Constrained evolution problems on a metric graph

Luka Grubišić¹ Department of Mathematics, University of Zagreb luka.grubisic@math.hr

Differential Operators on Graphs and Waveguides, TU Graz, 2019.

L. Grubišić

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶

L. Grubišić

 ▲ ■ ▶ ■ 𝒴 𝒴 𝔄 𝔅

 25.2.2019

 2 / 49

< □ > < □ > < □ > < □ > < □ > < □ >

25.2.2019 2 / 49

→ ∃ →

• Which would you rather have?

A more comprehensive list of collaborators

- Josip Tambača, Department of Mathematics, University of Zagreb (thanks for the slides).
- Sunčica Čanić, UC Berkeley
- David Paniagua, Baylor College of Medicine, Huston
- Bojan \check{Z} ugec, Faculty of Organization and Informatics, University of Zagreb
- Mate Kosor, Maritime Department, University of Zadar
- Matko Ljulj, University of Zagreb
- Josip Iveković, University of Zagreb
- Matea Galović, University of Zagreb
- Marko Hajba, University of Zagreb
- K. Schmidt, TU Darmstadt
- Volker Mehrmann, TU Berlin

Outline

About stents

- Usage of stents
- Stent properties

2 FEM on the metric graph

- ID curved rod model
- 1D stent model
- Weak formulation
- Mixed formulation

3 Time dependent problems

- Mixed formulation
- Comparison of the 1D and 3D model
- Examples

4 Some further developments

Optimal design

• carotid stenosis

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ 二臣 - つへ⊙

• carotid stenosis

• stent: "solution" of the problem

(日)

25.2.2019 6 / 49

・ロト・西ト・ヨト・ヨー うへで

25.2.2019 6 / 49

・ロト・日本・日本・日本・日本

- made of cylindrical tubes by laser cuts
- mostly made of metals: 316L stainless steel, lately from cobalt, chrome and nickel.
- expanded on the place of stenosis (balloon expandable is dominant (99%) over self-expanding)
- properties depend on
 - complex geometry of stent,
 - mechanical properties of material.
- metal \implies theory of elasticity

- made of cylindrical tubes by laser cuts
- mostly made of metals: 316L stainless steel, lately from cobalt, chrome and nickel.
- expanded on the place of stenosis (balloon expandable is dominant (99%) over self-expanding)
- properties depend on
 - complex geometry of stent,
 - mechanical properties of material.
- metal \implies theory of elasticity
- small deformation \Longrightarrow use linearized elasticity
- We are looking for stents such that response of the stented artery is closest to the response of the healthy artery.

- stent is a 3D elastic body
- $\bullet \mbox{ struts thin } \Longrightarrow \mbox{ very fine mesh} \\ \mbox{ needed }$

A D N A B N A B N A B N

- stent is a 3D elastic body
- $\bullet \mbox{ struts thin } \Longrightarrow \mbox{ very fine mesh} \\ \mbox{ needed }$
- system very complex and computationally expensive

< 3 >

stent struts are thin

- stent is a 3D elastic body
- struts thin \Longrightarrow very fine mesh needed
- system very complex and computationally expensive

3 > < 3 >

stent struts are thin

- stent is a 3D elastic body
- struts thin \Longrightarrow very fine mesh needed
- system very complex and computationally expensive

• use simpler model: 1D curved rod model

(rigorous justification Jurak, Tambača (1999), (2001))

• = • •

stent struts are thin

- stent is a 3D elastic body
- struts thin \Longrightarrow very fine mesh needed
- system very complex and computationally expensive

• use simpler model: 1D curved rod model

(rigorous justification Jurak, Tambača (1999), (2001))

• = • •

$$\begin{split} \tilde{\boldsymbol{p}}' + \tilde{\boldsymbol{f}} &= 0, \\ \tilde{\boldsymbol{q}}' + \boldsymbol{t} \times \tilde{\boldsymbol{p}} &= 0, \\ \tilde{\boldsymbol{\omega}}' + \boldsymbol{Q} \boldsymbol{H}^{-1} \boldsymbol{Q}^{T} \tilde{\boldsymbol{q}} &= 0, \quad \tilde{\boldsymbol{\omega}}(0) = \tilde{\boldsymbol{\omega}}(\ell) = 0, \\ \tilde{\boldsymbol{u}}' + \boldsymbol{t} \times \tilde{\boldsymbol{\omega}} &= 0, \quad \tilde{\boldsymbol{u}}(0) = \tilde{\boldsymbol{u}}(\ell) = 0, \end{split}$$

25.2.2019 9 / 49

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

$$\begin{split} \tilde{\boldsymbol{p}}' + \tilde{\boldsymbol{f}} &= 0, \\ \tilde{\boldsymbol{q}}' + \boldsymbol{t} \times \tilde{\boldsymbol{p}} &= 0, \\ \tilde{\boldsymbol{\omega}}' + \boldsymbol{Q} \boldsymbol{H}^{-1} \boldsymbol{Q}^{T} \tilde{\boldsymbol{q}} &= 0, \quad \tilde{\boldsymbol{\omega}}(0) = \tilde{\boldsymbol{\omega}}(\ell) = 0, \\ \tilde{\boldsymbol{u}}' + \boldsymbol{t} \times \tilde{\boldsymbol{\omega}} &= 0, \quad \tilde{\boldsymbol{u}}(0) = \tilde{\boldsymbol{u}}(\ell) = 0, \end{split}$$

• system od 12 ODE

A D N A B N A B N A B N

$$\begin{split} \tilde{\boldsymbol{p}}' + \tilde{\boldsymbol{f}} &= 0, \\ \tilde{\boldsymbol{q}}' + \boldsymbol{t} \times \tilde{\boldsymbol{p}} &= 0, \\ \tilde{\boldsymbol{\omega}}' + \boldsymbol{Q} \boldsymbol{H}^{-1} \boldsymbol{Q}^{T} \tilde{\boldsymbol{q}} &= 0, \quad \tilde{\boldsymbol{\omega}}(0) = \tilde{\boldsymbol{\omega}}(\ell) = 0, \\ \tilde{\boldsymbol{u}}' + \boldsymbol{t} \times \tilde{\boldsymbol{\omega}} &= 0, \quad \tilde{\boldsymbol{u}}(0) = \tilde{\boldsymbol{u}}(\ell) = 0, \end{split}$$

- system od 12 ODE
- $\mathbf{Q} = (\mathbf{t}, \mathbf{n}, \mathbf{b})$ rotation (Frenet basis for middle curve)
- t tangent, n normal, b binormal for middle curve
- H properties of the cross-section geometry, material properties
- interpretation of unknowns $\tilde{\pmb{\rho}}, \tilde{\pmb{q}}, \tilde{\pmb{\omega}}, \tilde{\pmb{u}} : [0, \ell] \to \mathbb{R}^3$

$$\begin{split} \tilde{\boldsymbol{p}}' + \tilde{\boldsymbol{f}} &= 0, \\ \tilde{\boldsymbol{q}}' + \boldsymbol{t} \times \tilde{\boldsymbol{p}} &= 0, \\ \tilde{\boldsymbol{\omega}}' + \boldsymbol{Q} \boldsymbol{H}^{-1} \boldsymbol{Q}^{T} \tilde{\boldsymbol{q}} &= 0, \quad \tilde{\boldsymbol{\omega}}(0) = \tilde{\boldsymbol{\omega}}(\ell) = 0, \\ \tilde{\boldsymbol{u}}' + \boldsymbol{t} \times \tilde{\boldsymbol{\omega}} &= 0, \quad \tilde{\boldsymbol{u}}(0) = \tilde{\boldsymbol{u}}(\ell) = 0, \end{split}$$

- system od 12 ODE
- $\mathbf{Q} = (\mathbf{t}, \mathbf{n}, \mathbf{b})$ rotation (Frenet basis for middle curve)
- t tangent, n normal, b binormal for middle curve
- H properties of the cross-section geometry, material properties
- interpretation of unknowns $\tilde{\pmb{\rho}}, \tilde{\pmb{q}}, \tilde{\pmb{\omega}}, \tilde{\pmb{u}} : [0, \ell] \to \mathbb{R}^3$
- 1D model much easier and quicker to solve than 3D
 - numerical approximation in 3D: minutes
 - numerical approximation in 1D: seconds

• At each edge: the system of 12 ODE

$$\begin{split} \tilde{\boldsymbol{p}}^{e'} + \tilde{\boldsymbol{f}}^{e} &= 0, \\ \tilde{\boldsymbol{q}}^{e'} + \boldsymbol{t}^{e} \times \tilde{\boldsymbol{p}}^{e} &= 0, \\ \tilde{\boldsymbol{\omega}}^{e'} + \boldsymbol{Q}^{e} (\boldsymbol{H}^{e})^{-1} (\boldsymbol{Q}^{e})^{T} \tilde{\boldsymbol{q}}^{e} &= 0, \\ \tilde{\boldsymbol{u}}^{e'} + \boldsymbol{t}^{e} \times \tilde{\boldsymbol{\omega}}^{e} &= 0. \end{split}$$

< □ > < 同 > < 回 > < 回 > < 回 >

• At each edge: the system of 12 ODE

$$\begin{split} \tilde{\boldsymbol{p}}^{e'} + \tilde{\boldsymbol{f}}^{e} &= 0, \\ \tilde{\boldsymbol{q}}^{e'} + \boldsymbol{t}^{e} \times \tilde{\boldsymbol{p}}^{e} &= 0, \\ \tilde{\boldsymbol{\omega}}^{e'} + \boldsymbol{Q}^{e} (\boldsymbol{H}^{e})^{-1} (\boldsymbol{Q}^{e})^{T} \tilde{\boldsymbol{q}}^{e} &= 0, \\ \tilde{\boldsymbol{u}}^{e'} + \boldsymbol{t}^{e} \times \tilde{\boldsymbol{\omega}}^{e} &= 0. \end{split}$$

• Junction conditions:

• = • •

• At each edge: the system of 12 ODE

$$\begin{split} & \tilde{\boldsymbol{p}}^{e'} + \tilde{\boldsymbol{f}}^{e} = 0, \\ & \tilde{\boldsymbol{q}}^{e'} + \boldsymbol{t}^{e} \times \tilde{\boldsymbol{p}}^{e} = 0, \\ & \tilde{\boldsymbol{\omega}}^{e'} + \boldsymbol{Q}^{e} (\boldsymbol{H}^{e})^{-1} (\boldsymbol{Q}^{e})^{T} \tilde{\boldsymbol{q}}^{e} = 0, \\ & \tilde{\boldsymbol{u}}^{e'} + \boldsymbol{t}^{e} \times \tilde{\boldsymbol{\omega}}^{e} = 0. \end{split}$$

- Junction conditions:
 - for kinematical quantities: $\boldsymbol{\tilde{\omega}}, \boldsymbol{\tilde{u}}$ continuity

• At each edge: the system of 12 ODE

$$\begin{split} \tilde{\boldsymbol{p}}^{e'} + \tilde{\boldsymbol{f}}^{e} &= 0, \\ \tilde{\boldsymbol{q}}^{e'} + \boldsymbol{t}^{e} \times \tilde{\boldsymbol{p}}^{e} &= 0, \\ \tilde{\boldsymbol{\omega}}^{e'} + \boldsymbol{Q}^{e} (\boldsymbol{H}^{e})^{-1} (\boldsymbol{Q}^{e})^{T} \tilde{\boldsymbol{q}}^{e} &= 0, \\ \tilde{\boldsymbol{u}}^{e'} + \boldsymbol{t}^{e} \times \tilde{\boldsymbol{\omega}}^{e} &= 0. \end{split}$$

- Junction conditions:
 - for kinematical quantities: $\boldsymbol{\tilde{\omega}}, \boldsymbol{\tilde{u}}$ continuity
 - for dynamical quantities: $\tilde{\pmb{p}}, \tilde{\pmb{q}}$
 - ***** sum of contact forces (\tilde{p}) at each vertex =0
 - ***** sum of contact couples (\tilde{q}) at each vertex =0

25.2.2019 10 / 49

• At each edge: the system of 12 ODE

$$\begin{split} \tilde{\boldsymbol{p}}^{e'} + \tilde{\boldsymbol{f}}^{e} &= 0, \\ \tilde{\boldsymbol{q}}^{e'} + \boldsymbol{t}^{e} \times \tilde{\boldsymbol{p}}^{e} &= 0, \\ \tilde{\boldsymbol{\omega}}^{e'} + \boldsymbol{Q}^{e} (\boldsymbol{H}^{e})^{-1} (\boldsymbol{Q}^{e})^{T} \tilde{\boldsymbol{q}}^{e} &= 0, \\ \tilde{\boldsymbol{u}}^{e'} + \boldsymbol{t}^{e} \times \tilde{\boldsymbol{\omega}}^{e} &= 0. \end{split}$$

- Junction conditions:
 - for kinematical quantities: $\boldsymbol{\tilde{\omega}}, \boldsymbol{\tilde{u}}$ continuity
 - for dynamical quantities: $\boldsymbol{\tilde{p}}, \boldsymbol{\tilde{q}}$
 - ***** sum of contact forces (\tilde{p}) at each vertex =0
 - \star sum of contact couples ($ilde{q}$) at each vertex =0

rigorous mathematical justification by Γ-convergence in nonlinear elasticity (Tambača, Velčić (2010), Griso (2010))

• At each edge: the system of 12 ODE

$$\begin{split} \tilde{\boldsymbol{p}}^{e'} + \tilde{\boldsymbol{f}}^{e} &= 0, \\ \tilde{\boldsymbol{q}}^{e'} + \boldsymbol{t}^{e} \times \tilde{\boldsymbol{p}}^{e} &= 0, \\ \tilde{\boldsymbol{\omega}}^{e'} + \boldsymbol{Q}^{e} (\boldsymbol{H}^{e})^{-1} (\boldsymbol{Q}^{e})^{T} \tilde{\boldsymbol{q}}^{e} &= 0, \\ \tilde{\boldsymbol{u}}^{e'} + \boldsymbol{t}^{e} \times \tilde{\boldsymbol{\omega}}^{e} &= 0. \end{split}$$

- Junction conditions:
 - for kinematical quantities: $\boldsymbol{\tilde{\omega}}, \boldsymbol{\tilde{u}}$ continuity
 - for dynamical quantities: $\boldsymbol{\tilde{p}}, \boldsymbol{\tilde{q}}$
 - ***** sum of contact forces ($\tilde{\boldsymbol{p}}$) at each vertex =0
 - \star sum of contact couples ($ilde{q}$) at each vertex =0

rigorous mathematical justification by $\Gamma\text{-convergence}$ in nonlinear elasticity (Tambača, Velčić (2010), Griso (2010))

(Tambača, Kosor, Čanić, Paniagua, SIAM J. Appl. Math., 2010)

(Zunino, Tambača, Cutri, Čanić, Formaggia, Migliavacca, Annals of Biomedical Engineering, 2015)

L. Grubišić

Outline in two pictures

	\sim				~	1
		r			c	0
_	9		u	υ	2	s

25.2.2019 11 / 49

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

For the stent model we need:

• \mathcal{V} – vertices ($n_{\mathcal{V}}$ number of vertices)

• = • •

For the stent model we need:

- \mathcal{V} vertices ($n_{\mathcal{V}}$ number of vertices)
- \mathcal{E} edges ($n_{\mathcal{E}}$ number of edges)

For the stent model we need:

- \mathcal{V} vertices ($n_{\mathcal{V}}$ number of vertices)
- \mathcal{E} edges ($n_{\mathcal{E}}$ number of edges)
- $\mathcal{N} = (\mathcal{V}, \mathcal{E})$ graph

• = • •

For the stent model we need:

- \mathcal{V} vertices ($n_{\mathcal{V}}$ number of vertices)
- \mathcal{E} edges ($n_{\mathcal{E}}$ number of edges)
- $\mathcal{N} = (\mathcal{V}, \mathcal{E}) \mathsf{graph}$
- parametrization of edges $\mathbf{\Phi}_e : [0, \ell_e] \to \mathbb{R}^3$ (for t^e and \mathbf{Q}^e)

→ ∃ →

For the stent model we need:

- \mathcal{V} vertices ($n_{\mathcal{V}}$ number of vertices)
- \mathcal{E} edges ($n_{\mathcal{E}}$ number of edges)
- $\mathcal{N} = (\mathcal{V}, \mathcal{E}) \mathsf{graph}$
- parametrization of edges $\mathbf{\Phi}_e : [0, \ell_e] \to \mathbb{R}^3$ (for t^e and \mathbf{Q}^e)
- material and cross-section properties (for **H**^e)

→ ∃ →

- **1** Place the contact conditions in the Sobolev space on a graph
- Consider a larger product Sobolev space and leave contact conditions in vertices as constraints

1D stent model – in $H^1(\mathcal{N}; \mathbb{R}^6)$

Unknown:
$$\boldsymbol{U} = (\boldsymbol{U}^1, \dots, \boldsymbol{U}^{n_{\mathcal{E}}}) = ((\boldsymbol{\tilde{u}}^1, \boldsymbol{\tilde{\omega}}^1), \dots, (\boldsymbol{\tilde{u}}^{n_{\mathcal{E}}}, \boldsymbol{\tilde{\omega}}^{n_{\mathcal{E}}}))$$

Test function: $\boldsymbol{V} = (\boldsymbol{V}^1, \dots, \boldsymbol{V}^{n_{\mathcal{E}}}) = ((\boldsymbol{\tilde{v}}^1, \boldsymbol{\tilde{w}}^1), \dots, (\boldsymbol{\tilde{v}}^{n_{\mathcal{E}}}, \boldsymbol{\tilde{w}}^{n_{\mathcal{E}}}))$

25.2.2019 14 / 49

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <
Unknown: $\boldsymbol{U} = (\boldsymbol{U}^1, \dots, \boldsymbol{U}^{n_{\mathcal{E}}}) = ((\boldsymbol{\tilde{u}}^1, \boldsymbol{\tilde{\omega}}^1), \dots, (\boldsymbol{\tilde{u}}^{n_{\mathcal{E}}}, \boldsymbol{\tilde{\omega}}^{n_{\mathcal{E}}}))$ Test function: $\boldsymbol{V} = (\boldsymbol{V}^1, \dots, \boldsymbol{V}^{n_{\mathcal{E}}}) = ((\boldsymbol{\tilde{v}}^1, \boldsymbol{\tilde{w}}^1), \dots, (\boldsymbol{\tilde{v}}^{n_{\mathcal{E}}}, \boldsymbol{\tilde{w}}^{n_{\mathcal{E}}}))$ Function spaces on the graph \mathcal{N} :

$$\begin{split} H^{1}(\mathcal{N};\mathbb{R}^{6}) = & \left\{ \boldsymbol{V} \in \prod_{i=1}^{n_{\mathcal{E}}} H^{1}((0,\ell^{e_{i}});\mathbb{R}^{6}) : \\ \boldsymbol{V}^{i}((\boldsymbol{\Phi}^{i})^{-1}(\boldsymbol{v})) = \boldsymbol{V}^{j}((\boldsymbol{\Phi}^{j})^{-1}(\boldsymbol{v})), \boldsymbol{v} \in \mathcal{V}, \boldsymbol{v} \in \boldsymbol{e}^{i} \cap \boldsymbol{e}^{j} \right\}, \\ V_{\text{stent}} = & \left\{ \boldsymbol{V} \in H^{1}(\mathcal{N};\mathbb{R}^{6}) : \boldsymbol{\tilde{v}}^{i'} + \boldsymbol{t}^{i} \times \boldsymbol{\tilde{w}}^{i} = 0, i = 1, \dots, n_{\mathcal{E}}, \int_{\mathcal{N}} \boldsymbol{V} = 0 \right\}. \end{split}$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Unknown: $\boldsymbol{U} = (\boldsymbol{U}^1, \dots, \boldsymbol{U}^{n_{\mathcal{E}}}) = ((\boldsymbol{\tilde{u}}^1, \boldsymbol{\tilde{\omega}}^1), \dots, (\boldsymbol{\tilde{u}}^{n_{\mathcal{E}}}, \boldsymbol{\tilde{\omega}}^{n_{\mathcal{E}}}))$ Test function: $\boldsymbol{V} = (\boldsymbol{V}^1, \dots, \boldsymbol{V}^{n_{\mathcal{E}}}) = ((\boldsymbol{\tilde{v}}^1, \boldsymbol{\tilde{w}}^1), \dots, (\boldsymbol{\tilde{v}}^{n_{\mathcal{E}}}, \boldsymbol{\tilde{w}}^{n_{\mathcal{E}}}))$ Function spaces on the graph \mathcal{N} :

$$\begin{aligned} H^{1}(\mathcal{N};\mathbb{R}^{6}) = & \left\{ \boldsymbol{V} \in \prod_{i=1}^{n_{\mathcal{E}}} H^{1}((0,\ell^{e_{i}});\mathbb{R}^{6}) : \\ \boldsymbol{V}^{i}((\boldsymbol{\Phi}^{i})^{-1}(\boldsymbol{v})) = \boldsymbol{V}^{j}((\boldsymbol{\Phi}^{j})^{-1}(\boldsymbol{v})), \boldsymbol{v} \in \mathcal{V}, \boldsymbol{v} \in \boldsymbol{e}^{i} \cap \boldsymbol{e}^{j} \right\}, \\ V_{\text{stent}} = & \left\{ \boldsymbol{V} \in H^{1}(\mathcal{N};\mathbb{R}^{6}) : \boldsymbol{\tilde{v}}^{i'} + \boldsymbol{t}^{i} \times \boldsymbol{\tilde{w}}^{i} = 0, i = 1, \dots, n_{\mathcal{E}}, \int_{\mathcal{N}} \boldsymbol{V} = 0 \right\}. \end{aligned}$$

Add weak formulations for rods:

Unknown: $\boldsymbol{U} = (\boldsymbol{U}^1, \dots, \boldsymbol{U}^{n_{\mathcal{E}}}) = ((\boldsymbol{\tilde{u}}^1, \boldsymbol{\tilde{\omega}}^1), \dots, (\boldsymbol{\tilde{u}}^{n_{\mathcal{E}}}, \boldsymbol{\tilde{\omega}}^{n_{\mathcal{E}}}))$ Test function: $\boldsymbol{V} = (\boldsymbol{V}^1, \dots, \boldsymbol{V}^{n_{\mathcal{E}}}) = ((\boldsymbol{\tilde{v}}^1, \boldsymbol{\tilde{w}}^1), \dots, (\boldsymbol{\tilde{v}}^{n_{\mathcal{E}}}, \boldsymbol{\tilde{w}}^{n_{\mathcal{E}}}))$ Function spaces on the graph \mathcal{N} :

$$\begin{split} H^{1}(\mathcal{N};\mathbb{R}^{6}) = & \left\{ \boldsymbol{V} \in \prod_{i=1}^{n_{\mathcal{E}}} H^{1}((0,\ell^{e_{i}});\mathbb{R}^{6}) : \\ \boldsymbol{V}^{i}((\boldsymbol{\Phi}^{i})^{-1}(\boldsymbol{v})) = \boldsymbol{V}^{j}((\boldsymbol{\Phi}^{j})^{-1}(\boldsymbol{v})), \boldsymbol{v} \in \mathcal{V}, \boldsymbol{v} \in \boldsymbol{e}^{i} \cap \boldsymbol{e}^{j} \right\}, \\ V_{\text{stent}} = & \left\{ \boldsymbol{V} \in H^{1}(\mathcal{N};\mathbb{R}^{6}) : \boldsymbol{\tilde{v}}^{i'} + \boldsymbol{t}^{i} \times \boldsymbol{\tilde{w}}^{i} = 0, i = 1, \dots, n_{\mathcal{E}}, \int_{\mathcal{N}} \boldsymbol{V} = 0 \right\}. \end{split}$$

Add weak formulations for rods: find $oldsymbol{U} \in V_{ ext{stent}}$ such that

$$\begin{split} \sum_{i=1}^{n_{\mathcal{E}}} \int_{0}^{\ell^{i}} \mathbf{Q}^{i} \mathbf{H}^{i}(\mathbf{Q}^{i})^{T} (\tilde{\boldsymbol{\omega}}^{i})' \cdot \tilde{\boldsymbol{w}}' dx_{1} &= \sum_{i=1}^{n_{\mathcal{E}}} \int_{0}^{\ell^{i}} \tilde{\boldsymbol{f}}^{i} \cdot \tilde{\boldsymbol{v}} dx_{1} \\ &+ \sum_{i=1}^{n_{\mathcal{E}}} \tilde{\boldsymbol{p}}^{i}(\ell^{i}) \tilde{\boldsymbol{v}}(\ell^{i}) - \tilde{\boldsymbol{p}}^{i}(0) \tilde{\boldsymbol{v}}(0) + \tilde{\boldsymbol{q}}^{i}(\ell^{i}) \tilde{\boldsymbol{w}}(\ell^{i}) - \tilde{\boldsymbol{q}}^{i}(0) \tilde{\boldsymbol{w}}(0), \ \boldsymbol{V} \in V_{\text{stent}} \end{split}$$

Unknown: $\boldsymbol{U} = (\boldsymbol{U}^1, \dots, \boldsymbol{U}^{n_{\mathcal{E}}}) = ((\boldsymbol{\tilde{u}}^1, \boldsymbol{\tilde{\omega}}^1), \dots, (\boldsymbol{\tilde{u}}^{n_{\mathcal{E}}}, \boldsymbol{\tilde{\omega}}^{n_{\mathcal{E}}}))$ Test function: $\boldsymbol{V} = (\boldsymbol{V}^1, \dots, \boldsymbol{V}^{n_{\mathcal{E}}}) = ((\boldsymbol{\tilde{v}}^1, \boldsymbol{\tilde{w}}^1), \dots, (\boldsymbol{\tilde{v}}^{n_{\mathcal{E}}}, \boldsymbol{\tilde{w}}^{n_{\mathcal{E}}}))$ Function spaces on the graph \mathcal{N} :

$$\begin{split} H^1(\mathcal{N};\mathbb{R}^6) = & \Big\{ \boldsymbol{V} \in \prod_{i=1}^{n_{\mathcal{E}}} H^1((0,\ell^{e_i});\mathbb{R}^6) : \\ & \boldsymbol{V}^i((\boldsymbol{\Phi}^i)^{-1}(v)) = \boldsymbol{V}^j((\boldsymbol{\Phi}^j)^{-1}(v)), v \in \mathcal{V}, v \in e^i \cap e^j \Big\}, \\ & V_{\text{stent}} = & \{ \boldsymbol{V} \in H^1(\mathcal{N};\mathbb{R}^6) : \boldsymbol{\tilde{v}}^{i'} + \boldsymbol{t}^i \times \boldsymbol{\tilde{w}}^i = 0, i = 1, \dots, n_{\mathcal{E}}, \int_{\mathcal{N}} \boldsymbol{V} = 0 \}. \end{split}$$

Add weak formulations for rods: find $\boldsymbol{U} \in V_{\mathrm{stent}}$ such that

$$\sum_{i=1}^{n_{\mathcal{E}}} \int_{0}^{\ell^{i}} \mathbf{Q}^{i} \mathbf{H}^{i} (\mathbf{Q}^{i})^{\mathsf{T}} (\tilde{\boldsymbol{\omega}}^{i})' \cdot \tilde{\boldsymbol{w}}' d\mathsf{x}_{1} = \sum_{i=1}^{n_{\mathcal{E}}} \int_{0}^{\ell^{i}} \tilde{\boldsymbol{f}}^{i} \cdot \tilde{\boldsymbol{v}} d\mathsf{x}_{1}, \qquad \boldsymbol{V} \in V_{\mathrm{stent}}$$

(Čanić & Tambača, IMA Journal of Applied Mathematics, 2012)

L. Grubišić

25.2.2019 15 / 49

1D stent model: properties for the forms

$$a(\boldsymbol{U},\boldsymbol{V}) = \sum_{i=1}^{n_{\mathcal{E}}} \int_{0}^{\ell^{i}} \mathbf{Q}^{i} \mathbf{H}^{i}(\mathbf{Q}^{i})^{T} (\tilde{\boldsymbol{\omega}}^{i})^{\prime} \cdot \tilde{\boldsymbol{w}}^{\prime} dx_{1}, \quad f(\boldsymbol{V}) = \sum_{i=1}^{n_{\mathcal{E}}} \int_{0}^{\ell^{i}} \tilde{\boldsymbol{f}}^{i} \cdot \tilde{\boldsymbol{v}}^{i} dx_{1},$$

Problem (W) Find $\boldsymbol{U} \in V_{\text{stent}}$ such that

$$a(oldsymbol{U},oldsymbol{V})=f(oldsymbol{V}),\qquadoldsymbol{V}\in V_{ ext{stent}}.$$

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

1D stent model: properties for the forms

$$a(\boldsymbol{U},\boldsymbol{V}) = \sum_{i=1}^{n_{\mathcal{E}}} \int_{0}^{\ell^{i}} \mathbf{Q}^{i} \mathbf{H}^{i}(\mathbf{Q}^{i})^{T} (\tilde{\boldsymbol{\omega}}^{i})^{\prime} \cdot \tilde{\boldsymbol{w}}^{\prime} dx_{1}, \quad f(\boldsymbol{V}) = \sum_{i=1}^{n_{\mathcal{E}}} \int_{0}^{\ell^{i}} \tilde{\boldsymbol{f}}^{i} \cdot \tilde{\boldsymbol{v}}^{i} dx_{1},$$

Problem (W) Find $\boldsymbol{U} \in V_{\text{stent}}$ such that

$$a(\boldsymbol{U},\, \boldsymbol{V})=f(\, \boldsymbol{V}), \qquad \boldsymbol{V}\in V_{ ext{stent}}.$$

- V_{stent} is a Hilbert space (*b* is continuous)
- a is V_{stent} -elliptic
- f is continuous on $V_{
 m stent}$

< 注入 < 注入

1D stent model: properties for the forms

$$a(\boldsymbol{U},\boldsymbol{V}) = \sum_{i=1}^{n_{\mathcal{E}}} \int_{0}^{\ell^{i}} \mathbf{Q}^{i} \mathbf{H}^{i}(\mathbf{Q}^{i})^{T} (\tilde{\boldsymbol{\omega}}^{i})^{\prime} \cdot \tilde{\boldsymbol{w}}^{\prime} dx_{1}, \quad f(\boldsymbol{V}) = \sum_{i=1}^{n_{\mathcal{E}}} \int_{0}^{\ell^{i}} \tilde{\boldsymbol{f}}^{i} \cdot \tilde{\boldsymbol{v}}^{i} dx_{1},$$

Problem (W) Find $\boldsymbol{U} \in V_{\text{stent}}$ such that

$$a(oldsymbol{U},oldsymbol{V})=f(oldsymbol{V}),\qquadoldsymbol{V}\in V_{ ext{stent}}.$$

- V_{stent} is a Hilbert space (b is continuous)
- a is V_{stent} -elliptic
- f is continuous on $V_{
 m stent}$

Lax-Milgram implies

Theorem (form *a* is V_{stent} -elliptic)

There exits a unique solution of Problem (W).

Problem: to construct functions within $V_{\text{stent}}!$

$$V_{\text{stent}} = \{ \boldsymbol{V} \in H^1(\mathcal{N}; \mathbb{R}^6) : \tilde{\boldsymbol{v}}^{i'} + \boldsymbol{t}^i \times \tilde{\boldsymbol{w}}^i = 0, i = 1, \dots, n_{\mathcal{E}}, \int_{\mathcal{N}} \boldsymbol{V} = 0 \},$$

L. (Gru	bi	ši	ć
------	-----	----	----	---

Problem: to construct functions within $V_{\text{stent}}!$

$$\begin{split} V_{\text{stent}} &= \{ \boldsymbol{V} \in H^1(\mathcal{N}; \mathbb{R}^6) : \, \tilde{\boldsymbol{v}}^{i'} + \boldsymbol{t}^i \times \, \tilde{\boldsymbol{w}}^i = 0, i = 1, \dots, n_{\mathcal{E}}, \int_{\mathcal{N}} \, \boldsymbol{V} = 0 \}, \\ b(\boldsymbol{V}, \boldsymbol{P}) &:= \sum_{i=1}^{n_{\mathcal{E}}} \int_0^{\ell^i} \, \tilde{\boldsymbol{p}}^i \cdot (\, \tilde{\boldsymbol{v}}^{i'} + \boldsymbol{t}^i \times \, \tilde{\boldsymbol{w}}^i) dx_1 \\ &+ \alpha \cdot \sum_{i=1}^{n_{\mathcal{E}}} \int_0^{\ell^i} \, \tilde{\boldsymbol{v}}^i dx_1 + \boldsymbol{\beta} \cdot \sum_{i=1}^{n_{\mathcal{E}}} \int_0^{\ell^i} \, \tilde{\boldsymbol{w}}^i dx_1, \end{split}$$

→ Ξ →

Problem: to construct functions within $V_{\rm stent}!$

$$V_{\text{stent}} = \{ \mathbf{V} \in H^{1}(\mathcal{N}; \mathbb{R}^{6}) : \tilde{\mathbf{v}}^{i'} + \mathbf{t}^{i} \times \tilde{\mathbf{w}}^{i} = 0, i = 1, \dots, n_{\mathcal{E}}, \int_{\mathcal{N}} \mathbf{V} = 0 \},$$

$$b(\mathbf{V}, \mathbf{P}) := \sum_{i=1}^{n_{\mathcal{E}}} \int_{0}^{\ell^{i}} \tilde{\mathbf{p}}^{i} \cdot (\tilde{\mathbf{v}}^{i'} + \mathbf{t}^{i} \times \tilde{\mathbf{w}}^{i}) dx_{1}$$

$$+ \alpha \cdot \sum_{i=1}^{n_{\mathcal{E}}} \int_{0}^{\ell^{i}} \tilde{\mathbf{v}}^{i} dx_{1} + \beta \cdot \sum_{i=1}^{n_{\mathcal{E}}} \int_{0}^{\ell^{i}} \tilde{\mathbf{w}}^{i} dx_{1},$$

$$\mathbf{P} = (\tilde{\mathbf{p}}^{1}, \dots, \tilde{\mathbf{p}}^{n_{\mathcal{E}}}, \alpha, \beta),$$

$$M := L^{2}(\mathcal{N}; \mathbb{R}^{3}) \times \mathbb{R}^{3} \times \mathbb{R}^{3} = \prod_{i=1}^{n_{\mathcal{E}}} L^{2}(0, \ell^{i}; \mathbb{R}^{3}) \times \mathbb{R}^{3} \times \mathbb{R}^{3}$$

Then

$$V_{ ext{stent}} = \{ oldsymbol{V} \in H^1(\mathcal{N}; \mathbb{R}^6) : b(oldsymbol{V}, oldsymbol{\Theta}) = 0, orall oldsymbol{\Theta} \in M \}.$$

L. Grubišić

25.2.2019 17 / 49

→ Ξ →

Problem: to construct functions within $V_{\text{stent}}!$

$$\begin{split} V_{\text{stent}} &= \{ \boldsymbol{V} \in H^{1}(\mathcal{N}; \mathbb{R}^{6}) : \tilde{\boldsymbol{v}}^{i'} + \boldsymbol{t}^{i} \times \tilde{\boldsymbol{w}}^{i} = 0, i = 1, \dots, n_{\mathcal{E}}, \int_{\mathcal{N}} \boldsymbol{V} = 0 \}, \\ b(\boldsymbol{V}, \boldsymbol{P}) &:= \sum_{i=1}^{n_{\mathcal{E}}} \int_{0}^{\ell^{i}} \tilde{\boldsymbol{p}}^{i} \cdot (\tilde{\boldsymbol{v}}^{i'} + \boldsymbol{t}^{i} \times \tilde{\boldsymbol{w}}^{i}) dx_{1} \\ &\quad + \alpha \cdot \sum_{i=1}^{n_{\mathcal{E}}} \int_{0}^{\ell^{i}} \tilde{\boldsymbol{v}}^{i} dx_{1} + \boldsymbol{\beta} \cdot \sum_{i=1}^{n_{\mathcal{E}}} \int_{0}^{\ell^{i}} \tilde{\boldsymbol{w}}^{i} dx_{1}, \\ \boldsymbol{P} &= (\tilde{\boldsymbol{p}}^{1}, \dots, \tilde{\boldsymbol{p}}^{n_{\mathcal{E}}}, \alpha, \boldsymbol{\beta}), \\ \mathcal{M} &:= L^{2}(\mathcal{N}; \mathbb{R}^{3}) \times \mathbb{R}^{3} \times \mathbb{R}^{3} = \prod_{i=1}^{n_{\mathcal{E}}} L^{2}(0, \ell^{i}; \mathbb{R}^{3}) \times \mathbb{R}^{3} \times \mathbb{R}^{3} \end{split}$$

Then

$$V_{ ext{stent}} = \{ oldsymbol{V} \in H^1(\mathcal{N}; \mathbb{R}^6) : b(oldsymbol{V}, oldsymbol{\Theta}) = 0, orall oldsymbol{\Theta} \in M \}.$$

Solution: mixed formulation

L. Grubišić

Constrained evolution

25.2.2019 17 / 49

Mixed formulation

Problem (M) Find $(\boldsymbol{U}, \boldsymbol{P}) \in H^1(\mathcal{N}; \mathbb{R}^6) \times M$ such that $a(\boldsymbol{U}, \boldsymbol{V}) + b(\boldsymbol{V}, \boldsymbol{P}) = f(\boldsymbol{V}), \qquad \boldsymbol{V} \in H^1(\mathcal{N}; \mathbb{R}^6),$ $b(\boldsymbol{U}, \boldsymbol{\Theta}) = 0, \quad \boldsymbol{\Theta} \in M.$

A B M A B M

Mixed formulation

Problem (M) Find $(\boldsymbol{U}, \boldsymbol{P}) \in H^1(\mathcal{N}; \mathbb{R}^6) \times M$ such that $a(\boldsymbol{U}, \boldsymbol{V}) + b(\boldsymbol{V}, \boldsymbol{P}) = f(\boldsymbol{V}), \qquad \boldsymbol{V} \in H^1(\mathcal{N}; \mathbb{R}^6),$ $b(\boldsymbol{U}, \boldsymbol{\Theta}) = 0, \qquad \boldsymbol{\Theta} \in M.$

Theorem

If b satisfies the inf-sup condition:

$$\inf_{\boldsymbol{\Theta}\in L^2(\mathcal{N};\mathbb{R}^3)\times\mathbb{R}^3\times\mathbb{R}^3}\sup_{\boldsymbol{V}\in H^1(\mathcal{N};\mathbb{R}^6)}\frac{b(\boldsymbol{V},\boldsymbol{\Theta})}{\|\boldsymbol{V}\|_{H^1(\mathcal{N};\mathbb{R}^6)}\|\boldsymbol{\Theta}\|_{L^2(\mathcal{N};\mathbb{R}^3)\times\mathbb{R}^3\times\mathbb{R}^3}}\geq\beta>0$$

the Problem (M) has unique solution. Then the Problem (W) is equivalent to Problem (M)!

L. Grubišić

Constrained evolution

25.2.2019 18 / 49

イロト イヨト イヨト イヨト

Alternatively - in the direct product space

We will also consider direct product space formulation \Rightarrow Let linear algebra solver do the heavy lifting

• We build $H^1(\mathcal{N};\mathbb{R}^6)$ by eliminating constraints

$$V^{i}((\Phi^{i})^{-1}(v)) = V^{j}((\Phi^{j})^{-1}(v))$$

• Alternative introduce new variables and extend the restriction form. We then we get

$$\begin{split} V &= L^2(\mathcal{N};\mathbb{R}^3) \times L^2(\mathcal{N};\mathbb{R}^3) \times \mathbb{R}^{3n_{\mathcal{E}}} \times \mathbb{R}^{3n_{\mathcal{E}}} \times \mathbb{R}^{3n_{\mathcal{E}}} \times \mathbb{R}^{3n_{\mathcal{E}}} \times \mathbb{R}^3 \times \mathbb{R}^3, \\ M &= L^2_{H^1}(\mathcal{N};\mathbb{R}^3) \times L^2_{H^1}(\mathcal{N};\mathbb{R}^3) \times \mathbb{R}^{3n_{\mathcal{V}}} \times \mathbb{R}^{3n_{\mathcal{V}}}. \end{split}$$

- Projection by interpolation theory will be easier, since this is just a large product space
- We pay by considerably increasing the dimension of the problem is it to expensive?

L. Grubišić

(日) (同) (日) (日)

Recall

 ▶ ▲ ■ ▶ ■
 > ○ ○ ○

 25.2.2019
 20 / 49

<ロト < 四ト < 三ト < 三ト

inf-sup for stents

Lemma

All stents in class S satisfy inf-sup condition.

Class ${\mathcal S}$ contains:

- stents with all curved struts
- stents with straight struts which are linearly independent in all vertices they meet.
- Proof, essentially LA (Grubišić, Iveković, Tambača, Žugec, Rad HAZU, 2017)
- Proof for the V space formulation (Grubišić, Ljulj, Mehrmann, Tambača, 2018)
- Direct product space formulation adds additional constraints (continuity at vertices of displacements and couples)

FEM for mixed formulation

Let us take finite dimensional subspaces

$$V^h \subset H^1(\mathcal{N}; \mathbb{R}^6), \qquad M^h \subset M.$$

Problem (M^h) Find $(U^h, P^h) \in V^h \times M^h$ such that $a(U^h, V^h) + b(V^h, P^h) = f(V^h), \quad V^h \in V^h,$ $b(U^h, \Theta^h) = 0, \quad \Theta^h \in M^h.$

FEM for mixed formulation

Let us take finite dimensional subspaces

$$V^h \subset H^1(\mathcal{N}; \mathbb{R}^6), \qquad M^h \subset M.$$

Problem (M^h) Find $(\mathbf{U}^h, \mathbf{P}^h) \in V^h \times M^h$ such that $a(\boldsymbol{U}^{h},\boldsymbol{V}^{h})+b(\boldsymbol{V}^{h},\boldsymbol{P}^{h})=f(\boldsymbol{V}^{h}),$ $V^h \in V^h$. $b(\boldsymbol{U}^h, \boldsymbol{\Theta}^h) = 0, \qquad \boldsymbol{\Theta}^h \in M^h.$ If $(\boldsymbol{U}^h, \boldsymbol{P}^h)$ solves Problem (M^h) then \boldsymbol{U}^h solves weak forulation Problem (W^h) Find $\mathbf{U}^h \in V_{\text{stent}}^h = \{ \mathbf{V}^h \in V^h : b(\mathbf{V}^h, \mathbf{\Theta}^h) = 0, \mathbf{\Theta}^h \in M^h \}$ such that $a(\boldsymbol{U}^h, \boldsymbol{V}^h) = f(\boldsymbol{V}^h), \qquad \boldsymbol{V}^h \in V_{\text{stent}}^h.$

Geometry matters!

25.2.2019 23 / 49

イロト イポト イヨト イヨト 三日

Note: $V_{\text{stent}}^h \not\subset V_{\text{stent}}$

▲□▶ ▲圖▶ ▲ 圖▶ ▲ 圖▶ ― 圖 … のへで

Note: $V_{\text{stent}}^h \not\subset V_{\text{stent}} \Longrightarrow$ We can not use V_{stent} -ellipticity of a

▲□▶ ▲圖▶ ▲ 圖▶ ▲ 圖▶ ― 圖 … のへで

Note: $V_{\text{stent}}^h \not\subset V_{\text{stent}} \Longrightarrow$ We can not use V_{stent} -ellipticity of a Discretization:

- V^h piecewise polynomials of order n (denoted by P^n)
- M^h piecewise polynomials of order m

Lemma

The form a is V_{stent}^h -elliptic if and only if $m \ge n-1$.

Note: $V_{\text{stent}}^h \not\subset V_{\text{stent}} \Longrightarrow$ We can not use V_{stent} -ellipticity of a Discretization:

- V^h piecewise polynomials of order n (denoted by P^n)
- M^h piecewise polynomials of order m

Lemma

The form a is V_{stent}^h -elliptic if and only if $m \ge n-1$.

Discrete inextensibility: $\int_0^{\ell_i} \tilde{\boldsymbol{\theta}}^i \cdot (\tilde{\boldsymbol{u}}^i)' = 0$, for all $\tilde{\boldsymbol{\theta}}^i \in P^m$.

Note: $V_{\text{stent}}^h \not\subset V_{\text{stent}} \Longrightarrow$ We can not use V_{stent} -ellipticity of a Discretization:

- V^h piecewise polynomials of order n (denoted by P^n)
- M^h piecewise polynomials of order m

Lemma

The form a is V_{stent}^{h} -elliptic if and only if $m \ge n-1$.

Discrete inextensibility:
$$\int_0^{\ell_i} \widetilde{m{ heta}}^i \cdot (m{ heta}^i)' = 0$$
, for all $\widetilde{m{ heta}}^i \in P^m$.

Theorem

If $m \ge n-1$, \boldsymbol{U}^h , exists.

Note: $V_{\text{stent}}^h \not\subset V_{\text{stent}} \Longrightarrow$ We can not use V_{stent} -ellipticity of a Discretization:

- V^h piecewise polynomials of order n (denoted by P^n)
- M^h piecewise polynomials of order m

Lemma

The form a is V_{stent}^{h} -elliptic if and only if $m \ge n-1$.

Discrete inextensibility:
$$\int_0^{\ell_i} \widetilde{m{ heta}}^i \cdot (m{ heta}^i)' = 0$$
, for all $\widetilde{m{ heta}}^i \in P^m$.

Theorem

If
$$m \ge n-1$$
, \boldsymbol{U}^h , exists.

Remark

We miss discrete inf-sup for the formulation in $H^1(\mathcal{N}; \mathbb{R}^6)$. However, for the direct product space formulation inf-sup follows readily!

L. Grubišić

Note – compare with information science PDE graph models.

- Information science:
 - Huge graph, but a scalar function
 - "Finite difference" discretization
- Structural optimization:
 - Highly structured graph, nodes of low incidence degree
 - Constrained vector valued functions.
 - FEM discretization

• introduce new vertices (with the same junction conditions)

∃ >

- introduce new vertices (with the same junction conditions)
- the same problem with struts of length $\leq h$

- introduce new vertices (with the same junction conditions)
- the same problem with struts of length $\leq h$
- we use P^2 approximation for \boldsymbol{U}^h and P^1 for \boldsymbol{P}^h

- introduce new vertices (with the same junction conditions)
- the same problem with struts of length $\leq h$
- we use P^2 approximation for \boldsymbol{U}^h and P^1 for \boldsymbol{P}^h

The error estimate is based on

 \bullet the interpolation estimate for interpolation operators \mathcal{I}^2 and \mathcal{I}^1

- introduce new vertices (with the same junction conditions)
- the same problem with struts of length $\leq h$
- we use P^2 approximation for \boldsymbol{U}^h and P^1 for \boldsymbol{P}^h

The error estimate is based on

- \bullet the interpolation estimate for interpolation operators \mathcal{I}^2 and \mathcal{I}^1
- interpolation is strut by strut (this simplifies analysis)

- introduce new vertices (with the same junction conditions)
- the same problem with struts of length $\leq h$
- we use P^2 approximation for \boldsymbol{U}^h and P^1 for \boldsymbol{P}^h

The error estimate is based on

- \bullet the interpolation estimate for interpolation operators \mathcal{I}^2 and \mathcal{I}^1
- interpolation is strut by strut (this simplifies analysis)

•
$$\mathcal{I}^2: V_{ ext{stent}} o V^h_{ ext{stent}}$$
 is defined by

$$\mathcal{I}^2 \boldsymbol{U}|_{\boldsymbol{e}} \in \mathcal{P}^2, \quad (\mathcal{I}^2 \boldsymbol{U})|_{\boldsymbol{e}_i}(0) = \boldsymbol{U}|_{\boldsymbol{e}_i}(0), \quad (\mathcal{I}^2 \boldsymbol{U})|_{\boldsymbol{e}_i}(0) = \boldsymbol{U}|_{\boldsymbol{e}_i}(\ell),$$

and discrete inextensibility

$$\int_0^{\ell^i} \boldsymbol{\tilde{\theta}}^i \cdot ((\boldsymbol{\tilde{u}}^i)' + \boldsymbol{t}^i \times \boldsymbol{\tilde{\omega}}^i) dx_1 = 0, \qquad \boldsymbol{\tilde{\theta}}^i \in P^1.$$

- introduce new vertices (with the same junction conditions)
- the same problem with struts of length $\leq h$
- we use P^2 approximation for \boldsymbol{U}^h and P^1 for \boldsymbol{P}^h

The error estimate is based on

- \bullet the interpolation estimate for interpolation operators \mathcal{I}^2 and \mathcal{I}^1
- interpolation is strut by strut (this simplifies analysis)

•
$$\mathcal{I}^2: V_{\mathrm{stent}}
ightarrow V^h_{\mathrm{stent}}$$
 is defined by

$$\mathcal{I}^2 \boldsymbol{U}|_{\boldsymbol{e}} \in P^2, \quad (\mathcal{I}^2 \boldsymbol{U})|_{\boldsymbol{e}_i}(0) = \boldsymbol{U}|_{\boldsymbol{e}_i}(0), \quad (\mathcal{I}^2 \boldsymbol{U})|_{\boldsymbol{e}_i}(0) = \boldsymbol{U}|_{\boldsymbol{e}_i}(\ell),$$

and discrete inextensibility

$$\int_0^{\ell^i} \tilde{\boldsymbol{\theta}}^i \cdot ((\tilde{\boldsymbol{u}}^i)' + \boldsymbol{t}^i \times \tilde{\boldsymbol{\omega}}^i) dx_1 = 0, \qquad \tilde{\boldsymbol{\theta}}^i \in P^1.$$

Note that full inextensibility poses to big restriction for the error estimate!

• The interpolation satisfies the estimate

$$\|m{U} - \mathcal{I}^2 m{U}\|_{H^1(0,\ell^i;\mathbb{R}^6)} \leq Ch^2 \|m{U}'''\|_{L^2(0,\ell^i)}.$$

• The interpolation satisfies the estimate

$$\|oldsymbol{U}-\mathcal{I}^2oldsymbol{U}\|_{H^1(0,\ell^i;\mathbb{R}^6)}\leq Ch^2\|oldsymbol{U}^{\prime\prime\prime}\|_{L^2(0,\ell^i)}.$$

Adapting an argument from Boffi, Brezzi and Gastaldi we obtain

Theorem

Let h > 0 denotes the size of the discretization mesh, $(\boldsymbol{U}, \boldsymbol{P})$ is the solution of the mixed formulation and $(\boldsymbol{U}^h, \boldsymbol{P}^h)$ solution of the discretized problem piecewisely $(P^2)^6 \times (P^1)^3$ polynomials. Then

$$\|oldsymbol{U}-oldsymbol{U}^h\|_{H^1(\mathcal{N};\mathbb{R}^6)}\leq Ch^2(\|oldsymbol{U}^{\prime\prime\prime}\|_{L^2(\mathcal{N};\mathbb{R}^6)}+\|oldsymbol{P}^{\prime\prime}\|_{L^2(\mathcal{N};\mathbb{R}^3)}).$$

• no error estimate for multipliers!

• yields resolvent estimates for the spectral problem!

(Grubišić, Tambača, in review NLAA)

L. Grubišić

Numerical examples - convergence validate estimates

Constrained evolution

25.2.2019 28 / 49
Numerical rate of convergence

- $E(h) = Ch^{\alpha}$
- for radial forcing depending as x_1^2 on the longitudinal variable.

< 3 >

Numerical rate of convergence

•
$$E(h) = Ch^{\alpha}$$

- for radial forcing depending as x_1^2 on the longitudinal variable.
- numerical approximations for 2, 4, 8, 16, 32, 64 division of struts are compared with solution for 128 divisions of every strut.
- L^2 errors are one order better then H^1 .
- coincide with theoretical estimates.

	direct	product for.	in $H^1(\mathcal{N})$		
splitting $\#$	time(s)	size of matrix	time(s)	size of matrix	
8	22	105198	2	38958	
16	47	211182	42	78702	
32	108	423150	152	158190	
64	288	847086	629	317166	
128	903	1694958	4183	635118	

Tablica: Times and matrix sizes for the old and new numerical scheme

< □ > < 同 > < 回 > < Ξ > < Ξ

Evolution problem

$$\begin{split} \tilde{\boldsymbol{p}}^{i'} + \tilde{\boldsymbol{f}}^{i} &= \rho^{i} A^{i} \partial_{tt} \tilde{\boldsymbol{u}}^{i}, \\ \tilde{\boldsymbol{q}}^{i'} + \boldsymbol{t}^{i} \times \tilde{\boldsymbol{p}}^{i} &= 0, \\ \tilde{\boldsymbol{\omega}}^{i'} + \boldsymbol{Q}^{i} \boldsymbol{H}^{i} (\boldsymbol{Q}^{i})^{T} \tilde{\boldsymbol{q}}^{i} &= 0, \end{split} \qquad i = 1, \dots, n_{\mathcal{E}} \qquad + \text{ junction conditions} \\ \tilde{\boldsymbol{u}}^{i'} + \boldsymbol{t}^{i} \times \tilde{\boldsymbol{\omega}}^{i} &= \boldsymbol{\theta}^{i}, \end{split}$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Evolution problem

$$\begin{split} \tilde{\boldsymbol{p}}^{i'} + \tilde{\boldsymbol{f}}^{i} &= \rho^{i} A^{i} \partial_{tt} \tilde{\boldsymbol{u}}^{i}, \\ \tilde{\boldsymbol{q}}^{i'} + \boldsymbol{t}^{i} \times \tilde{\boldsymbol{p}}^{i} &= \boldsymbol{0}, \\ \tilde{\boldsymbol{\omega}}^{i'} + \boldsymbol{Q}^{i} \boldsymbol{H}^{i} (\boldsymbol{Q}^{i})^{T} \tilde{\boldsymbol{q}}^{i} &= \boldsymbol{0}, \end{split} \qquad i = 1, \dots, n_{\mathcal{E}} \qquad + \text{ junction conditions} \\ \tilde{\boldsymbol{u}}^{i'} + \boldsymbol{t}^{i} \times \tilde{\boldsymbol{\omega}}^{i} &= \boldsymbol{\theta}^{i}, \end{split}$$

Let (limit of 3D linearized Antman-Cosserat model)

$$m(\boldsymbol{U},\boldsymbol{V}) = \sum_{i=1}^{n_{\mathcal{E}}} \rho^{i} A^{i} \int_{0}^{\ell^{i}} \tilde{\boldsymbol{u}}^{i} \cdot \tilde{\boldsymbol{v}}^{i} dx_{1},$$

Problem (EvoP)

Find $\boldsymbol{U} \in L^2(0, T; V_{\mathrm{stent}})$ such that

 $\partial_{tt} m(\boldsymbol{U}, \boldsymbol{V}) + a(\boldsymbol{U}, \boldsymbol{V}) = f(\boldsymbol{V}), \qquad \boldsymbol{V} \in V_{\text{stent}}.$

Eigenvalue problem

Problem (EigP) Find $(\lambda, U) \in \mathbb{R} \times V_{\text{stent}}$, $U \neq 0$ such that $a(U, V) = \lambda^2 m(U, V)$, $V \in V_{\text{stent}}$.

イロト イヨト イヨト イヨト 三日

Eigenvalue problem

Problem (EigP) Find $(\lambda, \boldsymbol{U}) \in \mathbb{R} \times V_{\text{stent}}$, $\boldsymbol{U} \neq 0$ such that

$$a(\boldsymbol{U},\boldsymbol{V}) = \lambda^2 m(\boldsymbol{U},\boldsymbol{V}), \qquad \boldsymbol{V} \in V_{\mathrm{stent}}.$$

Problem (EigQ)

Find $(\lambda, (\boldsymbol{U}, \boldsymbol{\Xi})) \in \mathbb{R} \times (H^1(\mathcal{N}; \mathbb{R}^6) \times L^2(\mathcal{N}; \mathbb{R}^3) \times \mathbb{R}^3 \times \mathbb{R}^3)$, $(\boldsymbol{U}, \boldsymbol{\Xi}) \neq 0$ such that

$$egin{aligned} & m{a}(m{U},m{V})+m{b}(m{V},m{\Xi})=\lambda^2 m(m{U},m{V}), & m{V}\in H^1(\mathcal{N};\mathbb{R}^6), \ & m{b}(m{U},m{\Theta})=0, & m{\Theta}\in L^2(\mathcal{N};\mathbb{R}^3) imes\mathbb{R}^3 imes\mathbb{R}^3. \end{aligned}$$

 \Rightarrow continuous inf – sup condition guarantees that the resolvent set is nonempty

L. Grubišić

25.2.2019 32 / 49

- ロ ト - (周 ト - (日 ト - (日 ト -)日

$$egin{aligned} & m{a}(Tm{f},m{V})+m{b}(Sm{f},m{V})=(m{f},m{V}), & m{V}\in ext{Dom}(m{a}), \ & m{b}(m{\Theta},Tm{f})=0, & m{\Theta}\in ext{Dom}(B^*). \end{aligned}$$

$$\begin{aligned} & a(Tf, V) + b(Sf, V) = (f, V), \quad V \in \mathsf{Dom}(a), \\ & b(\Theta, Tf) = 0, \quad \Theta \in \mathsf{Dom}(B^*). \end{aligned}$$

 \Rightarrow Bounded compact operators T_h norm converge to T.

$$egin{aligned} & m{a}(Tm{f},m{V})+m{b}(Sm{f},m{V})=(m{f},m{V}), & m{V}\in ext{Dom}(m{a}), \ & m{b}(m{\Theta},Tm{f})=0, & m{\Theta}\in ext{Dom}(B^*). \end{aligned}$$

⇒ Bounded compact operators T_h norm converge to T. ⇒ If the resolvent is converging somewhere – say at z = 0 –then it converges for every z in resolvent set $\rho(T) = \mathbb{C} \setminus \text{Spec}(T)$.

$$egin{aligned} & m{a}(Tm{f},m{V})+m{b}(Sm{f},m{V})=(m{f},m{V}), & m{V}\in \mathsf{Dom}(m{a}), \ & m{b}(m{\Theta},Tm{f})=0, & m{\Theta}\in \mathsf{Dom}(B^*). \end{aligned}$$

⇒ Bounded compact operators T_h norm converge to T. ⇒ If the resolvent is converging somewhere – say at z = 0 –then it converges for every z in resolvent set $\rho(T) = \mathbb{C} \setminus \text{Spec}(T)$. ⇒ Analogous definition of T_h . ⇒ Let λ , u and λ_h and u_h be eigenvalues and eigenvectors from V^h ⇒ Then

$$|\lambda - \lambda_h| \le C \|T - T_h\|_{\mathsf{Dom}(a)} = O(I - \mathcal{I}^2) = O(h^2)$$

 $\|U - U_h\|_{\mathsf{Dom}(a)} \le C \|T - T_h\|_{\mathsf{Dom}(a)} = O(I - \mathcal{I}^2) = O(h^2)$.

eigenfuction c.rate optimal, eigenvalue c.rate not. \Rightarrow If S_h exists, then

$$|\lambda - \lambda_h| \leq C \|T - T_h\|_{\mathsf{Dom}(a)} \|S - S_h\|$$
.

 $\Rightarrow \lambda_h$ is not a Ritz value of the solution operator T.

⇒ Let λ , u and λ_h and u_h be eigenvalues and eigenvectors from V^h ⇒ Then

$$|\lambda - \lambda_h| \le C \|T - T_h\|_{\mathsf{Dom}(a)} = O(I - \mathcal{I}^2) = O(h^2)$$

 $\|U - U_h\|_{\mathsf{Dom}(a)} \le C \|T - T_h\|_{\mathsf{Dom}(a)} = O(I - \mathcal{I}^2) = O(h^2)$.

eigenfuction c.rate optimal, eigenvalue c.rate not. \Rightarrow If S_h exists, then

$$|\lambda - \lambda_h| \leq C \|T - T_h\|_{\mathsf{Dom}(a)} \|S - S_h\|$$
.

⇒ λ_h is not a Ritz value of the solution operator T. ⇒ Note that here we also have the "singular mass" operator, and so we are actually studying the convergence of $T_h M_h$! \Rightarrow Jordan structure as a consequence of algebraic constraints.

Lemma

Consider (EigQ) and let (E, K) be its block operator matrix representation. Then there exists a nonsingular V with the property that

- Sobolev spaces on graphs nice review by O. Post
- Good interpolation operators for lower order spaces hard because of the contact conditions in junctions! Geometry of the graph plays a role.
- for second order problems see Arioli and Benzi 2015.

The interplay of geometry and constraints

Doing interpolation on each edge and then assembling into a graph sometimes fails.

Verification of the 1D model

Compare 1D and 3D solutions (jointly with K. Schmidt and A. Semin)

12

geometry

discretization

L. Grubišić

25.2.2019 37 / 49

< 3 >

Verification of the 1D model – COMSOL, CONCEPTS

similar phenomena

- Problems with thin geometries
 - switch to compiled code in CONCEPTS (K.Schmidt)
- Error between 1D reduced model and CONCEPTS 3D model is 2%.

< □ > < □ > < □ > < □ > < □ > < □ >

Examples of eigenproblem for 1D stent model

Four stent meshes considered (similar to Palmaz, Express; Cypher and Xience by Cordis)

Leading eigenvalues

	Palmaz	Cypher	Express	Xience		
1.	1.033	0.8894	0.06014	0.05488		
2.	1.033	0.8895	0.06014	0.05488		
3.	5.265	1.3683	0.32504	0.28767		
4.	7.499	3.5328	0.33972	0.32201		
5.	7.499	3.5329	0.33973	0.32201		
6.	11.329	3.6604	0.58740	0.58038		

25.2.2019 40 / 49

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ 三臣 - のへで

Palmaz

25.2.2019 41 / 49

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

L. Grubišić

Constrained evolution

25.2.2019 42 / 49

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

L. Grubišić

Constrained evolution

- 2 25.2.2019 43 / 49

20 x 10⁻³

20 x 10⁻³

20 x 10⁻³

<ロト < 四ト < 三ト < 三ト

 ★ ≣ ▶ ≣ ∽ < </th>

 25.2.2019
 44 / 49

< □ > < □ > < □ > < □ > < □ >

Convergence rates

45 / 49

- 0 is in the resolvent set
- Problem is index 2 (∞ eigenvalue has Jordan chain of length 2)
- Imaginary eigenvalues are semisimple
- use deflation and exponential integrators, or backward differentiation schemes like BDF-2, or Volker's favorite Radau2a.

- 0 is in the resolvent set
- Problem is index 2 (∞ eigenvalue has Jordan chain of length 2)
- Imaginary eigenvalues are semisimple
- use deflation and exponential integrators, or backward differentiation schemes like BDF-2, or Volker's favorite Radau2a.

⇒ Perhaps another time in more detail :)

Work so far

- Grubišić, Tambača, Quasi-semidefinite eigenvalue problem and applications. Nanosystems: Physics, Chemistry, Mathematics, 2017
- Christian Mehl, Volker Mehrmann, Michal Wojtylak, Linear algebra properties of dissipative Hamiltonian descriptor systems, ArXiv.org, 2018
- Luka Grubišić, Matko Ljulj, Volker Mehrmann, Josip Tambača, Modeling and discretization methods for the numerical simulation of elastic stents, ArXiv.org, 2018

- 4 回 ト 4 ヨ ト 4 ヨ ト

- 0 is in the resolvent set
- Problem is index 2 (∞ eigenvalue has Jordan chain of length 2)
- Imaginary eigenvalues are semisimple
- use deflation and exponential integrators, or backward differentiation schemes like BDF-2, or Volker's favorite Radau2a.

⇒ Perhaps another time in more detail :)

Work so far

- Grubišić, Tambača, Quasi-semidefinite eigenvalue problem and applications. Nanosystems: Physics, Chemistry, Mathematics, 2017
- Christian Mehl, Volker Mehrmann, Michal Wojtylak, Linear algebra properties of dissipative Hamiltonian descriptor systems, ArXiv.org, 2018
- Luka Grubišić, Matko Ljulj, Volker Mehrmann, Josip Tambača, Modeling and discretization methods for the numerical simulation of elastic stents, ArXiv.org, 2018

 \Rightarrow For the "heat" equation also see Emmrich and Mehrmann

・ ロ ト ・ 同 ト ・ 三 ト ・ 三 ト

- 0 is in the resolvent set
- Problem is index 2 (∞ eigenvalue has Jordan chain of length 2)
- Imaginary eigenvalues are semisimple
- use deflation and exponential integrators, or backward differentiation schemes like BDF-2, or Volker's favorite Radau2a.

⇒ Perhaps another time in more detail :)

Work so far

- Grubišić, Tambača, Quasi-semidefinite eigenvalue problem and applications. Nanosystems: Physics, Chemistry, Mathematics, 2017
- Christian Mehl, Volker Mehrmann, Michal Wojtylak, Linear algebra properties of dissipative Hamiltonian descriptor systems, ArXiv.org, 2018
- Luka Grubišić, Matko Ljulj, Volker Mehrmann, Josip Tambača, Modeling and discretization methods for the numerical simulation of elastic stents, ArXiv.org, 2018

 \Rightarrow For the "heat" equation also see Emmrich and Mehrmann

・ ロ ト ・ 同 ト ・ 三 ト ・ 三 ト

 \Rightarrow In the phase space implicit midpoint rule reads

$$\begin{bmatrix} E & 0 \\ 0 & K \end{bmatrix} \begin{bmatrix} u_{k+1} - u_k \\ v_{k+1} - v_k \end{bmatrix} = \begin{bmatrix} 0 & K \\ -K & 0 \end{bmatrix} \begin{bmatrix} u_{k+1} + u_k \\ v_{k+1} + v_k \end{bmatrix} \frac{h}{2} + \begin{bmatrix} f(\cdot) \\ 0 \end{bmatrix} h$$

 \Rightarrow Port Hamiltionian formulation since K is invertible

 \Rightarrow Time stepper in action

Optimal design of stents

Minimization of maximal radial displacement – minimize the discrepancy to the artery without stenosis.

Thank you for your attention!

	\sim			~	1
		r	 h	c	0
L. '	9			2	s

(日)

Acknowledgment

Research supported in part by the grant: "Asymptotic and algebraic analysis of nonlinear eigenvalue problems in contact mechanics and electro magnetism"

Administered jointly by DAAD and MZO.

Acknowledgment Research supported in part by the Croatian Science Foundation grant nr. HRZZ 9345