The Landau Hamiltonian coupled with an electric δ -potential

Markus Holzmann

Joint work with J. Behrndt, P. Exner, and V. Lotoreichik Graz University of Technology

Differential Operators on Graphs and Waveguides, Graz, 2019-03-01

• Let
$$B > 0$$
 and $\mathbf{A} := \frac{1}{2}B(-x_2, x_1)^{\top}$

- Let B > 0 and $\mathbf{A} := \frac{1}{2}B(-x_2, x_1)^{\top}$
- The Landau Hamiltonian acting in $L^2(\mathbb{R}^2)$ is

- Let B > 0 and $\mathbf{A} := \frac{1}{2}B(-x_2, x_1)^{\top}$
- The Landau Hamiltonian acting in $L^2(\mathbb{R}^2)$ is

 $A_0 f := (i\nabla + \mathbf{A})^2 f, \quad \text{dom} \, A_0 = \{ f \in L^2(\mathbb{R}^2) : (i\nabla + \mathbf{A})^2 f \in L^2(\mathbb{R}^2) \}$

■ A₀ describes the propagation of a quantum particle in ℝ² in a magnetic field of strength ∂₁A₂ - ∂₂A₁ = B

- Let B > 0 and $\mathbf{A} := \frac{1}{2}B(-x_2, x_1)^{\top}$
- The Landau Hamiltonian acting in $L^2(\mathbb{R}^2)$ is

- A₀ describes the propagation of a quantum particle in ℝ² in a magnetic field of strength ∂₁A₂ − ∂₂A₁ = B
- Properties of A₀:

- Let B > 0 and $\mathbf{A} := \frac{1}{2}B(-x_2, x_1)^{\top}$
- The Landau Hamiltonian acting in $L^2(\mathbb{R}^2)$ is

- A₀ describes the propagation of a quantum particle in ℝ² in a magnetic field of strength ∂₁A₂ − ∂₂A₁ = B
- Properties of A₀:

$$\bullet A_0 = A_0^*$$

- Let B > 0 and $\mathbf{A} := \frac{1}{2}B(-x_2, x_1)^{\top}$
- The Landau Hamiltonian acting in $L^2(\mathbb{R}^2)$ is

- A₀ describes the propagation of a quantum particle in ℝ² in a magnetic field of strength ∂₁A₂ ∂₂A₁ = B
- Properties of A₀:

•
$$A_0 = A_0^*$$

• $\sigma(A_0) = \sigma_{ess}(A_0) = \{B(2q+1) : q \in \mathbb{N}_0\}$

- Let B > 0 and $\mathbf{A} := \frac{1}{2}B(-x_2, x_1)^{\top}$
- The Landau Hamiltonian acting in $L^2(\mathbb{R}^2)$ is

- A₀ describes the propagation of a quantum particle in ℝ² in a magnetic field of strength ∂₁A₂ − ∂₂A₁ = B
- Properties of A₀:
 - $A_0 = A_0^*$ • $\sigma(A_0) = \sigma_{ess}(A_0) = \{B(2q+1) : q \in \mathbb{N}_0\}$
 - $\Lambda_q := B(2q + 1)$ is an eigenvalue of infinite multiplicity and called Landau level

 Relatively compact perturbations of A₀ smear the Landau levels to eigenvalue clusters:

- Relatively compact perturbations of A₀ smear the Landau levels to eigenvalue clusters:
 - (*i*∇ + A)² + V with sign definite and compactly supported V: Raikov, Rozenblum, Pushnitski, ...

- Relatively compact perturbations of A₀ smear the Landau levels to eigenvalue clusters:
 - $(i\nabla + \mathbf{A})^2 + V$ with sign definite and compactly supported V: Raikov, Rozenblum, Pushnitski, ...
 - (*i*∇ + **A**)² on an unbounded domain Ω with suitable boundary conditions: Bruneau, Goffeng, Kachmar, Miranda, Persson Sundqvist, Pushnitski, Rozenblum, ...

- Relatively compact perturbations of A₀ smear the Landau levels to eigenvalue clusters:
 - (*i*∇ + A)² + V with sign definite and compactly supported V: Raikov, Rozenblum, Pushnitski, ...
 - (*i*∇ + **A**)² on an unbounded domain Ω with suitable boundary conditions: Bruneau, Goffeng, Kachmar, Miranda, Persson Sundqvist, Pushnitski, Rozenblum, ...

• Goal: similar result for $A_{\alpha} := (i \nabla + \mathbf{A})^2 + \alpha \delta_{\Sigma}$

- Relatively compact perturbations of A₀ smear the Landau levels to eigenvalue clusters:
 - (*i*∇ + A)² + V with sign definite and compactly supported V: Raikov, Rozenblum, Pushnitski, ...
 - (*i*∇ + **A**)² on an unbounded domain Ω with suitable boundary conditions: Bruneau, Goffeng, Kachmar, Miranda, Persson Sundqvist, Pushnitski, Rozenblum, ...
- Goal: similar result for $A_{\alpha} := (i \nabla + \mathbf{A})^2 + \alpha \delta_{\Sigma}$
 - Conditions on $\alpha: \Sigma \to \mathbb{R}$ which ensure the clustering of the eigenvalues

- Relatively compact perturbations of A₀ smear the Landau levels to eigenvalue clusters:
 - (*i*∇ + A)² + V with sign definite and compactly supported V: Raikov, Rozenblum, Pushnitski, ...
 - (*i*∇ + A)² on an unbounded domain Ω with suitable boundary conditions: Bruneau, Goffeng, Kachmar, Miranda, Persson Sundqvist, Pushnitski, Rozenblum, ...
- Goal: similar result for $A_{\alpha} := (i \nabla + \mathbf{A})^2 + \alpha \delta_{\Sigma}$
 - Conditions on $\alpha: \Sigma \to \mathbb{R}$ which ensure the clustering of the eigenvalues
 - accumulation rate of the eigenvalues in terms of $\boldsymbol{\alpha}$

Assumptions:

• $\Sigma \subset \mathbb{R}^2$ is a closed $C^{1,1}$ -curve

4

Assumptions:

- $\Sigma \subset \mathbb{R}^2$ is a closed $C^{1,1}$ -curve
- $\alpha \in L^{\infty}(\Sigma)$ is real valued

Assumptions:

- $\Sigma \subset \mathbb{R}^2$ is a closed $C^{1,1}$ -curve
- $\alpha \in L^{\infty}(\Sigma)$ is real valued

Define

$$\mathfrak{a}_{\alpha}[f] := \left\| (i\nabla + \mathbf{A})f \right\|_{L^{2}(\mathbb{R}^{2};\mathbb{C}^{2})}^{2} + \int_{\Sigma} \alpha |f|_{\Sigma}|^{2} \mathrm{d}\sigma,$$

$$\operatorname{dom} \mathfrak{a}_{\alpha} := \left\{ f \in L^{2}(\mathbb{R}^{2}) : (i\nabla + \mathbf{A})f \in L^{2}(\mathbb{R}^{2};\mathbb{C}^{2}) \right\}.$$

Assumptions:

- $\Sigma \subset \mathbb{R}^2$ is a closed $C^{1,1}$ -curve
- $\alpha \in L^{\infty}(\Sigma)$ is real valued

Define

$$\begin{split} \mathfrak{a}_{\alpha}[f] &:= \left\| (i\nabla + \mathbf{A}) f \right\|_{L^{2}(\mathbb{R}^{2};\mathbb{C}^{2})}^{2} + \int_{\Sigma} \alpha \left| f \right|_{\Sigma} \right|^{2} \mathrm{d}\sigma, \\ \mathrm{dom}\,\mathfrak{a}_{\alpha} &:= \big\{ f \in L^{2}(\mathbb{R}^{2}) : (i\nabla + \mathbf{A}) f \in L^{2}(\mathbb{R}^{2};\mathbb{C}^{2}) \big\}. \end{split}$$

• \mathfrak{a}_{α} is symmetric, closed, semibounded from below

Assumptions:

C

- $\Sigma \subset \mathbb{R}^2$ is a closed $C^{1,1}$ -curve
- $\alpha \in L^{\infty}(\Sigma)$ is real valued

Define

$$\mathfrak{a}_{\alpha}[f] := \left\| (i\nabla + \mathbf{A})f \right\|_{L^{2}(\mathbb{R}^{2};\mathbb{C}^{2})}^{2} + \int_{\Sigma} \alpha |f|_{\Sigma}|^{2} \mathrm{d}\sigma,$$

$$\operatorname{dom} \mathfrak{a}_{\alpha} := \left\{ f \in L^{2}(\mathbb{R}^{2}) : (i\nabla + \mathbf{A})f \in L^{2}(\mathbb{R}^{2};\mathbb{C}^{2}) \right\}.$$

- \mathfrak{a}_{α} is symmetric, closed, semibounded from below
- Associated self-adjoint operator is A_a

Assumptions:

- $\Sigma \subset \mathbb{R}^2$ is a closed $C^{1,1}$ -curve
- $\alpha \in L^{\infty}(\Sigma)$ is real valued

Define

$$\begin{split} \mathfrak{a}_{\alpha}[f] &:= \big\| (i\nabla + \mathbf{A})f \big\|_{L^{2}(\mathbb{R}^{2};\mathbb{C}^{2})}^{2} + \int_{\Sigma} \alpha \big| f|_{\Sigma} \big|^{2} \mathrm{d}\sigma, \\ \mathrm{dom}\,\mathfrak{a}_{\alpha} &:= \big\{ f \in L^{2}(\mathbb{R}^{2}) : (i\nabla + \mathbf{A})f \in L^{2}(\mathbb{R}^{2};\mathbb{C}^{2}) \big\}. \end{split}$$

- \mathfrak{a}_{α} is symmetric, closed, semibounded from below
- Associated self-adjoint operator is A_{α}

Theorem (Behrndt, Exner, MH, Lotoreichik)

There exist real valued $V_{\varepsilon} \in L^{\infty}(\mathbb{R}^2)$ with $V_{\varepsilon} \to \alpha \delta_{\Sigma}$ in the distributional sense, such that

$$(i \nabla + \mathbf{A})^2 + V_{\varepsilon} \rightarrow A_{\alpha}$$

in the norm resolvent sense.

• Let $\lambda \in \rho(A_0)$ and G_{λ} be the Green function for A_0 , i.e.

$$(A_0 - \lambda)^{-1} f(x) = \int_{\mathbb{R}^2} G_\lambda(x, y) f(y) dy$$

• Let $\lambda \in \rho(A_0)$ and G_{λ} be the Green function for A_0 , i.e.

$$(A_0 - \lambda)^{-1} f(x) = \int_{\mathbb{R}^2} G_\lambda(x, y) f(y) dy$$

• Define $\gamma(\lambda) : L^2(\Sigma) \to L^2(\mathbb{R}^2)$,

$$\gamma(\lambda)\varphi(x) = \int_{\Sigma} G_{\lambda}(x,y)\varphi(y) d\sigma(y), \quad x \in \mathbb{R}^{2}$$

• Let $\lambda \in \rho(A_0)$ and G_{λ} be the Green function for A_0 , i.e.

$$(A_0 - \lambda)^{-1} f(x) = \int_{\mathbb{R}^2} G_\lambda(x, y) f(y) dy$$

• Define $\gamma(\lambda): L^2(\Sigma) \to L^2(\mathbb{R}^2)$,

$$\gamma(\lambda) arphi({m x}) = \int_{\Sigma} G_{\lambda}({m x},{m y}) arphi({m y}) {
m d} \sigma({m y}), \quad {m x} \in \mathbb{R}^2$$

• Define
$$M(\lambda) : L^2(\Sigma) \to L^2(\Sigma)$$
,
 $M(\lambda)\varphi(x) = \int_{\Sigma} G_{\lambda}(x, y)\varphi(y) d\sigma(y), \quad x \in \Sigma$

• Let $\lambda \in \rho(A_0)$ and G_{λ} be the Green function for A_0 , i.e.

$$(A_0 - \lambda)^{-1} f(x) = \int_{\mathbb{R}^2} G_\lambda(x, y) f(y) dy$$

• Define $\gamma(\lambda): L^2(\Sigma) \to L^2(\mathbb{R}^2)$,

$$\gamma(\lambda) arphi(x) = \int_{\Sigma} G_{\lambda}(x,y) arphi(y) \mathsf{d}\sigma(y), \quad x \in \mathbb{R}^2$$

• Define
$$M(\lambda) : L^2(\Sigma) \to L^2(\Sigma)$$
,
 $M(\lambda)\varphi(x) = \int_{\Sigma} G_{\lambda}(x, y)\varphi(y) d\sigma(y), \quad x \in \Sigma$

Proposition (Ožanová; Behrndt, Exner, MH, Lotoreichik)

$$(\boldsymbol{A}_{\alpha} - \lambda)^{-1} = (\boldsymbol{A}_{0} - \lambda)^{-1} - \gamma(\lambda) (1 + \alpha \boldsymbol{M}(\lambda))^{-1} \alpha \gamma(\bar{\lambda})^{*}$$

Markus Holzmann, Differential Operators on Graphs and Waveguides, Graz, 2019-03-01

Proposition

$$(\mathbf{A}_{\alpha} - \lambda)^{-1} = (\mathbf{A}_{0} - \lambda)^{-1} - \gamma(\lambda) (1 + \alpha \mathbf{M}(\lambda))^{-1} \alpha \gamma(\bar{\lambda})^{*}$$

Proposition

$$(\mathbf{A}_{\alpha} - \lambda)^{-1} = (\mathbf{A}_{0} - \lambda)^{-1} - \gamma(\lambda) (1 + \alpha \mathbf{M}(\lambda))^{-1} \alpha \gamma(\bar{\lambda})^{*}$$

•
$$(A_{\alpha} - \lambda)^{-1} - (A_0 - \lambda)^{-1}$$
 is compact

Proposition

$$(\mathbf{A}_{\alpha} - \lambda)^{-1} = (\mathbf{A}_{0} - \lambda)^{-1} - \gamma(\lambda) (1 + \alpha \mathbf{M}(\lambda))^{-1} \alpha \gamma(\bar{\lambda})^{*}$$

•
$$(A_{\alpha} - \lambda)^{-1} - (A_0 - \lambda)^{-1}$$
 is compact
• $\sigma_{\text{ess}}(A_{\alpha}) = \sigma_{\text{ess}}(A_0) = \{\Lambda_q = B(2q + 1) : q \in \mathbb{N}_0\}$

Proposition

6

$$(\mathbf{A}_{\alpha} - \lambda)^{-1} = (\mathbf{A}_{0} - \lambda)^{-1} - \gamma(\lambda) (1 + \alpha \mathbf{M}(\lambda))^{-1} \alpha \gamma(\bar{\lambda})^{*}$$

Consequences:

•
$$(A_{\alpha} - \lambda)^{-1} - (A_0 - \lambda)^{-1}$$
 is compact

•
$$\sigma_{\mathsf{ess}}(A_{\alpha}) = \sigma_{\mathsf{ess}}(A_0) = \{\Lambda_q = B(2q+1) : q \in \mathbb{N}_0\}$$

• Goal: analyze $\sigma(A_{\alpha})$ in the neighborhoods of Λ_q

Proposition

$$(\mathbf{A}_{\alpha} - \lambda)^{-1} = (\mathbf{A}_{0} - \lambda)^{-1} - \gamma(\lambda) (1 + \alpha \mathbf{M}(\lambda))^{-1} \alpha \gamma(\bar{\lambda})^{*}$$

Consequences:

•
$$(A_{\alpha} - \lambda)^{-1} - (A_0 - \lambda)^{-1}$$
 is compact

•
$$\sigma_{\mathsf{ess}}(A_{\alpha}) = \sigma_{\mathsf{ess}}(A_0) = \{\Lambda_q = B(2q+1) : q \in \mathbb{N}_0\}$$

- Goal: analyze σ(A_α) in the neighborhoods of Λ_q
- Strategy:

6

• Apply abstract perturbation theory to $(A_{\alpha} - \lambda)^{-1}$ and $(A_0 - \lambda)^{-1}$

Proposition

$$(\mathbf{A}_{\alpha} - \lambda)^{-1} = (\mathbf{A}_{0} - \lambda)^{-1} - \gamma(\lambda) (1 + \alpha \mathbf{M}(\lambda))^{-1} \alpha \gamma(\bar{\lambda})^{*}$$

Consequences:

•
$$(A_{\alpha} - \lambda)^{-1} - (A_0 - \lambda)^{-1}$$
 is compact

•
$$\sigma_{\mathsf{ess}}(A_{\alpha}) = \sigma_{\mathsf{ess}}(A_0) = \{\Lambda_q = B(2q+1) : q \in \mathbb{N}_0\}$$

Goal: analyze σ(A_α) in the neighborhoods of Λ_q

- Strategy:
 - Apply abstract perturbation theory to $(A_{\alpha} \lambda)^{-1}$ and $(A_0 \lambda)^{-1}$
 - Relate -γ(λ)(1 + αM(λ))⁻¹αγ(λ)* to certain Toeplitz type operators

Proposition

$$(\mathbf{A}_{\alpha} - \lambda)^{-1} = (\mathbf{A}_{0} - \lambda)^{-1} - \gamma(\lambda) (1 + \alpha \mathbf{M}(\lambda))^{-1} \alpha \gamma(\bar{\lambda})^{*}$$

•
$$(A_{\alpha} - \lambda)^{-1} - (A_0 - \lambda)^{-1}$$
 is compact

•
$$\sigma_{\mathsf{ess}}(\boldsymbol{A}_{\alpha}) = \sigma_{\mathsf{ess}}(\boldsymbol{A}_{\mathsf{0}}) = \{\Lambda_{\boldsymbol{q}} = \boldsymbol{B}(2\boldsymbol{q}+1): \boldsymbol{q} \in \mathbb{N}_{\mathsf{0}}\}$$

- Goal: analyze σ(A_α) in the neighborhoods of Λ_q
- Strategy:
 - Apply abstract perturbation theory to $(A_{\alpha} \lambda)^{-1}$ and $(A_0 \lambda)^{-1}$
 - Relate -γ(λ)(1 + αM(λ))⁻¹αγ(λ)* to certain Toeplitz type operators
 - Use knowledge on Toeplitz operators

Assumptions:

•
$$T = T^*$$

Assumptions:

$$\bullet \ T = T^*$$

• $\Lambda \in \sigma_p(T)$ isolated with dim ker $(T - \Lambda) = \infty$

Assumptions:

$$\bullet \ T = T^{\circ}$$

- $\Lambda \in \sigma_p(T)$ isolated with dim ker $(T \Lambda) = \infty$
- P_{Λ} = projection onto ker $(T \Lambda)$

Assumptions:

$$\bullet \ T = T^*$$

- $\Lambda \in \sigma_p(T)$ isolated with dim ker $(T \Lambda) = \infty$
- P_{Λ} = projection onto ker $(T \Lambda)$

•
$$W = W^*$$
 compact with
 $\sigma(W) = \{\mu_k^+ : k \in \mathbb{N}\} \cup \{-\mu_k^- : k \in \mathbb{N}\}$ and
 $\mu_1^{\pm} \ge \mu_2^{\pm} \ge \mu_3^{\pm} \ge \cdots \ge 0$

Assumptions:

$$\bullet \ T = T^*$$

- $\Lambda \in \sigma_p(T)$ isolated with dim ker $(T \Lambda) = \infty$
- P_{Λ} = projection onto ker $(T \Lambda)$

■
$$W = W^*$$
 compact with
 $\sigma(W) = \{\mu_k^+ : k \in \mathbb{N}\} \cup \{-\mu_k^- : k \in \mathbb{N}\}$ and
 $\mu_1^{\pm} \ge \mu_2^{\pm} \ge \mu_3^{\pm} \ge \cdots \ge 0$

• Question: Eigenvalues λ_k^{\pm} of T + W in $(\Lambda - \tau, \Lambda]$ and $[\Lambda, \Lambda + \tau)$

Assumptions:

$$\bullet \ T = T^*$$

- $\Lambda \in \sigma_p(T)$ isolated with dim ker $(T \Lambda) = \infty$
- P_{Λ} = projection onto ker $(T \Lambda)$

■
$$W = W^*$$
 compact with
 $\sigma(W) = \{\mu_k^+ : k \in \mathbb{N}\} \cup \{-\mu_k^- : k \in \mathbb{N}\}$ and
 $\mu_1^{\pm} \ge \mu_2^{\pm} \ge \mu_3^{\pm} \ge \cdots \ge 0$

Question: Eigenvalues λ[±]_k of T + W in (Λ − τ, Λ] and [Λ, Λ + τ)

Proposition (Pushnitski, Rozenblum)

If $W \ge 0$ and dim rank $P_{\Lambda}WP_{\Lambda} = \infty$, then $\forall \varepsilon > 0 \exists I \in \mathbb{N}$ s.t.

$$(1-\varepsilon)\mu_{k+l}^+ \leq \lambda_k^+ - \Lambda \leq (1+\varepsilon)\mu_{k-l}^+.$$

Assumptions:

$$\bullet \ T = T^*$$

- $\Lambda \in \sigma_p(T)$ isolated with dim ker $(T \Lambda) = \infty$
- P_{Λ} = projection onto ker $(T \Lambda)$

Question: Eigenvalues λ[±]_k of T + W in (Λ − τ, Λ] and [Λ, Λ + τ)

Proposition (Pushnitski, Rozenblum)

If $W \leq 0$ and dim rank $P_{\Lambda}WP_{\Lambda} = \infty$, then $\forall \varepsilon > 0 \exists I \in \mathbb{N}$ s.t.

$$(1-\varepsilon)\mu_{k+l}^{-} \leq \Lambda - \lambda_{k}^{-} \leq (1+\varepsilon)\mu_{k-l}^{-}.$$

Assumptions:

$$\bullet \ T = T^*$$

- $\Lambda \in \sigma_p(T)$ isolated with dim ker $(T \Lambda) = \infty$
- P_{Λ} = projection onto ker $(T \Lambda)$

■
$$W = W^*$$
 compact with
 $\sigma(W) = \{\mu_k^+ : k \in \mathbb{N}\} \cup \{-\mu_k^- : k \in \mathbb{N}\}$ and
 $\mu_1^{\pm} \ge \mu_2^{\pm} \ge \mu_3^{\pm} \ge \cdots \ge 0$

Question: Eigenvalues λ[±]_k of T + W in (Λ − τ, Λ] and [Λ, Λ + τ)

Proposition (Behrndt, Exner, MH, Lotoreichik)

If W is not sign-definite, then $\forall \varepsilon > 0 \exists I \in \mathbb{N} \ s.t.$

$$\lambda_k^+ - \Lambda \leq (1 + arepsilon) \mu_{k-l}^+, \quad \Lambda - \lambda_k^- \leq (1 + arepsilon) \mu_{k-l}^-.$$

 For a fixed q ∈ N₀ let P_q be the orthogonal projection onto ker(A₀ − Λ_q)

- For a fixed q ∈ ℕ₀ let P_q be the orthogonal projection onto ker(A₀ − Λ_q)
- Let $\Gamma \subset \Sigma$ be closed

- For a fixed q ∈ ℕ₀ let P_q be the orthogonal projection onto ker(A₀ − Λ_q)
- Let $\Gamma \subset \Sigma$ be closed
- Define in $L^2(\mathbb{R}^2)$ the bounded sesquilinear form

$$\mathfrak{t}_q^{\Gamma}[f] := \int_{\Gamma} \left| (P_q f) |_{\Gamma} \right|^2 \mathrm{d}\sigma$$

- For a fixed q ∈ ℕ₀ let P_q be the orthogonal projection onto ker(A₀ − Λ_q)
- Let $\Gamma \subset \Sigma$ be closed
- Define in $L^2(\mathbb{R}^2)$ the bounded sesquilinear form

$$\mathfrak{t}_q^{\Gamma}[f] := \int_{\Gamma} \left| (P_q f) |_{\Gamma} \right|^2 \mathrm{d}\sigma$$

Associated self adjoint operator T^Γ_q

- For a fixed q ∈ N₀ let P_q be the orthogonal projection onto ker(A₀ − Λ_q)
- Let $\Gamma \subset \Sigma$ be closed
- Define in $L^2(\mathbb{R}^2)$ the bounded sesquilinear form

$$\mathfrak{t}_q^{\Gamma}[f] := \int_{\Gamma} \left| (P_q f) |_{\Gamma} \right|^2 \mathrm{d}\sigma$$

- Associated self adjoint operator T^Γ_q
- Logarithmic energy of a measure μ :

$$I(\mu) := \int_{\mathbb{R}^2} \int_{\mathbb{R}^2} \ln \frac{1}{|x-y|} \mathrm{d}\mu(x) \mathrm{d}\mu(y).$$

- For a fixed *q* ∈ ℕ₀ let *P_q* be the orthogonal projection onto ker(*A*₀ − *A_q*)
- Let $\Gamma \subset \Sigma$ be closed
- Define in $L^2(\mathbb{R}^2)$ the bounded sesquilinear form

$$\mathfrak{t}_q^{\Gamma}[f] := \int_{\Gamma} \left| (P_q f) |_{\Gamma} \right|^2 \mathrm{d}\sigma$$

- Associated self adjoint operator T_q^{Γ}
- Logarithmic energy of a measure μ :

$$I(\mu) := \int_{\mathbb{R}^2} \int_{\mathbb{R}^2} \ln \frac{1}{|x-y|} \mathrm{d}\mu(x) \mathrm{d}\mu(y).$$

Logarithmic capacity of a compact set K:

Spectrum of the Toeplitz type operator

- Define in $L^2(\mathbb{R}^2)$ and $\Gamma \subset \Sigma$ the bounded sesquilinear form

$$\mathfrak{t}_q^{\Gamma}[f] := \int_{\Gamma} \left| (P_q f) |_{\Gamma} \right|^2 \mathrm{d}\sigma$$

- Associated self-adjoint operator T^Γ_a
- Logarithmic capacity of a compact set K:

$$\begin{split} \mathsf{Cap}(\mathcal{K}) &:= \mathsf{sup} \, \big\{ \boldsymbol{e}^{-l(\mu)} : \mu \geq \mathsf{0} \text{ measure on } \mathbb{R}^2, \\ & \mathsf{supp} \; \mu \subset \mathcal{K}, \mu(\mathcal{K}) = \mathsf{1} \big\}. \end{split}$$

Spectrum of the Toeplitz type operator

- Define in $L^2(\mathbb{R}^2)$ and $\Gamma \subset \Sigma$ the bounded sesquilinear form

$$\mathfrak{t}_q^{\Gamma}[f] := \int_{\Gamma} \left| (P_q f) |_{\Gamma} \right|^2 \mathrm{d}\sigma$$

- Associated self-adjoint operator T^Γ_a
- Logarithmic capacity of a compact set K:

$$egin{aligned} &\mathsf{Cap}(\mathcal{K}) := \mathsf{sup} \,ig\{ e^{-l(\mu)} : \mu \geq \mathsf{0} \ \mathsf{measure \ on} \ \mathbb{R}^2, \ &\mathsf{supp} \ \mu \subset \mathcal{K}, \mu(\mathcal{K}) = \mathsf{1} ig\}. \end{aligned}$$

Proposition (Pushnitski, Rozenblum)

(i)
$$\limsup_{k\to\infty} \left(k! \, s_k(T_q^{\Gamma})\right)^{1/k} \leq \frac{B}{2} (\operatorname{Cap}(\Gamma))^2$$
.

Spectrum of the Toeplitz type operator

- Define in $L^2(\mathbb{R}^2)$ and $\Gamma \subset \Sigma$ the bounded sesquilinear form

$$\mathfrak{t}_q^{\Gamma}[f] := \int_{\Gamma} \left| (P_q f) |_{\Gamma} \right|^2 \mathrm{d}\sigma$$

- Associated self-adjoint operator T^Γ_a
- Logarithmic capacity of a compact set K:

$$egin{aligned} \mathsf{Cap}(\mathcal{K}) &:= \mathsf{sup} \, igl\{ e^{-l(\mu)} : \mu \geq \mathsf{0} \ \mathsf{measure \ on} \ \mathbb{R}^2, \ & \mathsf{supp} \ \mu \subset \mathcal{K}, \mu(\mathcal{K}) = \mathsf{1} igr\}. \end{aligned}$$

Proposition (Pushnitski, Rozenblum)

Markus Holzmann, Differential Operators on Graphs and Waveguides, Graz, 2019-03-01

• Let
$$I_q^- := (\Lambda_q - B, \Lambda_q)$$
 and $I_q^+ := (\Lambda_q, \Lambda_q + B]$

- Let $I_q^- := (\Lambda_q B, \Lambda_q)$ and $I_q^+ := (\Lambda_q, \Lambda_q + B]$
- Denote by $\lambda_k^{\pm}(q)$ the eigenvalues of A_{α} in I_q^{\pm}

• Let
$$I_q^- := (\Lambda_q - B, \Lambda_q)$$
 and $I_q^+ := (\Lambda_q, \Lambda_q + B]$

• Denote by $\lambda_k^{\pm}(q)$ the eigenvalues of A_{lpha} in I_q^{\pm}

Theorem (Behrndt, Exner, MH, Lotoreichik)

Let $\Gamma := \operatorname{supp} \alpha$. Then

$$\limsup_{k\to\infty} \left(k! |\lambda_k^{\pm}(q) - \Lambda_q|\right)^{1/k} \leq \frac{B}{2} \left(\mathsf{Cap}(\Gamma)\right)^2.$$

• Let
$$I_q^- := (\Lambda_q - B, \Lambda_q)$$
 and $I_q^+ := (\Lambda_q, \Lambda_q + B]$

Denote by λ[±]_k(q) the eigenvalues of A_α in I[±]_q

Theorem (Behrndt, Exner, MH, Lotoreichik)

Let $\Gamma := \operatorname{supp} \alpha$. Then

$$\limsup_{k o\infty} ig(k!|\lambda_k^\pm(q)-\Lambda_q|ig)^{1/k} \leq rac{B}{2} \left({
m Cap}(\Gamma)
ight)^2$$
 .

Proof:

• For $\lambda < 0$ sufficiently negative

$$\begin{aligned} & \left| \boldsymbol{P}_{q} \big((\boldsymbol{A}_{\alpha} - \lambda)^{-1} - (\boldsymbol{A}_{0} - \lambda)^{-1} \big) \boldsymbol{P}_{q} \right| \\ & = \left| - \boldsymbol{P}_{q} \gamma(\lambda) \big(1 + \alpha \boldsymbol{M}(\lambda) \big)^{-1} \alpha \gamma(\lambda)^{*} \boldsymbol{P}_{q} \right| \leq c \boldsymbol{T}_{q}^{\Gamma} \end{aligned}$$

• Let
$$I_q^- := (\Lambda_q - B, \Lambda_q)$$
 and $I_q^+ := (\Lambda_q, \Lambda_q + B]$

• Denote by $\lambda_k^{\pm}(q)$ the eigenvalues of A_{lpha} in I_q^{\pm}

Theorem (Behrndt, Exner, MH, Lotoreichik)

Let $\Gamma := \operatorname{supp} \alpha$. Then

$$\limsup_{k o\infty} ig(k!|\lambda_k^\pm(q)-\Lambda_q|ig)^{1/k} \leq rac{B}{2} \left({
m Cap}(\Gamma)
ight)^2$$
 .

Proof:

• For $\lambda < 0$ sufficiently negative

$$\begin{aligned} & \left| \boldsymbol{P}_{q} \big((\boldsymbol{A}_{\alpha} - \lambda)^{-1} - (\boldsymbol{A}_{0} - \lambda)^{-1} \big) \boldsymbol{P}_{q} \right| \\ & = \left| - \boldsymbol{P}_{q} \gamma(\lambda) \big(1 + \alpha \boldsymbol{M}(\lambda) \big)^{-1} \alpha \gamma(\lambda)^{*} \boldsymbol{P}_{q} \right| \leq \boldsymbol{c} \boldsymbol{T}_{q}^{\Gamma} \end{aligned}$$

Apply result from Pushnitski, Rozenblum

Markus Holzmann, Differential Operators on Graphs and Waveguides, Graz, 2019-03-01

Proposition (Behrndt, Exner, MH, Lotoreichik)

If $\alpha \geq 0$ on Σ , then for all sufficiently small $\varepsilon > 0$ there are only finitely many eigenvalues of A_{α} in $(\Lambda_q - \varepsilon, \Lambda_q)$.

Proposition (Behrndt, Exner, MH, Lotoreichik)

If $\alpha \geq 0$ on Σ , then for all sufficiently small $\varepsilon > 0$ there are only finitely many eigenvalues of A_{α} in $(\Lambda_q - \varepsilon, \Lambda_q)$.

Proposition (Behrndt, Exner, MH, Lotoreichik)

If $\alpha > 0$ on Σ , then infinitely many eigenvalues of A_{α} accumulate to Λ_q from above.

Proposition (Behrndt, Exner, MH, Lotoreichik)

If $\alpha \geq 0$ on Σ , then for all sufficiently small $\varepsilon > 0$ there are only finitely many eigenvalues of A_{α} in $(\Lambda_q - \varepsilon, \Lambda_q)$.

Proposition (Behrndt, Exner, MH, Lotoreichik)

If $\alpha > 0$ on Σ , then infinitely many eigenvalues of A_{α} accumulate to Λ_q from above.

Proof:

Proposition (Behrndt, Exner, MH, Lotoreichik)

If $\alpha \geq 0$ on Σ , then for all sufficiently small $\varepsilon > 0$ there are only finitely many eigenvalues of A_{α} in $(\Lambda_q - \varepsilon, \Lambda_q)$.

Proposition (Behrndt, Exner, MH, Lotoreichik)

If $\alpha > 0$ on Σ , then infinitely many eigenvalues of A_{α} accumulate to Λ_q from above.

Proof:

For λ < 0 sufficiently negative and α > 0,

$$P_q((A_\alpha - \lambda)^{-1} - (A_0 - \lambda)^{-1})P_q = -P_q\gamma(\lambda)(1 + \alpha M(\lambda))^{-1}\alpha\gamma(\lambda)^*P_q$$

has infinite dimensional rank

Proposition (Behrndt, Exner, MH, Lotoreichik)

If $\alpha \geq 0$ on Σ , then for all sufficiently small $\varepsilon > 0$ there are only finitely many eigenvalues of A_{α} in $(\Lambda_q - \varepsilon, \Lambda_q)$.

Proposition (Behrndt, Exner, MH, Lotoreichik)

If $\alpha > 0$ on Σ , then infinitely many eigenvalues of A_{α} accumulate to Λ_q from above.

Proof:

For λ < 0 sufficiently negative and α > 0,

$$P_q((A_\alpha - \lambda)^{-1} - (A_0 - \lambda)^{-1})P_q = -P_q\gamma(\lambda)(1 + \alpha M(\lambda))^{-1}\alpha\gamma(\lambda)^*P_q$$

has infinite dimensional rank

Apply result from Pushnitski, Rozenblum

Markus Holzmann, Differential Operators on Graphs and Waveguides, Graz, 2019-03-01

Assumptions:

$$\bullet \ T = T^*$$

- $\Lambda \in \sigma_p(T)$ isolated with dim ker $(T \Lambda) = \infty$
- P_{Λ} = projection onto ker $(T \Lambda)$

■
$$W = W^*$$
 compact with
 $\sigma(W) = \{\mu_k^+ : k \in \mathbb{N}\} \cup \{-\mu_k^- : k \in \mathbb{N}\}$ and
 $\mu_1^{\pm} \ge \mu_2^{\pm} \ge \mu_3^{\pm} \ge \cdots \ge 0$

• Question: Eigenvalues λ_k^{\pm} of T + W in $(\Lambda - \tau, \Lambda]$ and $[\Lambda, \Lambda + \tau)$

Proposition (Pushnitski, Rozenblum)

If $W \leq 0$ and dim rank $P_{\Lambda}WP_{\Lambda} = \infty$, then $\forall \varepsilon > 0 \exists I \in \mathbb{N}$ s.t.

$$(1-\varepsilon)\mu_{k+l}^{-} \leq \Lambda - \lambda_{k}^{-} \leq (1+\varepsilon)\mu_{k-l}^{-}.$$

Proposition (Behrndt, Exner, MH, Lotoreichik)

If $\alpha \leq 0$ on Σ , then for all sufficiently small $\varepsilon > 0$ there are only finitely many eigenvalues of A_{α} in $(\Lambda_q, \Lambda_q + \varepsilon)$.

Proposition (Behrndt, Exner, MH, Lotoreichik)

If $\alpha \leq 0$ on Σ , then for all sufficiently small $\varepsilon > 0$ there are only finitely many eigenvalues of A_{α} in $(\Lambda_q, \Lambda_q + \varepsilon)$.

Proposition (Behrndt, Exner, MH, Lotoreichik)

If $\alpha < 0$ on Σ , then then infinitely many eigenvalues of A_{α} accumulate to Λ_q from below.

• Let
$$I_q^- := (\Lambda_q - B, \Lambda_q)$$
 and $I_q^+ := (\Lambda_q, \Lambda_q + B]$

- Let $I_q^- := (\Lambda_q B, \Lambda_q)$ and $I_q^+ := (\Lambda_q, \Lambda_q + B]$
- Denote by λ[±]_k(q) the eigenvalues of A_α in I[±]_q

- Let $I_q^- := (\Lambda_q B, \Lambda_q)$ and $I_q^+ := (\Lambda_q, \Lambda_q + B]$
- Denote by $\lambda_k^{\pm}(q)$ the eigenvalues of A_{lpha} in I_q^{\pm}

Theorem (Behrndt, Exner, MH, Lotoreichik)

Let $\alpha \ge 0$ and assume that $\Gamma := \text{supp } \alpha$ be a C^{∞} -smooth curve with two endpoints. Then

$$\limsup_{k o \infty} \left(k! (\lambda_k^+(q) - \Lambda_q)
ight)^{1/k} = rac{B}{2} \left(\mathsf{Cap}(\Gamma)
ight)^2 .$$

• Let
$$I_q^- := (\Lambda_q - B, \Lambda_q)$$
 and $I_q^+ := (\Lambda_q, \Lambda_q + B]$

• Denote by $\lambda_k^{\pm}(q)$ the eigenvalues of A_{α} in I_q^{\pm}

Theorem (Behrndt, Exner, MH, Lotoreichik)

Let $\alpha \ge 0$ and assume that $\Gamma := \text{supp } \alpha$ be a C^{∞} -smooth curve with two endpoints. Then

$$\limsup_{k o\infty} ig(k! (\lambda_k^+(q) - \Lambda_q)ig)^{1/k} = rac{B}{2} \left(ext{Cap}(\Gamma)
ight)^2.$$

Theorem (Behrndt, Exner, MH, Lotoreichik)

Let $\alpha \leq 0$ and assume that $\Gamma := \operatorname{supp} \alpha$ be a C^{∞} -smooth curve with two endpoints. Then

$$\limsup_{k\to\infty} \left(k! (\Lambda_q - \lambda_k^-(q))\right)^{1/k} = \frac{B}{2} \left(\operatorname{Cap}(\Gamma)\right)^2.$$

Markus Holzmann, Differential Operators on Graphs and Waveguides, Graz, 2019-03-01

Thank you for your attention!