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The model

• Two (distinguishable) particles moving on the half-line
R+ = (0,∞).

• On the Hilbert space L2(R+ × R+) we consider the
two-particle Hamiltonian

H = − ∂2
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The model

v a real-valued interaction potential such that:

• v ∈ L1
loc(R+) and max{−v , 0} ∈ L∞(R+)

• The one-particle operator h = − d2

dx2 + v(x) on L2(R+) is such
that inf σ(h) =: ε0 is an isolated (non-degenerate) eigenvalue

• ε0 < lim infx→∞ v(x) := v∞



Main results

Theorem
The essential spectrum of H is given by the interval [ε0,∞).
Furthermore, the discrete spectrum is non-empty and finite.

• Note that the two-particle Hamiltonian has ground state
energy strictly lower than that of h.

• The existence of a discrete spectrum is a quantum
geometrical effect. If one considers the pair on the full real
line, no discrete spectrum exists.



Motivation

• The pairing of electrons plays a central role in the formation
of the superconducting phase in metals (Cooper pairs).

• The discrete spectrum indeed leads to a Bose-Einstein
condensation of non-interacting pairs of particles. Hence,
geometrical effects lead to a Bose-Einstein condensation (see
also Exner&Zagrebnov 2005, K. 2017/18)



Ideas on the proof: A reduction of the problem

• We actually prove the theorem for the operator Q+, defined
on L2(Ω0) where

Ω0 = {(x1, x2) ∈ R2
+ : 0 < x1 < x2}.

•
Q+[ϕ,ϕ] =

∫
Ω0

(
|∇ϕ|2 + v(x1)|ϕ|2

)
dx1dx2

with form domain

D(Q+) = {ϕ ∈ H1(Ω0) : Q+[ϕ,ϕ] <∞}



Ideas on the proof: Essential spectrum

In a first step one proves that inf σess(H) ≥ ε0:

• Here one employs an operator bracketing argument, dissecting
Ω0 into three domains using the two lines x1 = L and x2 = L.

• Due to the lim inf-condition on the potential v , only the
semi-infinite rectangle Ω2 is important.

• By a separation of variables one concludes that
inf σess((−∆ + v)|Ω2) = inf σess(hNL ), where hNL is the
finite-volume version of h.

• The final step is to realise that inf σess(hNL )→ ε0 as L→∞.



Ideas on the proof: Essential spectrum

In a second step one proves that [ε0,∞) ⊂ inf σess(H):

• This is done by constructing a suitable Weyl sequence. We
set, for any k ∈ [0,∞),
ϕn(x1, x2) := ψ0(x1)τ(n − x1) · e ikx2τ(x2 − n)τ(2n − x2); here
ψ0 ∈ D(h) is the ground state of h and τ : R→ R is a
smooth function with 0 ≤ τ ≤ 1 and τ(x) = 1 for x ≥ 2 and
τ(x) = 0 for x ≤ 1.

• A direct calculation then shows that

‖(−∆− (ε0 + k2))ϕn‖2
L2(Ω0)

‖ϕn‖2
L2(Ω0)

−→ 0

as n→∞.



On the existence of a discrete spectrum

The general strategy is to find a function ϕ in the form domain of
Q+ such that

Q+[ϕ,ϕ]− ε0‖ϕ‖2
L2(Ω0) < 0.

• We define ϕn(x1, x2) := ψ0(x1)φn(x2)

• Here φn(x2) = φ(x2)χ
(
x2
n

)
; χ is a smooth cut-off function

with 0 ≤ χ ≤ 1 and χ(t) = 1 for t ≤ 1 and χ(t) = 0 for
t ≥ 2.

• Most importantly, for ρ ∈ (1/2, 1), we set

φ1/ρ(x2) := F (x2) :=

∫ x2

0
|ψ0(t)|2dt.



On the existence of a discrete spectrum

• We note that ϕn is in the form domain of Q+.

• A direct calculation then shows that
Q+[ϕn, ϕn]− ε0‖ϕn‖2

L2(Ω0) < 0 for n large enough.



On the finiteness of the discrete spectrum

The basic strategy is to reduce the two-dimensional problem to an
effective one-dimensional one. This then allows one to employ
well-known Bargmann estimates on the number of eigenvalue
negative eigenvalues.

• For R > 0, we introduce the domains

Ω1 := {(x1, x2) ∈ Ω0 : x2 < x1 + 2R}

Ω2 := {(x1, x2) ∈ Ω0 : x2 > x1 + R}

and, j = 1, 2,

χR
j (x1, x2) := χj

(
x2 − x1

R

)
with χ1, χ2 : R→ [0,∞) such that χ1(t) = 1 for t ≤ 1,
χ2(t) = 1 for t ≥ 2 as well as χ2

1(t) + χ2
2(t) = 1.



On the finiteness of the discrete spectrum

• A direct calculation shows that

Q+[ϕ,ϕ] = Q+[χR
1 ϕ, χ

R
1 ϕ] + Q+[χR

2 ϕ, χ
R
2 ϕ]−

∫
Ω0

WR |ϕ|2dx

with

WR(x1, x2) := |∇χR
1 |2 + |∇χR

2 |2

• Consequently, we can introduce two operators Q1,Q2 on
Ω1,Ω2 such that

Q+[ϕ,ϕ] = Q1[χR
1 ϕ, χ

R
1 ϕ] + Q2[χR

2 ϕ, χ
R
2 ϕ].

• The operator Qj differs from Q+ on the corresponding domain
Ωj by adding the effective potential −WR . Note that we
impose Dirichlet boundary conditions along the defining lines
of Ωj .



On the finiteness of the discrete spectrum

• We denote by N(A, λ) the number of eigenvalues (counted
with multiplicity) below λ ∈ R of the self-adjoint operator A.

• From the previous relation we can compare Q+ with Q1 ⊕ Q2

(min-max principle) to obtain

N(Q+, ε0) ≤ N(Q1, ε0) + N(Q2, ε0).

Hence, it remains to show that N(Q1, ε0),N(Q2, ε0) <∞.



On the finiteness of the discrete spectrum

• To show that N(Q1, ε0) is finite, one decomposes Ω1 using
the additional straight line x1 = L. The lim inf-condition on v
shows that the operator on the “outer” part (i.e., where
x1 > L) has no spectrum below ε0. On the other hand, the
remaining domain is bounded and hence the corresponding
operator has purely discrete spectrum, implying the statement.



On the finiteness of the discrete spectrum

• Regarding N(Q2, ε0) we introduce another comparison
operator Q̂2 for which one has N(Q2, ε0) ≤ N(Q̂2, ε0) (again
by min-max principle).

• More explicitly, we define Q̂2 on L2(R+ × R) via its form

Q̂2[ϕ,ϕ] :=

∫
R+×R

(
|∇ϕ|2 + (v(x1)−WR(x1, x2))|ϕ|2

)
dx

D(Q̂2) := {ϕ ∈ H1(R+ × R) : Q̂2[ϕ,ϕ] <∞}.

• We introduce the projection Π via

(Πϕ)(x1, x2) := ψ0(x1) ·
∫
R+

ϕ(x1, x2)ψ0(x1)dx1



On the finiteness of the discrete spectrum

• A calculation then shows that

Q̂2[ϕ,ϕ] ≥ Q̂2[Πϕ,Πϕ]− R‖WRΠϕ‖2
L2(R+×R)

+

(
E2 −

1

R

)
‖Π⊥ϕ‖2

L2(R+×R) −WR [Π⊥ϕ,Π⊥ϕ],

where E2 := inf{σ(h) \ ε0}.
• Hence, the first two terms define a self-adjoint operator A on

ranΠ, and the last two terms a multiplication operator on
ranΠ⊥.

• Again by the min-max principle, we conclude that

N(Q̂2, ε0) ≤ N(A, ε0) + N(B, ε0)



On the finiteness of the discrete spectrum

• One can show that, for sufficiently large R > 0, B has no
spectrum in (−∞, ε0) and hence N(B, ε0) = 0.

• Finally, A is effectively a one-dimensional Schrödinger
operator with some effective potential. Classical estimates
(Bargmann estimates) then show that N(A, ε0) <∞.



On the finiteness of the discrete spectrum

• We remark that no bound on the number of eigenvalues in the
discrete spectrum was derived!

• However, if one considers the initial case where the potential
v was informally defined as, d > 0,

v(x) :=

{
0 for x < d/

√
2 ,

∞ else ,

then one can show that the discrete spectrum consists of
exactly one eigenvalue.
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