nu + \mu) & -(\lambda + k - i\gamma_{k_j}) \end{pmatrix};$$

we set

$$\begin{pmatrix} \Gamma^+_{m_j,k_j}(f_{m_j,k_j}) \\ \Gamma^-_{m_j,k_j}(f_{m_j,k_j}) \end{pmatrix} := E_{k_j} \begin{pmatrix} A^+ \\ A^- \end{pmatrix}.$$

For
$$j = \frac{1}{2}, \frac{3}{2}, ..., \infty; m_j = -j, ..., j; k_j = \pm (j + 1/2);$$

let $I := \{(j, m_j, k_j) : (k_j + \lambda)^2 + \mu^2 - \nu^2 < 1/4\}$ and $d := \#I.$
Set $\Gamma^+, \Gamma^- : \mathcal{D}(H_{max}) \to \mathbb{C}^d$
 $\Gamma^{\pm}(\psi) = \left(\Gamma^{\pm}_{m_j, k_j}(f_{m_j, k_j})\right)_{(j, m_j, k_j) \in I} \in \mathbb{C}^d.$

Theorem ([C., Pizzichillo, 2018b])

 $(\mathbb{C}^d, \Gamma^+, \Gamma^-)$ is a boundary triple for H_{max} .