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Combinatorial and Metric Graphs

Definition
A (combinatorial) graph is the set of vertices V and edges &, G4 = (V, €).

For u,v € V we shall write u ~ v if there is e, , € £ connecting v and v.
The function deg: V — Z>1 U {oco} defined by

deg: vi> #{ueV|u~v}=#E,

is called the (combinatorial) degree, where &, := {e,, € £|u ~ v}.
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Combinatorial and Metric Graphs

Definition
A (combinatorial) graph is the set of vertices V and edges &, G4 = (V, &),

For u,v € V we shall write u ~ v if there is e, , € £ connecting v and v.
The function deg: V — Z>1 U {oco} defined by

deg: vi> #{ueV|u~v}=#E,
is called the (combinatorial) degree, where &, := {e,, € £|u ~ v}.

@ V and & are at most countable
@ Gy is connected and locally finite (deg(v) < oo for all v € V)

@ No loops or multiple edges

If every edge e € € is assigned with a length |e| € (0,00), then G = (V,E,|-|) is

called a metric graph
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Quantum Graphs

Given a metric graph G = (V, &, | - |), we can identify each edge e € £
with an interval (0, |e|) and hence introduce the Hilbert space

@D e = {F = {f)eces o€ (), 3 ol < 20}

ecé ecé
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Quantum Graphs

Given a metric graph G = (V, &, - |), we can identify each edge e € £
with an interval (0, |e|) and hence introduce the Hilbert space

@D e = {F = {f)eces o€ (), 3 ol < 20}

ect ect
Next equip G with a Schrodinger-type operator Hmax := @ He, Where:

d2
He=——,  dom(He) = H?(e).
dxg
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Quantum Graphs

Given a metric graph G = (V, &, - |), we can identify each edge e € £
with an interval (0, |e|) and hence introduce the Hilbert space

@D e = {F = {f)eces o€ (), 3 ol < 20}

ect ect
Next equip G with a Schrodinger-type operator Hmax := @ ¢ He, Where:

d2
H, = —? + V(xe), dom(He) = Dmax(e).

Aleksey Kostenko Quantum Graphs 4 /36



Quantum Graphs

Given a metric graph G = (V, &, | - |), we can identify each edge e € £
with an interval (0, |e|) and hence introduce the Hilbert space

Lz(g) = @ Lz(e) = {f = {fe}eeg: fe € Lz(e)v Z erH%Z(e) < OO}

ecé ecé

Next equip G with a Schrodinger-type operator Hmax := @ ¢ He, where:

H, = (1 d —A(Xe)>2+V(Xe), dom(He) = Dimax(e).

idxe
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Quantum Graphs

Given a metric graph G = (V, &, | - |), we can identify each edge e € £

with an interval (0, |e|) and hence introduce the weighted Hilbert space
=P (e pre)
ect

Next equip G with a Schrodinger-type operator Hmax := @ ¢ He, Where:

He=———ve— dom(H,) = H?(e).
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Quantum Graphs

Given a metric graph G = (V, &, | - |), we can identify each edge e € £
with an interval (0, |e]) and hence introduce the Hilbert space

L2(g) = @ Lz(e) = {f = {fe}e€<€| fe € Lz(e)v Z ’lfe‘ﬁ?(e) < OO}

eef eef
Next equip G with a Schrodinger-type operator Hmax := @ ¢ He, where:

d2
He=-—,  dom(He) = H*(e).
dxg
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Quantum Graphs

Given a metric graph G = (V, &, | - |), we can identify each edge e € £
with an interval (0, |e]) and hence introduce the Hilbert space

12(9) == P L3(e) = {f = {fe}ece| fe € 12(e), D [Ifella(e) < oo}
eef eef
Next equip G with a Schrodinger-type operator Hmax := @ ¢ He, where:
d2

He = _chg’

dom(H.) = H?(e).

To give H the meaning of a quantum mechanical energy operator, it must
be self-adjoint, that is, we need to add boundary conditions at the vertices.
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Given a metric graph G = (V, &, | - |), we can identify each edge e € £
with an interval (0, |e]) and hence introduce the Hilbert space

12(9) == P L3(e) = {f = {fe}ece| fe € 12(e), D [Ifella(e) < oo}
eef eef
Next equip G with a Schrodinger-type operator Hmax := @ ¢ He, where:
d2

He = _chg’

dom(H.) = H?(e).

To give H the meaning of a quantum mechanical energy operator, it must
be self-adjoint, that is, we need to add boundary conditions at the vertices.

) . f(Xe)_fe(V)
L ! P R S A
V)= lim, ). felv) = i

are well defined for all f € dom(Hmax)-
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Quantum Graphs

Given a metric graph G = (V, &, | - |), we can identify each edge e € £
with an interval (0, |e]) and hence introduce the Hilbert space

2(9) = @ L) = {f = {fhece fe € L2(e). Y IfellFey < o0}

ecé ecé

Next equip G with a Schrodinger-type operator Hyay := @ He, where:

d2

He = ——,
¢ dxg

dom(H,) = H2()

To give H the meaning of a quantum mechanical energy operator, it must
be self-adjoint, that is, we need to add boundary conditions at the vertices.

(standard) Kirchhoff conditions: For all v € V

{f is continuous at v,

2ece, fe(v) = 0.
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Quantum Graphs

Given a metric graph G = (V, &, | - |), we can identify each edge e € £
with an interval (0, |e]) and hence introduce the Hilbert space

L2(g) = @ Lz(e) = {f = {fe}e65| fe € Lz(e)’ Z “feHiz(e) < OO}

ecé ecé

Next equip G with a Schrodinger-type operator Hmax := @ He, Where:

d2

He = ——,
c dxg

dom(H,) = H?(e).

To give H the meaning of a quantum mechanical energy operator, it must
be self-adjoint, that is, we need to add boundary conditions at the vertices.

Definition

A quantum graph is a metric graph equipped with the operator H acting
as the negative second order derivative along edges and accompanied by
Kirchhoff vertex conditions
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Equilateral Quantum Graphs

Suppose |e| =1 for all e € €.
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Equilateral Quantum Graphs

Suppose |e| =1 for all e € €.
Then the Kirchhoff Laplacian H. is self-adjoint.

Problem

—

Spectral analysis of Heguil?
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Equilateral Quantum Graphs

Suppose |e| =1 for all e € €.
Then the Kirchhoff Laplacian H. is self-adjoint.

Problem

Spectral analysis of Hequil

Define the normalized /physical Laplacian on G4 by

(Tnormf)(v = deg Z f ve.

Tnorm generates a bounded self-adjoint operator hyopm in £2(V; deg).

ﬁ R. Courant, K. Friedrichs and H. Lewy, Uber die partiellen
Differenzengleichungen der mathematischen Physik, Math. Ann. (1928)
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Equilateral Quantum Graphs

Suppose |e| =1 for all e € €.
Then the Kirchhoff Laplacian H. is self-adjoint.

Problem

Spectral analysis of Hequil

Define the normalized /physical Laplacian on G4 by

(Tnormf)(v = deg Z f ve.

Tnorm generates a bounded self-adjoint operator hyopm in £2(V; deg).

ﬁ R. Courant, K. Friedrichs and H. Lewy, Uber die partiellen
Differenzengleichungen der mathematischen Physik, Math. Ann. (1928)

ﬁ Y. Colin de Verdiére, Spectres de Graphes, SMF, Paris, 1998.
B W. Woess, Random Walks on Infinite Graphs and Groups, CUP, 2000.
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Equilateral Quantum Graphs

Suppose |e| =1 for all e € €.
Then the Kirchhoff Laplacian H.g is self-adjoint.

Problem

Spectral analysis of Hequil

Define the normalized /physical Laplacian on G4 by

(Tnormf) V = deg Z f ve.

Tnorm generates a bounded self-adjoint operator hyopm in £2(V; deg).

Pankrashkin'2012)

Theorem (von Below'87,..., Cattaneo, Exner,...,

0j(Hequi) \ 0p = {\ & 0p| 1 — cos(VA) € j(hnorm)}, J € {D, ess, ac,sc}

with op = {(7n)?} pen.
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Equilateral Quantum Graphs

Suppose |e| =1 for all e € €.
Then the Kirchhoff Laplacian H.g is self-adjoint.

Problem

Spectral analysis of Hequil

Define the normalized /physical Laplacian on G4 by

(Tnormf) V = deg Z f ve.

Tnorm generates a bounded self-adjoint operator hyopm in £2(V; deg).

Pankrashkin'2012)

Theorem (von Below'87,..., Cattaneo, Exner,...,

0j(Hequi) \ 0p = {\ & 0p| 1 — cos(VA) € j(hnorm)}, J € {D, ess, ac,sc}

with op = {(7n)?} pen. Hequit and hporm are “locally” unitarily equivalent.

Aleksey Kostenko Quantum Graphs 11 / 36




(Non-equilateral) Quantum Graphs

Problem
Does there exist an analogous statement for non-equilateral graphs?
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Problem
Does there exist an analogous statement for non-equilateral graphs?

Consider the (minimal) discrete Laplacian hg defined on £2(V; m) by

(roA)) = s S ) = 3 el

( eu] Z

7g is the normalized Laplacian iff |e| =1 for all e € £ and a = 0|,

ur~v
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(Non-equilateral) Quantum Graphs

Problem
Does there exist an analogous statement for non-equilateral graphs?

Consider the (minimal) discrete Laplacian hg defined on £2(V; m) by

(raF)(v) = —— 3 T =AW oy 5

m(v) 2= ess =

ur~v

‘Tg is the normalized Laplacian iff |e| =1 for all e € £ and a =0 ‘

Theorem (E. B. Davies'1992)

hg is bounded < the weighted degree Deg is bounded on V,

1 _ Zeegv 1/’6’
Zee&/ |e|

Deg: v —

1
m(v) Z

ur~v

leu,v
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(Non-equilateral) Quantum Graphs

Problem

Does there exist an analogous statement for non-equilateral graphs?

Consider the (minimal) discrete Laplacian hg defined on £2(V; m) by

(o)) i= s 5 T ) = 3 el

|eu’v| ecé,

ur~v

‘Tg is the normalized Laplacian iff |e| =1 for all e € £ and a =0 ‘

Theorem (E. B. Davies'1992)

hg is bounded < the weighted degree Deg is bounded on V,

1 _ Zeegv 1/’6’
Zee&/ |e|

Note that Deg is bounded on V if /,(£) := infece €] > 0.

Deg: v —

1
m(v) Z

ur~v

leu,v
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(Non-equilateral) Quantum Graphs

Theorem 1 (Exner, AK, Malamud, Neidhardt'2018)

Let G be a metric graph with £*(G) := sup.c¢ |e| < co. Then:
(i) Hg is self-adjoint <= hg is self-adjoint,
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(Non-equilateral) Quantum Graphs

Theorem 1 (Exner, AK, Malamud, Neidhardt'2018)

Let G be a metric graph with £*(G) := sup.c¢ |e| < co. Then:
(i) Hg is self-adjoint <= hg is self-adjoint,

(ii) info(Hg) > 0 <= inf o(hg) > 0.

(iii) inf oess(Hg) > 0 <= inf 0ess(hg) > 0.
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(Non-equilateral) Quantum Graphs

Theorem 1 (Exner, AK, Malamud, Neidhardt'2018)

Let G be a metric graph with £*(G) := sup.c¢ |e| < co. Then:
(i) Hg is self-adjoint <= hg is self-adjoint,
(ii) info(Hg) > 0 <= inf o(hg) > 0.
(iii) inf oess(Hg) > 0 <= inf 0ess(hg) > 0.
(iv) o(Hg) is discrete <= o(hg) is discrete and #{e € £: |e| > €} is
finite for all € > 0.

(v)

le™th9 |l < CE7P2, >0,

for some D > 2 if and only if

le™tHe 1100 < GEP2, £ > 0.

v

[@ P. Exner, A. Kostenko, M. Malamud, & H. Neidhardt, Spectral theory
of infinite quantum graphs, Ann. Henri Poincaré 19, no. 11, (2018).
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(Non-equilateral) Quantum Graphs

Theorem 1 (Exner, AK, Malamud, Neidhardt'2018)

Let G be a metric graph with £*(G) := sup.c¢ |e| < co. Then:
(i) Hg is self-adjoint <= hg is self-adjoint,
(ii) info(Hg) > 0 <= inf o(hg) > 0.
(iii) inf oess(Hg) > 0 <= inf 0ess(hg) > 0.
(iv) o(Hg) is discrete <= o(hg) is discrete and #{e € £: |e| > €} is
finite for all € > 0.

(v)

le™ R |l < CE7P2, >0,

for some D > 2 if and only if

le™tHe |1 100 < GEP2, £ >0,

v

@ A. Kostenko and N. Nicolussi, Spectral estimates for infinite quantum
graphs, Calc. Var. Partial Differential Equations 58, no. 1, (2019).
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Quantum Graphs: Self-adjointness

For p: £ — (0,00), define a path metric g, on V w.r.t. G by

op(u,v) = inf Zp(ew_hw)-
k

P={v0,....,Va}: U=vy, V=V,

The infimum is taken over all paths connecting v and v.
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k

P={v0,....,Va}: U=vy, V=V,

The infimum is taken over all paths connecting v and v.

o Natural path metric oo with po: e — |e|.
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k

P={v0,....,Va}: U=vy, V=V,

The infimum is taken over all paths connecting v and v.

o Natural path metric oo with po: e — |e|.

e Star metric o, with py: ey — m(u) + m(v) with m(v) = >

ecé, e‘
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Quantum Graphs: Self-adjointness

For p: £ — (0,00), define a path metric g, on V w.r.t. G by

op(u,v) = inf ZP(er_LVk)-
k

P={v0,...,Vn}: u=vo, vV=vp

The infimum is taken over all paths connecting v and v.

o Natural path metric oo with po: e — |e|.
e Star metric o, with py: ey — m(u) + m(v) with m(v) = >

Hopf-Rinow-type Theorem

(V, 0p) is complete as a metric space <=
(V, 0p) is geodesically complete <=
The distance balls in (V, gp) are finite ( “finite ball condition”).

v

@ X. Huang, M. Keller, J. Masamune, R. Wojciechowski, A note on self-adjoint
extensions of the Laplacian on weighted graphs, J. Funct. Anal. 265 (2013).
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Quantum Graphs: Self-adjointness

For p: £ — (0,00), define a path metric g, on V w.r.t. G by

op(u,v) = inf ZP(er_LVk)-

P={v0,...,Vn}: u=vo, vV=vp P

The infimum is taken over all paths connecting v and v.

o Natural path metric oo with po: e — |e|.

e Star metric o, with pm: ey — m(u) + m(v) with m(v) = >

Theorem 2 (Exner—-AK—Malamud-Neidhardt)

If (V, om) is complete as a metric space, then H is self-adjoint.
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For p: £ — (0,00), define a path metric g, on V w.r.t. G by

op(u,v) = inf ZP(er_LVk)-

P={v0,...,Vn}: u=vo, vV=vp P

The infimum is taken over all paths connecting v and v.

o Natural path metric oo with po: e — |e|.

e Star metric o, with pm: ey — m(u) + m(v) with m(v) = >

Theorem 2 (Exner—-AK—Malamud-Neidhardt)

If (V, om) is complete as a metric space, then H is self-adjoint.
In particular, H is self-adjoint if inf,cy m(v) = inf ey > oo |e[ > 0.

v

[3 M. Keller and D. Lenz, Dirichlet forms and stochastic completeness of graphs
and subgraphs, J. reine angew. Math. 666 (2012).
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Quantum Graphs: Self-adjointness

For p: £ — (0,00), define a path metric g, on V w.r.t. G by

op(u,v) = inf ZP(er_LVk)-

P={v0,...,Vn}: u=vo, vV=vp
The infimum is taken over all paths connecting v and v.

o Natural path metric oo with po: e — |e|.

e Star metric o, with pm: ey — m(u) + m(v) with m(v) = >

Theorem 2 (Exner—-AK—Malamud-Neidhardt)

If (V, om) is complete as a metric space, then H is self-adjoint.
In particular, H is self-adjoint if inf,cy m(v) = inf,cy > oo |e[ > 0.

Gaffney-type Theorem: (G, o) is complete = Hg is self-adjoint.
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Quantum Graphs: Self-adjointness

For p: £ — (0,00), define a path metric g, on V w.r.t. G by

op(u,v) = inf ZP(er_LVk)-

P={v0,...,Vn}: u=vo, vV=vp

The infimum is taken over all paths connecting v and v.

o Natural path metric oo with po: e — |e|.

e Star metric o, with pm: ey — m(u) + m(v) with m(v) = >

Theorem 2 (Exner—-AK—Malamud-Neidhardt)

If (V, om) is complete as a metric space, then H is self-adjoint.
In particular, H is self-adjoint if inf,cy m(v) = inf,cy > oo |e[ > 0.

Gaffney-type Theorem: (G, o) is complete = Hg is self-adjoint.

The standard assumption for infinite QG is infecg |€] > 0!
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Quantum Graphs: Self-adjointness

i | ][]
T 1T
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Quantum Graphs: Self-adjointness

i | ][]
T 1T

In Example 1, (V, om) is complete < m(V) = 2vol(G) =23 .. |e| = co.
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Quantum Graphs: Self-adjointness

i | ][]
T 1T

In Example 1, (V, om) is complete < m(V) = 2vol(G) =23 .. |e| = co.

If vol(G) < oo, then H is non-self-adjoint. \

Aleksey Kostenko Quantum Graphs 18 / 36



Quantum Graphs: Self-adjointness

i | ][]
T 1T

In Example 1, (V, om) is complete < m(V) = 2vol(G) =23 .. |e| = co.

If vol(G) < oo, then H is non-self-adjoint. \

Hence, in Example 1, | H is self-adjoint < (V, o) is complete!
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Quantum Graphs: Self-adjointness

e | [ [ ]]
R

In Example 1, (V, om) is complete < m(V) = 2vol(G) =23 .. |e| = co.

If vol(G) < oo, then H is non-self-adjoint.

Hence, in Example 1, ‘H is self-adjoint < (V, om) is complete!‘

The converse to Theorem 2 is not true!
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Quantum Graphs: Self-adjointness

e [ ] ][]
R

In Example 1, (V, om) is complete < m(V) = 2vol(G) =23 .. |e| = co.

If vol(G) < oo, then H is non-self-adjoint.

Hence, in Example 1, ‘H is self-adjoint < (V, om) is complete!‘

The converse to Theorem 2 is not true!
For radially symmetric trees and antitrees, H is self-adjoint < m(V) = co.
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Examples: Radially symmetric antitrees

Figure: Example of an antitree A with s, = n+ 1.
S, is the n-th combinatorial sphere, and s, := #S5,,.

A is radially symmetric if edges connecting S,, with S,11 have the same
length, say ¢, for all n > 0.
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Examples: Radially symmetric antitrees

Figure: Example of an antitree A with s, = n+ 1.

Theorem (AK-Nicolussi)

H is self-adjoint <= vol(A) = ano SnSnt1ln = 00
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Examples: Radially symmetric antitrees

Figure: Example of an antitree A with s, = n+ 1.

Theorem (AK-Nicolussi)

H is self-adjoint <= vol(A) = ano SnSnt1ln = 00

(A, 00) is complete <= 3= ., ¢ = oco.
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Examples: Radially symmetric antitrees

Figure: Example of an antitree A with s, = n+ 1.

Theorem (AK-Nicolussi)

H is self-adjoint <= vol(A) = ano SnSnt1ln = 00

(A, 00) is complete <= 3= -, ¢ = 0.
(V, 0m) is complete <= 3=, - (S + Spt1)ln = 00
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Quantum Graphs: Self-adjointness

(i) H is self-adjoint if (V, om) is complete.
(ii) H is non-self-adjoint if vol(G) = >_

cce el < oo
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Quantum Graphs: Self-adjointness

(i) H is self-adjoint if (V, om) is complete.
(ii) H is non-self-adjoint if vol(G) = >_

cce el < oo

Problems

(i) Characterize metric graphs such that completeness of (V, o) is also
necessary for self-adjointness.
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Quantum Graphs: Self-adjointness

(i) H is self-adjoint if (V, om) is complete.
(ii) H is non-self-adjoint if vol(G) = >_

cce el < oo

Problems

(i) Characterize metric graphs such that completeness of (V, o) is also
necessary for self-adjointness.

(ii) Characterize metric graphs such that vol(G) = "
sufficient for self-adjointness.

cce |€] = oo is also
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Quantum Graphs: Finite total volume

vol(G) = > .ce €] < 00, then H is non-self-adjoint

Problem

Deficiency indices? Self-adjoint extensions? Boundary conditions?
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Deficiency indices? Self-adjoint extensions? Boundary conditions?

e A ray R in Gy is a path without intersections.
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Quantum Graphs: Finite total volume

vol(G) = > .ce €] < 00, then H is non-self-adjoint

Problem

Deficiency indices? Self-adjoint extensions? Boundary conditions?

e A ray R in Gy is a path without intersections.
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Quantum Graphs: Finite total volume

vol(G) = Y .c¢ l€| < 00, then H is non-self-adjoint

Problem
Deficiency indices? Self-adjoint extensions? Boundary conditions?

e A ray R in Gy is a path without intersections.

e Two rays are equivalent if there is a third ray containing infinitely many
vertices of both rays.

e An equivalence class of rays is a graph end; Q(Gq4) is the set of graph
ends.

Theorem (e.g., Diestel-Kiihn '2003)

Topological ends of G = graph ends of G4.
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Graph Ends: Examples

Figure: An antitree A with s, = n+ 1.

Every antitree has exactly 1 end.
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Graph Ends: Examples

e Gy =7 has 2 ends.
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e Gy =7 has 2 ends.
e Gy =7N has 1 end for all N > 2.
e Bethe lattice (Cayley or regular tree Ty)
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Graph Ends: Examples

e G4 = Z has 2 ends.
e Gy =7N has 1 end for all N > 2.
e Bethe lattice (Cayley or regular tree Ty)

iy

il

Piid
K2

Theorem (J. R. Stallings, Ann. of Math. (1968))

If G4 is a Cayley graph of a finitely generated group, then
#Q(Ga)
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Graph Ends: Examples

e G4 = Z has 2 ends.
e Gy =7N has 1 end for all N > 2.
e Bethe lattice (Cayley or regular tree Ty)

iy

il

Piid
K2

Theorem (J. R. Stallings, Ann. of Math. (1968))

If G4 is a Cayley graph of a finitely generated group, then
#Q(gd) & {1, 2, OO}

Aleksey Kostenko Quantum Graphs




Quantum Graphs: Deficiency Indices

Theorem (AK—Mugnolo—Nicolussi, in preparation)
If vol(G) < oo, then ny(H) > #Q(Gq).
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Quantum Graphs: Deficiency Indices

Theorem (AK—Mugnolo—Nicolussi, in preparation)
If vol(G) < oo, then ny(H) > #Q(Gq).

Figure: An antitree A with s, = n+ 1.

For radially symmetric antitrees, ny(A) = 1 iff vol(A) < oo
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Quantum Graphs: Deficiency Indices

Theorem (AK—Mugnolo—Nicolussi, in preparation)
If vol(G) < oo, then ny(H) > #Q(Gq).

Figure: An antitree A with s, = n+ 1.

For radially symmetric antitrees, ni(A) = 1 iff vol(A) < co
However, there are antitrees with ny(A) = oo!
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Quantum Graphs: Deficiency Indices

Theorem (AK—Mugnolo—Nicolussi, in preparation)
If vol(G) < oo, then ni(H) > #Q(G4). Moreover,
ny(H) = #Q(Gy) if and only if either #Q(G4) = oo or ker (H*) C H(G).

Here H(G) is the usual Sobolev space on G.
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Quantum Graphs: Deficiency Indices

Theorem (AK—Mugnolo—Nicolussi, in preparation)
If vol(G) < oo, then ni(H) > #Q(G4). Moreover,
ny(H) = #Q(Gy) if and only if either #Q(G4) = oo or ker (H*) C H(G).

Here Hl(g) is the usual Sobolev space on G.
Remarks

e Since 0 is a point of a regular type for H, ni(H) = dim (ker (H*)).
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Quantum Graphs: Deficiency Indices

Theorem (AK—Mugnolo—Nicolussi, in preparation)
If vol(G) < oo, then ni(H) > #Q(G4). Moreover,
ny(H) = #Q(Gy) if and only if either #Q(G4) = oo or ker (H*) C H(G).

Here Hl(g) is the usual Sobolev space on G.
Remarks

e Since 0 is a point of a regular type for H, ni(H) = dim (ker (H*)).
e ker (H*) consists of harmonic functions which belong to L?(G).
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Quantum Graphs: Deficiency Indices

Theorem (AK—Mugnolo—Nicolussi, in preparation)
If vol(G) < oo, then ni(H) > #Q(G4). Moreover,
ny(H) = #Q(Gy) if and only if either #Q(G4) = oo or ker (H*) C H(G).

Here Hl(g) is the usual Sobolev space on G.

RENEIS

e Since 0 is a point of a regular type for H, ni(H) = dim (ker (H*)).

e ker (H*) consists of harmonic functions which belong to L?(G).

e HY(G) is a 'nice’ space (e.g., graph ends can be identified with its
Royden’s boundary, which gives a hope for reasonable traces of functions
in dom(H*)).

In the discrete setting, see

@ A. Georgakopoulos, S. Haeseler, M. Keller, D. Lenz and R. Wojciechowski,
Graphs of finite measure, J. Math. Pures Appl. 103 (2015).
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Weighted Quantum Graphs

Given a metric graph G = (V, &, |- |).
Suppose we are given two more edge weights

€ = Ry, v: & — Ryg
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Weighted Quantum Graphs

Given a metric graph G = (V, &, |- |).
Suppose we are given two more edge weights
€ = Ry, v: & — Ryg
Introduce the weighted Hilbert space L?(G; p) := @ e L2(€; pte)
and equip G with a Schrodinger-type operator Hyax := @ ¢ Hj, ,, where:
1 d d
HE = — dom(Hy, ) = H?(e).

= ———V
wv fle dxe dxe’
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Weighted Quantum Graphs

Given a metric graph G = (V, &, |- |).
Suppose we are given two more edge weights
€ = Ry, v: & — Ryg
Introduce the weighted Hilbert space L?(G; p) := @ e L2(€; pte)
and equip G with a Schrodinger-type operator Hyax := @ ¢ Hj, ,, where:
1 d d
HE = — dom(Hy, ) = H?(e).

= ———V
wv fle dxe dxe’

The operator H,, , with Kirchhoff conditions: For all v € V

f is continuous at v,
(1)) —
Deee, Vele(v) = 0.
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Weighted Quantum Graphs

The analog of Theorem 1 for H,, ,, holds true, however, with the (minimal)
discrete Laplacian defined on 52(]/' m,) by

(rgf)(v Zb euy)(F(v) — f(v)),
where

Ve
= helel, bu(e) =

eegv
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Weighted Quantum Graphs

The analog of Theorem 1 for H,,, holds true, however, with the (minimal)
discrete Laplacian defined on EQ(V' m,) by

(rgf)(v Zb euy)(F(v) — f(v)),

where
Ve

=3 relel bule) =12,

e€5v ‘ ‘

Remark (self-adjointness)

If G is a path graph, then H,, , is self-adjoint if and only if

S mlel (358" =

k<n
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Weighted Quantum Graphs

The analog of Theorem 1 for H,,, holds true, however, with the (minimal)
discrete Laplacian defined on EQ(V' m,) by

(rgf)(v Zb euy)(F(v) — f(v)),

where

Ve
=S elel (o) = .

ecé, ‘ ‘

Remark (self-adjointness)

If G is a path graph, then H,, , is self-adjoint if and only if

S mlel (358" =

k<n

Hence > m,(vn) =2 unlen| = oo is only sufficient!
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Weighted Quantum Graphs

The analog of Theorem 1 for H,,, holds true, however, with the (minimal)
discrete Laplacian defined on 62(]/' m,) by

(rgf)(v Zb euy)(F(v) — f(v)),

where

Ve
= helel, bu(e) =

eefv

Weighted discrete Laplacian

For m: V — R.g and b: £ — R+, consider in £2(V; m)

(TF)(v Zbeuv v) — f(u)).

ur~~v
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Weighted Quantum Graphs

The analog of Theorem 1 for H,,, holds true, however, with the (minimal)
discrete Laplacian defined on EQ(V' m,) by

(rgf)(v Zb euy)(F(v) — f(v)),

where

Ve
= helel, bu(e) =

eefv

Weighted discrete Laplacian

For m: V — R.g and b: £ — R+, consider in £2(V; m)

(TF)(v Zbeuv v) — f(u)).

ur~~v

QUESTION: For a given 7 (i.e., a pair of functions m and b), does there
exist a “weighted” G (i.e., weights | - |, u and v) such that 7 = 747
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Weighted Quantum Graphs: Examples

Normalized /Physical Laplacian

Take pe = ve = |e| for all e € &, then

my(v) = deg(v), b,(e) = 1.
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Normalized /Physical Laplacian

Take pe = ve = |e| for all e € &, then

m,(v) = deg(v), b,(e) = 1.

Electric Networks/Random Walks on Graphs

Take ve = |e|b(e) and pe = % for all e € &, then

e

my(v) = Z b(e) = m(e), b,(e) = b(e).

eef
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Weighted Quantum Graphs: Examples

Normalized /Physical Laplacian

Take pe = ve = |e| for all e € &, then

m,(v) = deg(v), b,(e) = 1.

Electric Networks/Random Walks on Graphs

Take ve = |e|b(e) and pe = % for all e € &, then

e

my(v) = Z b(e) = m(e), b,(e) = b(e).

eef

v

Path Graphs and Jacobi Matrices

N
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Weighted Quantum Graphs: Examples

Normalized /Physical Laplacian

Take pe = ve = |e| for all e € &, then

m,(v) = deg(v), b,(e) = 1.

v

Electric Networks/Random Walks on Graphs

Take ve = |e|b(e) and pe = % for all e € &, then

e

my(v) = Z b(e) = m(e), b,(e) = b(e).

eef

Path Graphs and Jacobi Matrices

Every Jacobi matrix can be realized as a boundary operator for a weigthed
quantum path graph (with d-interactions at the vertices)
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Weighted Quantum Graphs

Combinatorial Laplacian: m=1, b=1

adjacency matrix
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mathoverflow.net/questions/59117

Weighted Quantum Graphs

Combinatorial Laplacian: m=1, b=1

(Tcombf Z f = deg(v)f(v) Z f(u)
u~v u~v

adjacency matrix

If G4 has loose ends, then one can’t construct a metric with H,, , !
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mathoverflow.net/questions/59117

Weighted Quantum Graphs

Combinatorial Laplacian: m=1, b=1

(Teompf)(V) := > F(v) = f(u) = deg(V)F(v) = Y _ f(u)

adjacency matrix

If G4 has loose ends, then one can’t construct a metric with H,, !
For an antitree A, only if Y7 _,(—1)%s,_x > 0 for all n > 0.
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mathoverflow.net/questions/59117

Weighted Quantum Graphs

Combinatorial Laplacian:- m=1, b=1

(Tcombf Z f = deg( )f( ) - Z f(u)

ur~v ur~v

adjacency matrix

If G4 has loose ends, then one can’t construct a metric with H,, !
For an antitree A, only if Y7 _,(—1)%s,_x > 0 for all n > 0.

Theorem (G. Zaimi '2011: mathoverflow.net/questions/59117)

Let G4 = (V, E) be simple, connected, locally finite. Then there are
lengths | - |: &€ — R and weights p: & — Rsg such that

Z u(e)lel =1 forall vey,

e€5v

if and only if for each e € £ there is a disjoint cycle cover containing e in

one of its cicles.
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mathoverflow.net/questions/59117

Weighted Quantum Graphs

Combinatorial Laplacian: m
(Teompf)(V) := > F(v) = f(u) = deg(V)F(v) = Y _ f(u)

adjacency matrix

If G4 has loose ends, then one can’t construct a metric with H,, !
For an antitree A, only if Y7 _,(—1)¥s,_x > 0 for all n > 0.

The way to fix this problem is to allow loops!

& M. Folz, Volume growth and stochastic completeness of graphs, Trans.
Amer. Math. Soc. 366 (2014).

ﬁ X. Huang, A note on the volume growth criterion for stochastic completeness
of weighted graphs, Potential Anal. 40 (2014).
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Weighted Quantum Graphs

Combinatorial Laplacian: m=1, b=1

(Teombf)(v) := D) F(v) = f(u) = deg(v)f(v) = Y f(u)

ur~v

adjacency matrix

If G4 has loose ends, then one can’t construct a metric with H,, !
For an antitree A, only if Y7 _,(—1)¥s,_x > 0 for all n > 0.

The way to fix this problem is to allow loops!

Then every weighted discrete Laplacian can be realized as a boundary
operator for a quantum graph operator (in the sense of Theorem 1),
however, the metric graph might be with loops.

@ A. Kostenko, M. Malamud, and N. Nicolussi, Weighted quantum graphs, in
preparation.
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