Direct and inverse problems for one-dimensional Dirac operators with nonlocal potentials

Kamila Dębowska

1Faculty of Applied Mathematics
2NASU Institute of Mathematics Department of Functional Analysis

28 February 2019

joint work with L.P. Nizhnik
Overview

1. Sturm-Liouville operators with nonlocal potentials on the interval

2. First order differential operators with nonlocal potentials on the interval

3. Dirac systems with nonlocal potentials on the interval

4. Literature
Part I

Sturm-Liouville operators with nonlocal potentials on the interval
Problem

Consider nonlocal Sturm-Liouville eigenvalue problems of the form

\[(T\psi)(x) \equiv -\frac{d^2\psi(x)}{dx^2} + v(x)\psi(1) = \lambda\psi(x), \quad 0 \leq x \leq 1,\]

with the boundary conditions

\[\psi(0) = \psi'(1) + \langle \psi, v \rangle_{L^2} = 0,\]

where \(v \in L^2(0, 1)\) is the nonlocal potential and \(\lambda \in \mathbb{C}\) is the spectral parameter.

Denote \(\langle \cdot, \cdot \rangle_{L^2}\) by the usual inner product in \(L^2(0, 1)\).
Unperturbed operators

\[T \psi = -\frac{d^2\psi(x)}{dx^2} + v(x)\psi(1) \]

\[D(T) = \{ \psi \in W_2^2(0,1) | \psi(0) = \psi'(1) + \langle \psi, v \rangle_{L^2} = 0 \} \]

\[T_0 \psi = -\frac{d^2\psi(x)}{dx^2} \]

\[D(T_0) = \{ \psi \in W_2^2(0,1) | \psi(0) = \psi(1) = 0 \} \]

\[T_1 \psi = -\frac{d^2\psi(x)}{dx^2} \]

\[D(T_1) = \{ \psi \in W_2^2(0,1) | \psi(0) = \psi'(1) = 0 \} \]
The operators T_0 and T_1 are self-adjoint and have discrete spectra
$\sigma(T_0) = \{\pi^2 n^2\}_{n \in \mathbb{N}}$ and $\sigma(T_1) = \{\pi^2 (n - \frac{1}{2})^2\}_{n \in \mathbb{N}}$.

Lemma

The operator T is self-adjoint and has a discrete spectrum $\{\lambda_n\}_{n \in \mathbb{N}}$, where $\lambda_1 \leq \lambda_2 \leq \ldots$ and each eigenvalue is repeated according to its multiplicity. Moreover, T is a rank-one perturbation of the operator T_0 and the spectra of the operators T and T_0 weakly interlace, i.e., $\lambda_n \leq \pi^2 n^2 \leq \lambda_{n+1}$ for every $n \in \mathbb{N}$.
Resolvents of T_0 and T_1

Integral operators

$$(T_j - z^2)^{-1}f(x) = \int_0^1 G_j(x, s; z)f(s)ds, \quad j = 0, 1,$$

Green functions

$G_0(x, s; z) = \frac{1}{z \sin z} \begin{cases}
\sin zx \sin z(1 - s) & \text{for } s > x, \\
\sin z(1 - x) \sin zs & \text{for } s < x,
\end{cases}$

$G_1(x, s; z) = \frac{1}{z \cos z} \begin{cases}
\sin zx \cos z(1 - s) & \text{for } s > x, \\
\cos z(1 - x) \sin zs & \text{for } s < x.
\end{cases}$
Characteristic function

\[
d(z) = \cos z + \int_0^1 \frac{\sin z s}{z} (v(s) + \overline{v(s)}) ds - \frac{\sin z}{z} \int_0^1 \int_0^1 G_0(x, s; z) v(s) \overline{v(x)} ds dx,
\]

\[
(T - z^2)^{-1} g(x) = (T_0 - z^2)^{-1} g(x) + \frac{z}{\sin zd(z)} \psi(x; z) \langle g, \psi(\cdot, z) \rangle
\]

Let \(\hat{v}_k \) be the k-th Fourier coefficient of the function \(v(x) = \sum_{k=1}^{\infty} \hat{v}_k \sin \pi k x \).

Other form

\[
d(z) = \cos z + \frac{\sin z}{2z} \sum_{k=1}^{\infty} \frac{a_k}{z^2 - \pi^2 k^2},
\]

where

\[
a_k = |\hat{v}_k + (-1)^k 2\pi k|^2 - (2\pi k)^2
\]
Theorem

- Every eigenvalue of the operator T is a squared zero of its characteristic function d and, conversely, every squared zero of d is an eigenvalue of T. The number $\pi^2 n^2$, $n \in \mathbb{N}$, is an eigenvalue of T if and only if

$$\hat{v}_n = (-1)^{n+1} 2\pi n,$$

and this relation is equivalent to $d(\pi n) = 0$.

- All eigenvalues z^2 not in the spectrum of T_0 are simple, and simple are the corresponding zeros z of d (except for the case where $z = 0$, which is then a zero of even order of d). If $\pi^2 n^2$ for some $n \in \mathbb{N}$ is an eigenvalue of T, then this eigenvalue is multiple if and only if

$$\int_0^1 \int_0^1 G_1(x, s; \pi n) \overline{\nu(s)} \nu(x) ds dx = 0,$$

in this and only in this case the number πn is a multiple zero of d.
Theorem

- The multiplicity of a non-zero eigenvalue z^2 of the operator T equals the order of the corresponding zero z of the characteristic function d, and both do not exceed 2. If $z = 0$ is an eigenvalue of T, then the order of $z = 0$ as a zero of d is 2.

Asymptotics

The eigenvalues $\lambda_1 \leq \lambda_2 \leq \ldots$ satisfy the asymptotic distribution

$$\sqrt{\lambda_n} = \pi\left(n - \frac{1}{2}\right) + \frac{\mu_n}{n}$$

for some sequence $(\mu_n)_{n \in \mathbb{N}}$ in $\ell_2(\mathbb{N})$.
Inverse spectral analysis

Given the spectrum \(\sigma(T) \) of an operator find the nonlocal potential \(\nu \).

Algorithm

1. Given \(\sigma(T) \), construct the function \(d \) via \(d(z) = \prod_{k \in \mathbb{N}} \frac{\lambda_k - z^2}{\pi^2(k - \frac{1}{2})^2} \).
2. Calculate the values \(d(\pi n), \ n \in \mathbb{N} \).
3. For every \(n \in \mathbb{N} \), solve the quadratic equations \((\hat{v}_n + (-1)^n2\pi n)^2 = (-1)^n(2\pi n)^2d(\pi n) \) for \(\hat{v}_n \), taking the solution that satisfies the relation \((-1)^{n+1}\hat{v}_n \leq 2\pi n \).
4. Put \(\nu(x) = \sum_{n \in \mathbb{N}} \hat{v}_n \sin \pi nx \).
Example of a solution to an inverse problem

Let \(\lambda_1 = \pi^2 \) and \(\lambda_n = \pi^2(n - \frac{1}{2})^2 \) for all \(n \geq 2 \). Then

\[
d(z) = \frac{z^2 - \pi^2}{z^2 - \frac{\pi^2}{4}} \cos z,
\]

so that \(d(\pi k) = (-1)^k \frac{k^2 - \frac{1}{4}}{k^2 - \frac{1}{4}} \), \(\hat{v}_1 = 2\pi \) and

\[
\hat{v}_k = (-1)^{k+1} 2\pi k \left(1 - \sqrt{\frac{k^2 - 1}{k^2 - \frac{1}{4}}} \right) \quad \text{for} \quad k \geq 2.
\]
Part II

First order differential operators with nonlocal potentials on the interval
Boundary value problem

Consider the following nonlocal eigenvalue problems

\[(L\psi)(x) \equiv i \frac{d\psi(x)}{dx} + v(x)\psi_+ = \lambda \psi(x), \quad 0 \leq x \leq l,\]

(1)

with the boundary conditions

\[\psi_- + i \int_0^l \psi(x) \overline{v(x)} dx = 0,\]

(2)

\[\psi_+ := \frac{1}{2} (\psi(l) + \psi(0)), \quad \psi_- := \psi(l) - \psi(0), \quad v \in L^2_2(0, l).\]

The corresponding operator

\[(A\psi)(x) = i \frac{d\psi(x)}{dx} + v(x)\psi_+\]

\[\mathcal{D}(A) = \left\{ \psi \in W^1_2(0, l) : \psi_- + i \int_0^l \psi(x) \overline{v(x)} dx = 0 \right\}\]
First order differential operators with nonlocal potentials on the interval

Direct spectral analysis

The operator A is self-adjoint.

Let A_- and A_+ be the differential operators $i \frac{d}{dx}$ on $L_2(0, l)$ with the domains

$$\mathcal{D}(A_-) = \{\psi \in W^1_2(0, l) : \psi_+ = 0\}, \quad \mathcal{D}(A_+) = \{\psi \in W^1_2(0, l) : \psi_- = 0\},$$

respectively. Both these operators are self-adjoint. Their spectra are discrete, the eigenvalues of A_- are $\lambda^{(-)}_n = \frac{2n\pi}{l}$ ($n \in \mathbb{Z}$) and of A_+ are $\lambda^{(+)}_n = \frac{\pi(2n-1)}{l}$ ($n \in \mathbb{Z}$) with the corresponding eigenfunctions $\psi^{(-)}_n(x) = e^{-i\lambda^{(-)}_nx}$ and $\psi^{(+)}_n(x) = e^{-i\lambda^{(+)}_nx}$, respectively. The set of eigenfunctions $\{\psi^{(+)}_n : n \in \mathbb{Z}\}$ is a complete orthogonal system in $L_2(0, l)$, and the potential $v \in L_2(0, l)$ can be represented by the Fourier series

$$v(x) = \sum_{n \in \mathbb{Z}} v_n e^{-i(2n-1)\frac{\pi}{l}x},$$

where

$$v_n = \frac{1}{l} \int_0^l v(x) e^{i(2n-1)\frac{\pi}{l}x} dx, \quad n \in \mathbb{Z}.$$
First order differential operators with nonlocal potentials on the interval

A is a rank two perturbation of A_- and a rank one perturbation of A_+.

\[
G_-(x, s; z) = i \frac{e^{-iz(x-s)}}{e^{-izl} - 1} \cdot \begin{cases}
1 & \text{for } s < x, \\
-1 & \text{for } s > x,
\end{cases}
\]

\[
G_+(x, s; z) = i \frac{e^{-iz(x-s)}}{e^{-izl} + 1} \cdot \begin{cases}
1 & \text{for } s < x, \\
-1 & \text{for } s > x.
\end{cases}
\]

The resolvent $(A - zI)^{-1}$ is an integral operator and

\[
G(x, s; z) - G_+(x, s; z) = \frac{\varphi(x; z)\overline{\varphi}(s; \bar{z})}{F(z)},
\]

where

\[
F(z) = 2i \frac{1 - e^{-izl}}{1 + e^{-izl}} - 2i \left[\int_0^l G_+(0, s; z)v(s)ds - \int_0^l G_+(s, 0; z)\overline{v(s)}ds \right] \\
- \int_0^l \int_0^l G_+(x, s; z)v(s)\overline{v(x)}dsdx.
\]
Spectrum

Theorem

1) All eigenvalues of the operator A different from $(2n - 1)\frac{\pi}{l}$, $n \in \mathbb{Z}$, are simple.

2) The number $(2n - 1)\frac{\pi}{l}$, $n \in \mathbb{Z}$, is an eigenvalue of A if and only if

$$v_n \equiv \frac{1}{l} \int_0^l v(x)e^{i\lambda_n^{(+)}} x \, dx = \frac{2i}{l}. $$

3) If $(2n - 1)\frac{\pi}{l}$ is an eigenvalue of A, then this eigenvalue has multiplicity 2 if and only if

$$\sum_{k \neq n} \frac{1}{\lambda_k^{(+) - \lambda_n^{(+)}}} \left(v_k - \overline{v_k} - \frac{i}{2} l|v_k|^2\right) = 0.$$

4) The operator A has no eigenvalue with multiplicity exceeding 2.
The characteristic function of the operator A has the following form

$$\chi(\lambda) = -\sin \frac{\lambda l}{2} + \cos \frac{\lambda l}{2} \sum_{n \in \mathbb{Z}} \frac{\alpha_n}{\lambda_n^{(+)} - \lambda}$$

with

$$\alpha_n = -iv_n + i\bar{v}_n - \frac{l}{2} |v_n|^2, \quad n \in \mathbb{Z}.$$

The characteristic function χ of the operator A is an entire function of λ and

$$\chi \left(\lambda_n^{(+)} \right) = (-1)^n \left| \frac{l}{2} v_n - i \right|^2, \quad n \in \mathbb{Z}.$$
Theorem

The sequence of eigenvalues of the operator A (counting multiplicities) can be numbered so that

$$
\ldots \leq \lambda_{-n} \leq \ldots \leq \lambda_{-1} \leq \lambda_0 \leq \lambda_1 \leq \ldots \leq \lambda_n \leq \ldots
$$

listed in an increasing order satisfies the asymptotic distribution,

$$
\lambda_n = \frac{2\pi}{l} n + \beta_n, \quad \lambda_{-n} = -\frac{2\pi}{l} n + \beta_{-n}, \quad n \in \mathbb{N},
$$

where β_n are real values such that

$$
\sum_{k \in \mathbb{Z}} \beta_k^2 < \infty.
$$
Algorithm for solving inverse problem

Let us assume that we know all eigenvalues of the operator A, we find the nonlocal potential $v \in L_2(0, l)$.

Step 1. Construct the characteristic function χ as

$$
\chi(\lambda) = -\frac{l}{2}(\lambda - \lambda_0) \prod_{n=1}^{\infty} \frac{(\lambda_n - \lambda)(\lambda - \lambda_{-n})}{(\frac{2n\pi}{l})^2}.
$$

Step 2. Calculate the values $\chi(\lambda_n^{(+)})$ for all $n \in \mathbb{Z}$, where $\lambda_n^{(+)} = \frac{2n-1}{l}\pi$.

Step 3. Solve the quadratic equation for v_n

$$
\chi\left(\lambda_n^{(+)}\right) = (-1)^n \left| \frac{l}{2} v_n - i \right|^2.
$$

Step 4. Write the potential $v(x) = \sum_{n \in \mathbb{Z}} v_ne^{-i\lambda_n^{(+)}x}$.
Example for solving inverse problem

Let $\lambda_1 = \frac{1}{2}$ and $\lambda_n = n$ for $n \neq 1$ be the eigenvalues of the operator A and let $l = 2\pi$. The characteristic function χ, in this case, is the following

$$\chi(\lambda) = -\sin (\pi \lambda) \frac{\lambda - \frac{1}{2}}{\lambda - 1}.$$

For $\lambda_n^{(+)} = n - \frac{1}{2}$ calculate the values $\chi(\lambda_n^{(+)}) = (-1)^n \frac{n-1}{n-\frac{3}{2}}$. We solve the quadratic equation

$$(-1)^n |\pi v_n - i|^2 = (-1)^n \frac{n-1}{n-\frac{3}{2}},$$

which is equivalent to

$$|\pi v_n - i|^2 = \frac{n-1}{n-\frac{3}{2}},$$

from which we compute the Fourier coefficients of the potential v

$$v_n = -\frac{i}{2\pi} \left(\left| n - \frac{3}{2} \right| + \sqrt{(n-1) \left(n - \frac{3}{2} \right)} \right)^{-1}.$$
Part III

Dirac systems with nonlocal potentials on the interval
The following spectral problem for the Dirac system with the nonlocal potentials

\[
\begin{align*}
&i \frac{d\psi_1(x)}{dx} + v_1(x)\psi^+ = \lambda \psi_1(x), \\
&-i \frac{d\psi_2(x)}{dx} + v_2(x)\psi^+ = \lambda \psi_2(x),
\end{align*}
\]

where

\[
\psi_1, \psi_2 \in W^1_2(0, b), \quad v_1, v_2 \in L^2(0, b), \quad \psi^+ := \frac{1}{2} (\psi_1(b) + \psi_2(b))
\]

with the boundary conditions

\[
\psi_1(0) = \psi_2(0),
\]

\[
\psi_1(b) - \psi_2(b) + i (\langle \psi_1, v_1 \rangle + \langle \psi_2, v_2 \rangle) = 0
\]

is equivalent to the problem (1)–(2).
Theorem

Moreover, the corresponding operator A defined by

$$(A\psi)(x) = B \frac{d\psi(x)}{dx} + V(x)\psi^+$$

where

$$B = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}, \quad V(x) = \begin{pmatrix} 0 & v_1(x) \\ v_2(x) & 0 \end{pmatrix}, \quad \psi(x) = \begin{pmatrix} \psi_1(x) \\ \psi_2(x) \end{pmatrix}, \quad \psi^+ = \begin{pmatrix} \psi^+ \\ \psi^+ \end{pmatrix},$$

with the domain

$$\mathcal{D}(A) = \left\{ \psi = \begin{pmatrix} \psi_1 \\ \psi_2 \end{pmatrix}, \psi_1, \psi_2 \in W^1_2(0, b) : \psi_1(0) = \psi_2(0), \psi_1(b) - \psi_2(b) + i (\langle \psi_1, v_1 \rangle + \langle \psi_2, v_2 \rangle) = 0, \right\}$$

is self-adjoint.
Proof

We consider the problem on the interval $[0, 2b]$ in the following way

$$
\psi_2(b - x) \quad \psi_1(x - b)
$$

0 \quad b \quad 2b

We define the functions

$$
\psi(x) = \begin{cases}
\psi_1(x - b), & b \leq x \leq 2b, \\
\psi_2(b - x), & 0 \leq x \leq b,
\end{cases}
$$

and

$$
v(x) = \begin{cases}
v_1(x - b), & b \leq x \leq 2b, \\
v_2(b - x), & 0 \leq x \leq b.
\end{cases}
$$

Then

$$
\psi^+ = \frac{1}{2} (\psi(2b) + \psi(0)),
$$

which is equal to $\psi_+ = \frac{1}{2} (\psi(l) + \psi(0))$ for $l = 2b$. In fact, we write the Dirac system with nonlocal potentials as the eigenvalue problem for the first order differential operator, substituting $l = 2b$.

The nonlocal potentials v_1 and v_2 can be represented by the Fourier series

$$v_j(x) = \sum_{n \in \mathbb{Z}} v_n^{(j)} \psi_j(x), \quad 0 \leq x \leq b, \quad j = 1, 2,$$

and, respectively,

$$v_n^{(j)} = \frac{1}{b} \int_0^b v_j(x) \overline{\psi_j(x)} dx, \quad j = 1, 2.$$
Description of the spectrum

Theorem

1) All eigenvalues of the operator A different from $(n - \frac{1}{2}) \frac{\pi}{b}$, $n \in \mathbb{Z}$, are simple.

2) The number $(n - \frac{1}{2}) \frac{\pi}{b}$, $n \in \mathbb{Z}$, is an eigenvalue of A if and only if

$$\tilde{v}_n = \frac{2}{b} (-1)^{(n+1)} \quad (\tilde{v}_n := v_n^{(1)} + v_n^{(2)}).$$

3) If $(n - \frac{1}{2}) \frac{\pi}{b}$ is an eigenvalue of A, then this eigenvalue has multiplicity 2 if and only if

$$\sum_{k \neq n} \frac{1}{\lambda_k^{(+)} - \lambda_n^{(+)}} \left((-1)^{k+1} \tilde{v}_k + (-1)^{k+1} \tilde{v}_k - \frac{b}{2} |\tilde{v}_k|^2 \right) = 0.$$

4) The operator A has no eigenvalue with multiplicity exceeding 2.
The characteristic function of the operator \mathcal{A} has the form

$$\chi(\lambda) = -\sin(\lambda b) + \cos(\lambda b) \sum_{n \in \mathbb{Z}} \frac{\alpha_n}{\lambda_n^{(+)} - \lambda},$$

where

$$\alpha_n = \frac{1}{2} (-1)^{n+1} \left(v_n^{(1)} + v_n^{(2)} \right) + \frac{1}{2} (-1)^{n+1} \left(\overline{v}_n^{(1)} + \overline{v}_n^{(2)} \right) - \frac{b}{4} \left| v_n^{(1)} + v_n^{(2)} \right|^2,$$

and $\lambda_n^{(+)} = (n - \frac{1}{2}) \frac{\pi}{b}$. Moreover, we infer the following equation

$$\chi \left(\lambda_n^{(+)} \right) = (-1)^n \left| \frac{b}{2} (-1)^{n+1} \left(v_n^{(1)} + v_n^{(2)} \right) - 1 \right|^2.$$
Inverse problem

Step 1. Knowing all eigenvalues λ_n of the operator A, we construct the characteristic function χ:

$$
\chi(\lambda) = -b(\lambda - \lambda_0) \prod_{n=1}^{\infty} \frac{(\lambda_n - \lambda)(\lambda - \lambda_{-n})}{(n\pi b)^2}.
$$

Step 2. We calculate the values $\chi(\lambda_n^{(+)})$ for all $n \in \mathbb{Z}$, where $\lambda_n^{(+)} = (n - \frac{1}{2}) \frac{\pi}{b}$.

Step 3. Solve the quadratic equation for v_n

$$
\chi \left(\lambda_n^{(+)} \right) = (-1)^n |bv_n - i|^2.
$$

Step 4. Using potential v, we find the potentials v_1, v_2 by reducing procedure.
Example for solving inverse problem

Let $\lambda_1 = \frac{1}{2}$ and $\lambda_n = n$ for $n \neq 1$ be the eigenvalues of the operator A and let $b = \pi$. The characteristic function χ, in this case, is the following

$$\chi(\lambda) = -\sin(\pi \lambda) \frac{\lambda - \frac{1}{2}}{\lambda - 1}.$$

For $\lambda_n^{(+)} = n - \frac{1}{2}$ calculate the values $\chi(\lambda_n^{(+)}) = (-1)^n \frac{n-1}{n-\frac{3}{2}}$. We solve the quadratic equation

$$|\pi v_n - i|^2 = \frac{n-1}{n-\frac{3}{2}},$$

and get

$$v_n = -\frac{i}{2\pi} \left(\left| n - \frac{3}{2} \right| + \sqrt{(n - 1) \left(n - \frac{3}{2} \right)} \right)^{-1}.$$

Then

$$v_n^{(j)} = \frac{(-1)^n}{2\pi} \left(\left| n - \frac{3}{2} \right| + \sqrt{(n - 1) \left(n - \frac{3}{2} \right)} \right)^{-1} \quad j = 1, 2.$$
S. Albeverio, R.O. Hryniv, L. Nizhnik,
Inverse spectral problems for non-local Sturm-Liouville operators,

S. Albeverio, L. Nizhnik,
Schrödinger operators with nonlocal potentials,

K. Dębowska, L. Nizhnik,
Direct and inverse spectral problems for Dirac systems with nonlocal potentials,
submitted (2018)

B.M. Levitan, I.S. Sargsjan,
Sturm-Liouville and Dirac Operators,
L. Nizhnik,
Inverse spectral nonlocal problem for the first order ordinary differential equation,

L. Nizhnik,
Inverse eigenvalue problems for nonlocal Sturm-Liouville operators on a star graph,
Thank you for your attention