Trace Hardy Inequality for Euclidean Space with Cut

Michal Jex

Joint work with Vladimir Lotoreichik

Institute of Analysis Department of Mathematics Karlsruhe Institute of Technology

Graz, 25.2.2019

A 10

→ < ∃→

 $\begin{array}{c} \mbox{Introduction} \\ \mbox{Bounded cut} \\ \mbox{Unbounded cut} \\ \mbox{Application to δ'-interaction} \\ \mbox{Summary} \end{array}$

Outline Traditional Hardy Inequality Preliminaries

Outline

- Introduction
- Preliminaries
- Inequality for bounded cut
- Inequality for unbounded cut
- Application to $\delta'\mbox{-interaction}$
- Summary

A 10

æ

Hardy Inequality

• The classical Hardy inequality in the Euclidean space \mathbb{R}^d , $d \geq 3$

$$\int_{\mathbb{R}^d} |\nabla u|^2 \mathrm{d} x \geq \frac{(d-2)^2}{4} \int_{\mathbb{R}^d} \frac{|u|^2}{|x|^2} \mathrm{d} x, \quad \forall \, u \in H^1(\mathbb{R}^d)$$

• Various trace versions of the Hardy inequality, e.g.

$$\int_{\mathbb{R}^d_+} |\nabla u|^2 \mathrm{d} x \geq 2 \left(\frac{\Gamma(\frac{d}{4})}{\Gamma(\frac{d-2}{4})} \right)^2 \int_{\partial \mathbb{R}^d_+} \frac{|u|^2}{|x'|} \mathrm{d} x', \quad \forall \, u \in H^1(\mathbb{R}^d_+)$$

where \mathbb{R}^d_+ denotes upper half-space in \mathbb{R}^d for $d \geq 3$

• Usually holds for $d \ge 3$

4 A I

∃ ► < ∃ ►</p>

э

Outline Traditional Hardy Inequality Preliminaries

Preliminaries

- We consider a connected, possibly unbounded, Lipschitz hypersurface $\Sigma\subset \mathbb{R}^d$ with two faces Σ_\pm
- The domain $\mathbb{R}^d \setminus \Sigma$ with a cut across Σ is connected
- The boundary $\partial \Sigma$ of Σ can be viewed as a (d-2)-dimensional manifold naturally embedded into \mathbb{R}^d .
- For any $x \in \Sigma$, we denote by $\rho_{\Sigma}(x)$ the geodesic distance between x and $\partial \Sigma$, measured in the induced Riemannian metric of Σ .
- We denote by S_{r_1,r_2} the open spherical shell centred at the origin with the inner radius $r_1 > 0$ and the outer radius $r_2 > r_1$.
- For any u ∈ H¹(ℝ^d\Σ), its traces u|_{Σ±} onto two faces Σ_± of Σ are well-defined functions in L²(Σ).
- The jump of the trace $[u]_{\Sigma} := u|_{\Sigma_+} u|_{\Sigma_-}$ is a well-defined and non-trivial function in $L^2(\Sigma)$.

э.

Inequality for bounded cut Sketch of proof

Inequality for bounded cut

Theorem

Let $\Sigma \subset \mathbb{R}^d$ be a bounded Lipschitz hypersurface be as above. Then there exists a constant $C = C(\Sigma) > 0$ such that

$$\int_{\mathbb{R}^d} |\nabla u(x)|^2 \mathrm{d} x \geq C \int_{\Sigma} \frac{|[u]_{\Sigma}(x)|^2}{\rho_{\Sigma}(x)} \mathrm{d} \sigma(x), \quad \forall \, u \in H^1(\mathbb{R}^d \setminus \Sigma).$$

伺 とう きょう うちょう

Inequality for bounded cut Sketch of proof

Sketch of proof

Lemma

Let $\Sigma \subset \mathbb{R}^d$ be a Lipschitz hypersurface as above. Then the following statements hold.

() For any $\epsilon > 0$, there exists a constant $C_{\epsilon} = C_{\epsilon}(\Sigma) > 0$ such that

$$\|[u]_{\Sigma}\|_{L^{2}(\Sigma)}^{2} \leq \epsilon \|\nabla u\|_{L^{2}(\mathbb{R}^{d};\mathbb{C}^{d})}^{2} + C_{\epsilon} \|u\|_{L^{2}(\mathbb{R}^{d})}^{2}$$

holds for all $u \in H^1(\mathbb{R}^d \setminus \Sigma)$.

Observe Assume that Σ is bounded and let Ω ⊂ ℝ^d be a bounded C[∞]-smooth domain such that $\overline{\Sigma} ⊂ Ω$. Then there exists a constant $\widetilde{C} = \widetilde{C}(Ω, Σ) > 0$ such that

$$\int_{\Sigma} \frac{|[u]_{\Sigma}(x)|^2}{\rho_{\Sigma}(x)} \mathrm{d}\sigma(x) \leq \widetilde{C} \|u\|_{H^1(\Omega \setminus \Sigma)}^2,$$

holds for any $u \in H^1(\Omega \setminus \Sigma)$.

Sketch of proof

- Let $\Omega \subset \mathbb{R}^d$ be a bounded connected \mathcal{C}^{∞} -smooth domain such that $\overline{\Sigma} \subset \Omega$ holds and $\Omega \setminus \overline{\Sigma}$ is connected.
- For any $u \in H^1(\mathbb{R}^d \setminus \Sigma)$ we have

$$\int_{\mathbb{R}^d} |\nabla_{\mathbb{R}^d \setminus \Sigma} u|^2 \mathrm{d}x \geq \int_{\Omega} |\nabla_{\Omega \setminus \Sigma} u_{\Omega}|^2 \mathrm{d}x$$

where $u_{\Omega} := u|_{\Omega}$

• The average of u_{Ω} is well defined

$$\langle u_{\Omega} \rangle = \frac{1}{|\Omega|} \int_{\Omega} u_{\Omega}(x) \mathrm{d}x$$

It is easy to see that

$$[u_{\Omega} - \langle u_{\Omega} \rangle]_{\Sigma} = [u_{\Omega}]_{\Sigma} \quad \text{and} \quad \nabla_{\Omega \setminus \Sigma} (u_{\Omega} - \langle u_{\Omega} \rangle) = \nabla_{\Omega \setminus \Sigma} u_{\Omega}.$$

4 建市

Inequality for bounded cut Sketch of proof

Sketch of proof

- The constant function on Ω is the eigenfunction corresponding to the lowest eigenvalue of the Neumann Laplacian on $\Omega \backslash \Sigma$
- The function $u_\Omega \langle u_\Omega
 angle$ is orthogonal to constant function.
- By the min-max principle we can estimate the $L^2\text{-norm}$ of the difference $\langle u_\Omega\rangle$ as

$$\lambda_{2}^{\mathrm{N}}(\Omega \backslash \Sigma) \| u_{\Omega} - \langle u_{\Omega} \rangle \|_{L^{2}(\Omega)}^{2} \leq \| \nabla_{\Omega \backslash \Sigma} (u_{\Omega} - \langle u_{\Omega} \rangle) \|_{L^{2}(\Omega; \mathbb{C}^{d})}^{2}$$

where $\lambda_2^{\rm N}(\Omega \backslash \Sigma) > 0$ denotes the second eigenvalue of the Neumann Laplacian

• we rewrite the inequality from Theorem as follows

$$\begin{split} \int_{\Sigma} \frac{|[u]_{\Sigma}(x)|^{2}}{\rho_{\Sigma}(x)} \mathrm{d}\sigma(x) &= \int_{\Sigma} \frac{|[u_{\Omega}]_{\Sigma}(x)|^{2}}{\rho_{\Sigma}(x)} \mathrm{d}\sigma(x) = \int_{\Sigma} \frac{|[u_{\Omega} - \langle u_{\Omega} \rangle]_{\Sigma}(x)|^{2}}{\rho_{\Sigma}(x)} \mathrm{d}\sigma(x) \\ &\leq \widetilde{C} \left(\|\nabla_{\Omega \setminus \Sigma} (u_{\Omega} - \langle u_{\Omega} \rangle)\|_{L^{2}(\Omega;\mathbb{C}^{d})}^{2} + \|u_{\Omega} - \langle u_{\Omega} \rangle\|_{L^{2}(\Omega)}^{2} \right) \\ &\leq \widetilde{C} (1 + (\lambda_{2}^{\mathrm{N}}(\Omega \setminus \Sigma))^{-1}) \|\nabla_{\Omega \setminus \Sigma} (u_{\Omega} - \langle u_{\Omega} \rangle)\|_{L^{2}(\Omega;\mathbb{C}^{d})}^{2}. \end{split}$$

くぼう くほう くほう

Conformal mapping Inequality for unbounded cut-2D Inequality for unbounded cut Perforated hyperplane

Conformal mapping

- Function M is smooth analytic complex function with non-zero derivative everywhere in $S \subset \mathbb{C}$
- conformal map acts as follows

$$\tilde{x} = \Re(M(x + iy))$$

$$\tilde{y} = \Im(M(x + iy))$$

Cauchy-Riemann equations

$$\partial_x \tilde{x} = \partial_y \tilde{y} \quad \partial_x \tilde{y} = -\partial_y \tilde{x}$$

Linear fractional transformation-LFT

For $a, b, c, d \in \mathbb{C}$ such that $ad - bc \neq 0$ the mapping $M \colon \widehat{\mathbb{C}} \to \mathbb{C}$ is an LFT if one of the two conditions holds:

1) $c = 0, d \neq 0, M(\infty) := \infty$, and M(z) := (a/d)z + (b/d) for $z \in \mathbb{C}$. 2) $c \neq 0, M(\infty) := a/c, M(-d/c) := \infty$, and $M(z) := \frac{az+b}{cz+d}$ for $z \in \mathbb{C}$, $z \neq -d/c$.

Conformal mapping Inequality for unbounded cut-2D Inequality for unbounded cut Perforated hyperplane

Conformal mapping

Lemma

Let \mathcal{M} be an LFT as above with the Jacobian $\mathcal{J}_{\mathcal{M}}$. Then for any $x \in \mathbb{R}^2 \setminus \{\mathcal{Z}_{\mathcal{M}}\}$ and for any function $u \colon \mathbb{R}^2 \simeq \mathbb{C} \to \mathbb{C}$ differentiable at the point $\mathcal{M}(x)$ equality $|(\nabla v)(x)|^2 = |(\nabla u)(\mathcal{M}(x))|^2 \mathcal{J}_{\mathcal{M}}(x)$ holds with $v = u \circ \mathcal{M}$.

Lemma

Let $\Sigma \subset \mathbb{R}^2$ be an unbounded, piecewise- C^1 curve, parametrized via the unit-speed mapping $\sigma : (0, \infty) \to \mathbb{R}^2$. Let \mathcal{M} be an LFT as above with the Jacobian $\mathcal{J}_{\mathcal{M}}$ and such that $\mathcal{Z}_{\mathcal{M}}, \mathcal{Z}_{\mathcal{M}^{-1}} \notin \overline{\Sigma}$. Let the bounded curve $\Lambda := \mathcal{M}^{-1}(\Sigma)$ be parametrized by $\lambda := \mathcal{M}^{-1} \circ \sigma$. For arbitrary $u \in H^1(\mathbb{R}^2 \setminus \Sigma)$ set $v := u \circ \mathcal{M}$. Then the following hold.

• The identity $\int_{\mathbb{R}^2} |\nabla_{\mathbb{R}^2 \setminus \Sigma} u|^2 dx = \int_{\mathbb{R}^2} |\nabla_{\mathbb{R}^2 \setminus \Lambda} v|^2 dx$ is satisfied.

2 If, in addition,
$$u \in C_c^{\infty}(\mathbb{R}^d \setminus \Sigma)$$
, then $\int_0^{\infty} [\mathcal{J}_{\mathcal{M}}(\sigma(s))]^{1/2} |[u]_{\Sigma}(s)|^2 \mathrm{d}s = \int_0^{|\Lambda|} |[v]_{\Lambda}(s)|^2 \mathrm{d}s.$

・ 回 ト ・ ヨ ト ・ ヨ ト

Conformal mapping Inequality for unbounded cut-2D Inequality for unbounded cut Perforated hyperplane

Conformal mapping approach

Theorem

Let an unbounded piecewise- C^1 curve $\Sigma \subset \mathbb{R}^2$ be parametrized by the mapping $\sigma \colon \mathbb{R}_+ \to \mathbb{R}^2$ with $|\dot{\sigma}(s)| \equiv 1$. Then there exists a constant $C = C(\Sigma) > 0$ such that

$$\int_{\mathbb{R}^2} |\nabla u(x)|^2 \mathrm{d} x \geq C \int_0^\infty \frac{|[u]_{\Sigma}(s)|^2}{1+|\sigma(s)|^2} \mathrm{d} s, \quad \forall \, u \in H^1(\mathbb{R}^2 \backslash \Sigma)$$

as long as there exists a conformal mapping M such that Σ is mapped to non-closed, bounded and non-intersecting curve.

Sketch of the proof: Application of previous theorems.

Introduction Bounded cut Unbounded cut Application to 8⁷-interaction Summary

Conformal mapping Inequality for unbounded cut-2D Inequality for unbounded cut Perforated hyperplane

Inequality for unbounded cut

Admissible hypersurface

An unbounded Lipschitz hypersurface $\Sigma \subset \mathbb{R}^d$ is admissible if for an increasing unbounded sequence $0 = r_0 < r_1 < \ldots r_n < \ldots$, the domains $S_{r_n,r_{n+1}} \setminus \Sigma$ are connected for all $n \in \mathbb{N}_0$.

Theorem

Let an unbounded Lipschitz hypersurface $\Sigma \subset \mathbb{R}^d$ be admissible. Then there exists a function $\mathcal{W}_{\Sigma} \colon \Sigma \to (0, \infty)$ such that

$$\int_{\mathbb{R}^d \setminus \Sigma} |\nabla u(x)|^2 \mathrm{d}x \geq \int_{\Sigma} \mathcal{W}_{\Sigma}(x) |[u(x)]_{\Sigma}(x)|^2 \mathrm{d}\sigma(x), \qquad \forall \, u \in H^1(\mathbb{R}^d \setminus \Sigma).$$

Sketch of the proof: Splitting of space into shells and working with them separately.

Conformal mapping Inequality for unbounded cut-2D Inequality for unbounded cut Perforated hyperplane

Perforated hyperplane

Perforated hyperplane

The surface $\Pi \subset \{(x', x_d) \in \mathbb{R}^d : x_d = 0\}$ is an admissible perforated hyperplane if for some r > 0 and R > 2r holds

 $\exists x_0 \in \mathcal{B}_r(0) \colon \Pi \cap \mathcal{B}_r(x_0) = \varnothing.$

$$\Im \ \exists x \in \mathcal{S}_{R+r,2R-r} \colon \Pi \cap \left(\cup_{n=1}^{\infty} \mathcal{B}_{2^{n-1}r}(2^{n-1}x) \right) = \emptyset.$$

Conformal mapping Inequality for unbounded cut-2D Inequality for unbounded cut Perforated hyperplane

Perforated hyperplane

Theorem

Let $\Sigma \subset \mathbb{R}^d$ be an admissible perforated hyperplane. Then there exist $\hat{C} = \hat{C}(\Sigma) > 0$ and $\omega = \omega(\Sigma) > 0$ such that

$$\int_{\mathbb{R}^d} |\nabla u(x)|^2 \mathrm{d}x \geq \int_{\Sigma} \mathcal{W}(x) |[u]_{\Sigma}(x)|^2 \mathrm{d}\sigma(x), \qquad \forall \, u \in H^1(\mathbb{R}^d \setminus \Sigma)$$

with the weight

$$\mathcal{W}(x) := egin{cases} \omega, & |x| < R \ 2^{1-n}\omega, & 2^{n-1}R \leq |x| < 2^n R, \ n \in \mathbb{N}. \end{cases}$$

where R is the same as in Definition above.

Sketch of the proof: Splitting of space into shells and working with them separately.

< 回 > < 三 > < 三 >

Definition of δ' -interaction Absence of the ground state

Definition of the δ' -interaction on non-closed manifold

• the symmetric sesquinear form

$$\begin{split} \mathfrak{a}_{\delta',\beta}^{\Gamma}[f,g] &:= (\nabla f_{\mathrm{i}}, \nabla g_{\mathrm{i}})_{\mathrm{i}} + (\nabla f_{\mathrm{e}}, \nabla g_{\mathrm{e}})_{\mathrm{e}} + \beta^{-1} (f_{\mathrm{e}}|_{\Gamma} - f_{\mathrm{i}}|_{\Gamma}, g_{\mathrm{e}}|_{\Gamma} - g_{\mathrm{i}}|_{\Gamma})_{\Gamma}, \\ \mathrm{dom}\, \mathfrak{a}_{\delta',\beta}^{\Gamma} &:= \mathcal{H}^{1}(\Omega_{\mathrm{e}}) \oplus \mathcal{H}^{1}(\Omega_{\mathrm{i}}), \end{split}$$

is closed, densely defined and lower-semibounded in $L^2(\mathbb{R}^d)$ • linear mapping

$$\Lambda \colon \mathcal{H}^1(\Omega_{\mathrm{e}}) \oplus \mathcal{H}^1(\Omega_{\mathrm{i}}) \to L^2(\Gamma \setminus \Sigma), \qquad \Lambda f := f_{\mathrm{e}}|_{\Gamma \setminus \Sigma} - f_{\mathrm{i}}|_{\Gamma \setminus \Sigma},$$

• symmetric, densely defined and lower-semibounded form

 $\mathfrak{a}^{\Sigma}_{\delta',\beta}[f,g] := \mathfrak{a}^{\Gamma}_{\delta',\beta}[f,g], \qquad \mathrm{dom}\, \mathfrak{a}^{\Sigma}_{\delta',\beta} := \{f \in \mathrm{dom}\, \mathfrak{a}^{\Gamma}_{\delta',\beta} \colon \Lambda f = 0\}.$

• the self-adjoint operator $-\Delta_{\Sigma,\beta}$ in $L^2(\mathbb{R}^d)$ is induced by the form $\mathfrak{a}_{\delta',\beta}^{\Sigma}$

・回り イラト イラト

Definition of δ' -interaction Absence of the ground state

Absence of negative eigenvalues for non-closed hypersurface

Key inequality

Let $\Gamma, \Sigma \subset \mathbb{R}^n$ be as above. Then there exists a constant $\mathit{C} = \mathit{C}(\Sigma) > 0$ such that

$$\|\psi_{\Sigma_+} - \psi_{\Sigma_-}\|_{L^2(\Sigma)}^2 \le C \|\nabla\psi\|_{L^2(\mathbb{R}^n;\mathbb{C}^n)}^2$$

holds for any $\psi \in H^1(\mathbb{R}^n \setminus \Sigma)$.

Theorem

Let Λ be a non-closed compact Lipschitz manifold of the codimension 1. Then there exists β_0 such that the operator $-\Delta_{\Sigma,\beta}$ is positive as long as $\beta < \beta_0$. Furthermore the spectrum is $\sigma(-\Delta_{\Sigma,\beta}) = \sigma_{ess}(-\Delta_{\Sigma,\beta}) = \mathbb{R}^+$.

글 🖌 🔺 글 🛌

Summary

- Hardy inequality for a cut
- Holds also in dimension 2
- Works for bounded and unbounded cuts
- Application to $\delta'\text{-interaction}$

Thank you for your attention

< ∃⇒