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This is the story of two discretizations

@ Which would you rather have?
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Outline

© About stents
@ Usage of stents
@ Stent properties

© FEM on the metric graph
@ 1D curved rod model
@ 1D stent model
@ Weak formulation
@ Mixed formulation

© Time dependent problems
@ Mixed formulation
@ Comparison of the 1D and 3D model
@ Examples

@ Some further developments
@ Optimal design
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Usage of stents

carotid stenosis

BRPTIST MED CTR DO. 9caDO. Son AM12L
opizs0 CAROTID

JACKSON MEMORIAL MED CTR D0. 6en ZS46L
i500P CAROTID
f — — % FROZEN

720R
RL A8 P16

OTID ARTERY BIFURCATION

IGH GRADE STENOSIS

HI
INTERNAL CAROTID ARTERY

TIS=1,9 HI=1,3 AO=69%
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Usage of stents

@ carotid stenosis

BRPTIST MED CTR DO. 9caDO. Son AM12L
1250P1250 CAROTID

D0. 6en ZS46L

HIGH GRADE STENOSIS
INTERNAL CAROTID ARTERY

TIS=1,9 HI=1,3 AO=69%
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Stent properties

@ made of cylindrical tubes by laser cuts

@ mostly made of metals: 316L stainless steel, lately from cobalt,
chrome and nickel.

@ expanded on the place of stenosis (balloon expandable is dominant
(99%) over self-expanding)

@ properties depend on

» complex geometry of stent,
» mechanical properties of material.

@ metal = theory of elasticity
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Stent properties

@ made of cylindrical tubes by laser cuts

@ mostly made of metals: 316L stainless steel, lately from cobalt,
chrome and nickel.

@ expanded on the place of stenosis (balloon expandable is dominant
(99%) over self-expanding)

@ properties depend on

» complex geometry of stent,
» mechanical properties of material.

@ metal = theory of elasticity
@ small deformation = use linearized elasticity

@ We are looking for stents such that response of the stented artery is
closest to the response of the healthy artery.
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@ stent is a 3D elastic body

@ struts thin = very fine mesh
needed
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@ stent is a 3D elastic body

@ struts thin = very fine mesh
needed

@ system very complex and
computationally expensive

@ stent struts are thin
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@ stent is a 3D elastic body

@ struts thin = very fine mesh
needed

@ system very complex and
computationally expensive

@ use simpler model: 1D curved rod model

(rigorous justification Jurak, Tamba&a (1999), (2001))
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1D curved rod model

p+f=o,

g +txp=0,

O +QHIQTG=0, &(0)=a&() =0,
i +txo=0, &0)=i)=0,
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1D curved rod model

p+f=o,

g +txp=0,

O +QHIQTG=0, &(0)=a&() =0,
i +txo=0, &0)=i)=0,

@ system od 12 ODE
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1D curved rod model

p+f=o,

g +txp=0,

O +QHIQTG=0, &(0)=a&() =0,
i +txo=0, &0)=i)=0,

system od 12 ODE
Q = (t, n, b) — rotation (Frenet basis for middle curve)

o

o

@ t — tangent, n — normal, b — binormal for middle curve

@ H — properties of the cross-section geometry, material properties
o

interpretation of unknowns f, §, &, @ : [0, 4] — R3
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1D curved rod model

p+Ff=0,
g +txp=0,

system od 12 ODE

Q = (t, n, b) — rotation (Frenet basis for middle curve)

t — tangent, n — normal, b — binormal for middle curve

H — properties of the cross-section geometry, material properties
interpretation of unknowns f, §, &, @ : [0, 4] — R3

1D model much easier and quicker to solve than 3D

» numerical approximation in 3D: minutes
» numerical approximation in 1D: seconds
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1D stent model

@ At each edge: the system of 12 ODE

pe+F =0,
G +tEx pe=0,
& + Qe(He) (Qe)Tae — 0’
a4+ t° x &° = 0.
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1D stent model

@ At each edge: the system of 12 ODE

pe+F =0,

G +t°x pe=0,

& +Q°(H*)"1(Q°)"§° =0,
i€+t x O =0.

@ Junction conditions:
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1D stent model

@ At each edge: the system of 12 ODE

pe+F =0,
G +t°x pe=0,
& +Q(H9) Q)¢ =0,
i+t x @° = 0.
@ Junction conditions:
» for kinematical quantities: &, @ continuity
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1D stent model

@ At each edge: the system of 12 ODE

@ Junction conditions:
» for kinematical quantities: &,
» for dynamical quantities: p, g
* sum of contact forces () at each vertex =0
* sum of contact couples (§) at each vertex =0

i continuity
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1D stent model

@ At each edge: the system of 12 ODE

@ Junction conditions:
» for kinematical quantities: &,
» for dynamical quantities: p, g
* sum of contact forces () at each vertex =0
* sum of contact couples (§) at each vertex =0

rigorous mathematical justification by I'-convergence in nonlinear

i continuity

elasticity (Tambata, Veli¢ (2010), Griso (2010))
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1D stent model

@ At each edge: the system of 12 ODE

pe+F =0,
f’-e/ + te ~e _ 0
/+ Qe(He)—l(Qe)Tae — 0’
L xE=0.
@ Junction conditions:

» for kinematical quantities: &,
» for dynamical quantities: p, g

i continuity

* sum of contact forces () at each vertex =0
* sum of contact couples (§) at each vertex =0

rigorous mathematical justification by I'-convergence in nonlinear
elasticity (Tambata, Veli¢ (2010), Griso (2010))

(Tambata, Kosor, Cani¢, Paniagua, SIAM J. Appl. Math., 2010)

(Zunino, Tambata, Cutri, Cani¢, Formaggia, Migliavacca, Annals of Biomedical Engineering, 2015)
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Outline in two pictures
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1D stent model

0 =—=—==

For the stent model we need:

e V — vertices (ny number of vertices)
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For the stent model we need:

e V — vertices (ny number of vertices)
o & — edges (ng number of edges)
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1D stent model

For the stent model we need:
e V — vertices (ny number of vertices)
o & — edges (ng number of edges)
o N =(V,€&) - graph
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1D stent model

0 =—=—==

For the stent model we need:

e V — vertices (ny number of vertices)

o & — edges (ng number of edges)

o N =(V,€&) - graph

@ parametrization of edges ®, : [0, /¢] — R3 (for t¢ and Q°)
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1D stent model

0 =—=——==

For the stent model we need:

e V — vertices (ny number of vertices)

o & — edges (ng number of edges)

o N =(V,€&) - graph

@ parametrization of edges ®, : [0, /¢] — R3 (for t¢ and Q°)

@ material and cross—section properties (for H¢)
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Two options

@ Place the contact conditions in the Sobolev space on a graph

@ Consider a larger product Sobolev space and leave contact conditions
in vertices as constraints
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1D stent model — in HY(\/;

A

°)
Unknown: U = (UY,..., U") = ((

(
Test function: V = (V1 ... V")
Function spaces on the graph N:

H (W R) :{v c f[ H((0, £%); R®) :
V(@) () = V(@) () vevvednel,

Vigent ={V € H'(N;R®) 1 0" + 1/ x W":o,i=1,...,ng,/ V =0}.
N
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1D stent model — in H(\; R®)
Unknown: U = (U,...,U") = ((a@',&Y),..., (i",&"))
Test function: V = (V1 ... v") = ((#,w!),... ("%, w"))

Function spaces on the graph N:
ng
H (N R®) :{ Ve [] H (0,6 ) R%) :
i=1

V(@) () = V(@) () vevvednel,

Vireons ={V € HY(NGR®) : &7 + £ x vT/f:O,izl,...,ng7/ vV —o}.
N

Add weak formulations for rods:
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1D stent model — in H(\; R®)

Unknown: U = (Ul,...,U”S) (
Test function: V = (V1. ne)

(', ot
Function spaces on the graph N

(%, w

- v
—~

[ ]

N S
O

&

S

[

N—
N

H (W R) :{v c f[ H((0, £%); R®) :

V(@) () = V(@) () vevvednel,
Vitens ={V € HNVGR®) : & + ¢ x ' = 0,7 = 17...,ng7/ V=0
N

Add weak formulations for rods: find U € Vjent such that
ng Y o ] ] ng 0 »
Z/ Q'H(Q) (&) - wdx :Z/ f - vdx
i=1 0 i=1 70
ng

+ > B()F) - p(0)#(0) + & (¢) (L) — §(0)W(0), V € Vatent
i=1
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1D stent model — in H(\; R®)

Unknown: U = (UY,...,U") = ((&*,&),. ..
Test function: V = (V1 ... v") = ((#, W)
Function spaces on the graph N

HY (N R®) :{v € f[ HY((0,6%); R%) :

V(@) () = V(@) () vevvednel,
Vicent ={V € HY(VGR®) : #' + ¢/ x Wf:O,i:17...,ng7/ V=0
N

Add weak formulations for rods:
find U € Viient such that

ng i ng  pf
L L - =
}j/ QH(Q) (@) - W = j/ Flovda, Ve Ve
=170 i=170
(Cani(’: & Tambata, IMA Journal of Applied Mathematics, 2012)
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1D stent model: properties for the forms

ne  off ne et .
aU,V)=>" | QH(@Q) (@) Wdq, (V)= / Fovid,
=170 =170

Problem (W)

Find U € Vitent such that

a(“v V) = f(v)v Ve Vstent-
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1D stent model: properties for the forms

ne Y ng 0 . )
a(U,V)=> | QH(@Q)(&) Wda, F(V)=) / Froida,
=170 =170
Problem (W)

Find U € Vitent such that

a(“v V) = f(v)v Ve Vstent-

@ Vitent is @ Hilbert space (b is continuous)
@ ais Vitent-elliptic
@ f is continuous on Vitent
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1D stent model: properties for the forms

ne  off ne et .
aU,V)=>" | QH(@Q) (@) Wdq, (V)= / Fovid,
=170 =170

Problem (W)

Find U € Vitent such that

a(“v V) = f(v)v Ve Vstent-

@ Vitent is @ Hilbert space (b is continuous)
@ ais Vitent-elliptic
@ f is continuous on Vitent

Lax-Milgram implies

Theorem (form a is Viieni-elliptic)

There exits a unique solution of Problem (W ).
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1D stent model: a look into constraints

Problem: to construct functions within Viient!

Vitent = {V € HY(WV;R®) : & + ¢/ x I/hI‘/i—O./I'—l,...,ng,/ V =0},
N

L. Grubisi¢ Constrained evolution 25.2.2019 17 / 49



1D stent model: a look into constraints

Problem: to construct functions within Viient!

%WEZ{VGH%anyv“+ﬂxwﬂ:Qi=L.HM&/‘VZOL
N

ng ,éi ) . ] ]
MWH:Z/E(V“WWWl

i=1 70

ng Y ) ng 0 .
+wZAWm+ﬂZAWWL
i=1 i=1
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1D stent model: a look into constraints

Problem: to construct functions within Viient!

Vitent = {V € HY(W:R®) : ¥ + ¢/ x w/ =0,/ = 1,...,”5,/ V =0},
N
ng ‘[’I . -/ . .
b(V,P) ::Z/ P07+t x W )dx
i=1 70

ng Y ) ng 0 .
+a-2/ |7’dx1+,8-2/ W' dxq,
i—1 0 i—1 0
1= 1=
P:(ﬁ]-?"'?ﬁng?a?B)?

ng
M= [*(N;R?) x R® x R?® = [] L?(0, £/, R?) x R? x R®
i=1

Then
Vitent = {V € HY(W;R®) : b(V,0©) = 0,YO € M}.
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1D stent model: a look into constraints

Problem: to construct functions within Viient!

Vitent = {V € HY(W:R®) : ¥ + ¢/ x w/ =0,/ = 1,...,”5,/ V =0},
N
ng ‘[’I . -/ . .
b(V,P) ::Z/ P07+t x W )dx
i=1 70

nge Y ) ng 0 .
+a-2/ |7’dx1+,8-2/ W' dxq,
i=1 70 i=17/0
P:(ﬁ]-?""ﬁns?a?B)?
ng
M= [*(N;R?) x R® x R?® = [] L?(0, £/, R?) x R? x R®
i=1

Then
Vitent = {V € HY(W;R®) : b(V,0©) = 0,YO € M}.

Solution: mixed formulation
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Mixed formulation

Problem (M)
Find (U, P) € HY(N;R®) x M such that

a(U,V)+b(V,P) =f(V), V € HY{(W;R®),
b(U,®) =0, ®@c M.
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Mixed formulation

Problem (M)
Find (U, P) € HY(\;R®) x M such that

a(U,V)+b(V,P) =f(V), V € HY{(W;R®),
b(U,®) =0, ®@c M.

Theorem
If b satisfies the inf-sup condition:

. b(V,O)
in sup
Oc2(VR3)xR3XR3 ye pi(nRe) || VI Hravire) 1Ol 2(avir3) xr3 xR

>p>0

the Problem (M) has unique solution.
Then the Problem (W) is equivalent to Problem (M)!
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Alternatively — in the direct product space

We will also consider direct product space formulation
= Let linear algebra solver do the heavy lifting

o We build H}(A;R®) by eliminating constraints
V(@) H(v)) = VI((¢)H(v))

@ Alternative introduce new variables and extend the restriction form.
We then we get
V = L2(V;R3) x L2(WV;R3) x R3" x R37 x R3¢ x R3" x R3 x RS,
M = L3 (N R?) X LEa (NG R?) x R3™ x R3™.

@ Projection by interpolation theory will be easier, since this is just a
large product space

@ We pay by considerably increasing the dimension of the problem — is
it to expensive?
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inf—sup for stents

Lemma

All stents in class S satisfy inf—sup condition.

Class S contains:

stents with all curved struts

stents with straight struts which are linearly independent in all
vertices they meet.

Proof, essentially LA (Grubisi¢, Ivekovi¢, Tambata, 2ugec, Rad
HAZU, 2017)

Proof for the V' space formulation (Grubii¢, Ljulj, Mehrmann,
Tambaca, 2018)

Direct product space formulation adds additional constraints
(continuity at vertices of displacements and couples)
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FEM for mixed formulation
Let us take finite dimensional subspaces
vhc HY(W;R®), MM c M.
Problem (M")
Find (U", P") € V" x M" such that

a(U", vy + b(Vvh PhY = f(Vvh), vhevh
b(U", @") =0, e"e Mm".
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FEM for mixed formulation
Let us take finite dimensional subspaces
vhc HY(W;R®),  Mhc M.
Problem (M")
Find (U", P") € VP x M" such that

a(U", v+ b(vh Py =f(vh),  vhevh
b(U".@"N =0  ©"c M

If (U", P") solves Problem (M") then U" solves weak forulation
Problem (W")
Find Un ¢ vh . = {V"ec vh. bV ©") =0,0"c M"} such that

a(U" vy = f(vh), vhevh

stent*
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Geometry matters!
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Existence for U"

Note: Vsiéem Z Vitent=—> We can not use Vieni—ellipticity of a
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Existence for U"

Note: Vsiéem Z Vitent=—> We can not use Vieni—ellipticity of a
Discretization:

o V" — piecewise polynomials of order n (denoted by P")
e M" — piecewise polynomials of order m

Lemma

The form a is VI —elliptic if and only if m > n — 1.
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Existence for U"

Note: Vsiéem Z Vitent=—> We can not use Vieni—ellipticity of a
Discretization:

o V" — piecewise polynomials of order n (denoted by P")
e M" — piecewise polynomials of order m

Lemma

The form a is VI —elliptic if and only if m > n — 1.

Discrete inextensibility: f(f’ é - (@) =0, for all g cpm.
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Existence for U"

Note: Vsiéem Z Vitent=—> We can not use Vieni—ellipticity of a
Discretization:

o V" — piecewise polynomials of order n (denoted by P")
e M" — piecewise polynomials of order m

The form a is VI

Lemma
sten ’

(—elliptic if and only if m > n — 1.

Discrete inextensibility: f(f’ é - (@) =0, for all g cpm.

Theorem
Ifm>n-—1, Uh, exists. ’
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Existence for U"

Note: Vsiéem Z Vitent=—> We can not use Vieni—ellipticity of a
Discretization:

o V" — piecewise polynomials of order n (denoted by P")
e M" — piecewise polynomials of order m

Lemma
The form a is VI —elliptic if and only if m > n — 1. J

Discrete inextensibility: f(f’ g (@) =0, for all g c pm.
Theorem
Ifm>n-—1, Uh, exists.

Remark

We miss discrete inf-sup for the formulation in H*(N'; R®). However, for
the direct product space formulation inf-sup follows readily!
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Note — compare with information science PDE graph
models.

@ Information science:
» Huge graph, but a scalar function
» “Finite difference” discretization
@ Structural optimization:
» Highly structured graph, nodes of low incidence degree
» Constrained vector valued functions.

» FEM discretization
L. Grubisi¢ Constrained evolution 25.2.2019 25 / 49



Convergence of FEM for stents

@ introduce new vertices (with the same junction conditions)
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Convergence of FEM for stents

@ introduce new vertices (with the same junction conditions)

@ the same problem with struts of length < h
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Convergence of FEM for stents
@ introduce new vertices (with the same junction conditions)

@ the same problem with struts of length < h

e we use P2 approximation for U" and P! for P"

L. Grubisi¢ Constrained evolution 25.2.2019 26 / 49



Convergence of FEM for stents

@ introduce new vertices (with the same junction conditions)
@ the same problem with struts of length < h

e we use P2 approximation for U" and P! for P"

The error estimate is based on
@ the interpolation estimate for interpolation operators Z? and 71
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Convergence of FEM for stents

@ introduce new vertices (with the same junction conditions)
@ the same problem with struts of length < h
e we use P2 approximation for U" and P! for P"

The error estimate is based on
@ the interpolation estimate for interpolation operators Z? and 71

@ interpolation is strut by strut (this simplifies analysis)
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Convergence of FEM for stents

@ introduce new vertices (with the same junction conditions)
@ the same problem with struts of length < h

e we use P2 approximation for U" and P! for P"

The error estimate is based on
@ the interpolation estimate for interpolation operators Z? and 71
@ interpolation is strut by strut (this simplifies analysis)

2. h
e I-: Vstent — Vstent

is defined by
I2U|e € P2a (IQU)|6;(O) = U’ei(0)> (IQU)|ei(O) = U|ei(£)7

and discrete inextensibility
v ; ; ; ~i 1
/ § (@) +t x&)da =0, 6 cpl
0
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Convergence of FEM for stents

@ introduce new vertices (with the same junction conditions)
@ the same problem with struts of length < h

e we use P2 approximation for U" and P! for P"

The error estimate is based on
@ the interpolation estimate for interpolation operators Z? and 71
@ interpolation is strut by strut (this simplifies analysis)

2. h
e 71°: Vstent — Vstent

is defined by
I2U|e € P2a (IQU)|6;(O) = U’ei(0)> (IQU)|ei(O) = U|ei(£)7
and discrete inextensibility

2 _ _ _ i
6" (@) +t x&Ndq =0, 6 ¢ Pl

0
Note that full inextensibility poses to big restriction for the error estimate!

L. Grubisi¢ Constrained evolution 25.2.2019 26 / 49



Convergence of FEM for stents

@ The interpolation satisfies the estimate

1U = Z2U|| 0,15y < CH[[U"" || 120,41y
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Convergence of FEM for stents

@ The interpolation satisfies the estimate
1U = Z2U|| 0,15y < CH[[U"" || 120,41y

Adapting an argument from Boffi, Brezzi and Gastaldi we obtain

Theorem

Let h > 0 denotes the size of the discretization mesh, (U, P) is the
solution of the mixed formulation and (U", P") solution of the discretized
problem piecewisely (P?)® x (P1)3 polynomials. Then

1U = Ul rrey < CRP(IU" 2z + 1P [l 2wvimsy)-

@ no error estimate for multipliers!

@ yields resolvent estimates for the spectral problem!

(Grubigi¢, Tambaéa, in review NLAA)
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Numerical examples — convergence validate estimates
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constant radial forcing

2 . .
xi radial forcing
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Numerical rate of convergence

Rates of convergence

35
3 o o o} o o
25
2 e H e — e ——— — o ——— — X
15
- ate of H1 error for u|
ate of L2 error for n
ate of L2 error for u

1 L L L L L T T T ,
0.5 1 15 2 25 3 35 4 45 5 55

e E(h)=Ch*
e for radial forcing depending as x? on the longitudinal variable.
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Numerical rate of convergence

Rates of convergence

— » —rate of H1 error for u
—%—rate of L2 error for n
O - rate of L2 error for u

1 L L L L L ,
0.5 1 15 2 25 3 35 4 45 5 55

e E(h)=Ch*

e for radial forcing depending as x? on the longitudinal variable.

@ numerical approximations for 2, 4, 8, 16, 32, 64 division of struts are
compared with solution for 128 divisions of every strut.

@ L2 errors are one order better then H?.

@ coincide with theoretical estimates.
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A paradox!

direct product for. in HY(\)
splitting # | time(s) | size of matrix | time(s) | size of matrix
8 22 105198 2 38958
16 47 211182 42 78702
32 108 423150 152 158190
64 288 847086 629 317166
128 903 1694958 4183 635118

Tablica: Times and matrix sizes for the old and new numerical scheme
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Evolution problem

ﬁiI‘FF :p’Aiattﬁv
ﬁi/+ti x p' =0,
I = ]., .., hg
(:J./—FQIHI.(QI)T(?I: ,
’ .
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Evolution problem

i=1,...,n¢ + junction conditions

~l + Q HI(QI) ~ — 07
Tt xo =6
Let (limit of 3D linearized Antman-Cosserat model)
ng i
m(U, V) = Z;;"A"/O i - vldxy,
i=1

Problem (EvoP)
Find U € L2(0, T; Vitent) such that

8ttm(U, V)+3(U, V): f(V), V € Vitent.
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Eigenvalue problem

Problem (EigP)
Find (A, U) € R X Vitent, U # 0 such that

a(U, V) = m(U, V), V € Vient.
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Eigenvalue problem

Problem (EigP)
Find (A, U) € R X Vitent, U # 0 such that

a(U, V) =Xm(U, V), V € Vient-

Problem (EigQ)
Find (X, (U, E)) € R x (HYN;R®) x L2(NV;R3?) x R3 x R3), (U,Z) #£0
such that
a(U,V)+b(V,Z) = m(U, V), V € HY(\W;R"),
b(U,®)=0, O cLl*N;R% xR?xR>.

= continuous inf — sup condition guarantees that the resolvent set is
nonempty
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Convergence theory by Boffi—-Brezzi—-Marini

Recall solution operators T : H — Dom(a) and S : H — Dom(B),

a(Tf,V)+b(SFf,V)=(f, V), V € Dom(a),
b(O,TF)=0, © c Dom(B").
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Recall solution operators T : H — Dom(a) and S : H — Dom(B),

a(Tf,V)+b(SFf,V)=(f, V), V € Dom(a),

BO,TF)=0,  © c Dom(B"). (1)

= Bounded compact operators Tj, norm converge to T.
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Convergence theory by Boffi—-Brezzi—-Marini

Recall solution operators T : H — Dom(a) and S : H — Dom(B),

a(Tf,V)+b(SFf,V)=(f, V), V € Dom(a),

BO,TF)=0,  © c Dom(B"). (1)

= Bounded compact operators Tj, norm converge to T.
= If the resolvent is converging somewhere — say at z = 0 —then it
converges for every z in resolvent set p(T) = C \ Spec(T).
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Convergence theory by Boffi—-Brezzi—-Marini

Recall solution operators T : H — Dom(a) and S : H — Dom(B),

a(Tf,V)+b(SFf,V)=(f, V), V € Dom(a),

BO,TF)=0,  © c Dom(B"). (1)

= Bounded compact operators Tj, norm converge to T.

= If the resolvent is converging somewhere — say at z = 0 —then it
converges for every z in resolvent set p(T) = C \ Spec(T).

= Analogous definition of Tp,.
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Convergence rate — comments

= Let A\, u and Ay and up, be eigenvalues and eigenvectors from V/
= Then

A= Xnl < CIIT = Thllpom(a) = O/ — Z%) = O(h?)
HU - UhHDom(a) < CHT - 7_hHDom(a) = O(I _Iz) = O(hz) :

eigenfuction c.rate optimal, eigenvalue c.rate not.
= If §; exists, then

A= An| < CIT = Thllpom(a) IS — Shll -

= \p is not a Ritz value of the solution operator T.
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Convergence rate — comments

= Let A\, u and Ay and up, be eigenvalues and eigenvectors from V/
= Then

A= Xnl < CIIT = Thllpom(a) = O/ — Z%) = O(h?)
HU - UhHDom(a) < CHT - 7_hHDom(a) = O(I _Iz) = O(hz) :

eigenfuction c.rate optimal, eigenvalue c.rate not.
= If §; exists, then

A= An| < CIT = Thllpom(a) IS — Shll -

= \p is not a Ritz value of the solution operator T.
= Note that here we also have the “singular mass" operator, and so we
are actually studying the convergence of T,Mp!
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Structure recapitulation

= Jordan structure as a consequence of algebraic constraints.

Lemma

Consider (EigQ) and let (E, K) be its block operator matrix representation.

Then there exists a nonsingular VV with the property that

m

>

where A3z = AI3, B4y, and Bsy are invertible, and F4 = F3.

V*EV =

V*KV =

ro 2,
0 2

0 L Vlz= | 5

M &n

L 0 25

L. Grubisi¢
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Recapitulation

@ Sobolev spaces on graphs — nice review by O. Post

@ Good interpolation operators for lower order spaces — hard because of
the contact conditions in junctions! Geometry of the graph plays a
role.

@ for second order problems see Arioli and Benzi 2015.

The interplay of geometry and constraints

Doing interpolation on each edge and then assembling into a graph
sometimes fails.
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Verification of the 1D model

Compare 1D and 3D solutions (jointly with K. Schmidt and A. Semin)
@ geometry

@ discretization

Iy
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Verification of the 1D model — COMSOL, CONCEPTS

@ Problems with thin geometries
» switch to compiled code in CONCEPTS (K.Schmidt)

@ Error between 1D reduced model and CONCEPTS 3D model is 2%.
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Examples of eigenproblem for 1D stent model

Four stent meshes considered
(similar to Palmaz, Express; Cypher and Xience by Cordis)

iV LR

N N S
0 1 0 =

- fé E

L. Grubisi¢



Leading eigenvalues

L. Grubisi¢

Palmaz | Cypher | Express | Xience
1. || 1.033 | 0.8894 | 0.06014 | 0.05488
2. | 1.033 | 0.8895 | 0.06014 | 0.05488
3. ] 5.265 | 1.3683 | 0.32504 | 0.28767
4. | 7.499 | 3.5328 | 0.33972 | 0.32201
5.1 7.499 | 3.5329 | 0.33973 | 0.32201
6. | 11.329 | 3.6604 | 0.58740 | 0.58038
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Express
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Convergence rates
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Evolution problems

Structure of the pencil

@ 0 is in the resolvent set
@ Problem is index 2 (oo eigenvalue has Jordan chain of length 2)
@ Imaginary eigenvalues are semisimple

@ use deflation and exponential integrators, or backward differentiation
schemes like BDF-2, or Volker's favorite Radau2a.
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Evolution problems

Structure of the pencil

0 is in the resolvent set
Problem is index 2 (oo eigenvalue has Jordan chain of length 2)

°
°
@ Imaginary eigenvalues are semisimple
°

use deflation and exponential integrators, or backward differentiation
schemes like BDF-2, or Volker's favorite Radau2a.

=> Perhaps another time in more detail :)
Work so far

@ Grubisi¢, Tamba&a, Quasi-semidefinite eigenvalue problem and applications. Nanosystems: Physics, Chemistry,
Mathematics, 2017

@ Christian Mehl, Volker Mehrmann, Michal Wojtylak, Linear algebra properties of dissipative Hamiltonian descriptor
systems, ArXiv.org, 2018

@ Luka Grubigi¢, Matko Ljulj, Volker Mehrmann, Josip Tambaca, Modeling and discretization methods for the numerical
simulation of elastic stents, ArXiv.org, 2018
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The time stepper actually reads

= In the phase space implicit midpoint rule reads
E Of |ukv1—uk| _ | 0 K| [uks1+ uk ﬁ + f(:) h
0 K| |vks1 — vk T l-K 0 Vik+1 + V| 2 0

= Port Hamiltionian formulation since K is invertible

= Time stepper in action

L. Grubigi¢ Constrained evolution 25.2.2019

47 / 49



Optimal design of stents

Minimization of maximal radial displacement — minimize the discrepancy
to the artery without stenosis.

x10°

Original configuration fminsearch " Optimal” configuration
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Thank you for your attention!
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