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Combinatorial and Metric Graphs

Definition

A (combinatorial) graph is the set of vertices V and edges E , Gd = (V, E).

For u, v ∈ V we shall write u ∼ v if there is eu,v ∈ E connecting u and v .
The function deg : V → Z≥1 ∪ {∞} defined by

deg : v 7→ #{u ∈ V| u ∼ v} = #Ev
is called the (combinatorial) degree, where Ev := {eu,v ∈ E| u ∼ v}.

Assumptions

V and E are at most countable

Gd is connected and locally finite (deg(v) <∞ for all v ∈ V)

No loops or multiple edges

Definition

If every edge e ∈ E is assigned with a length |e| ∈ (0,∞), then G = (V, E , | · |) is

called a metric graph

Aleksey Kostenko Quantum Graphs 2 / 36



Combinatorial and Metric Graphs

Definition

A (combinatorial) graph is the set of vertices V and edges E , Gd = (V, E).

For u, v ∈ V we shall write u ∼ v if there is eu,v ∈ E connecting u and v .
The function deg : V → Z≥1 ∪ {∞} defined by

deg : v 7→ #{u ∈ V| u ∼ v} = #Ev
is called the (combinatorial) degree, where Ev := {eu,v ∈ E| u ∼ v}.

Assumptions

V and E are at most countable

Gd is connected and locally finite (deg(v) <∞ for all v ∈ V)

No loops or multiple edges

Definition

If every edge e ∈ E is assigned with a length |e| ∈ (0,∞), then G = (V, E , | · |) is

called a metric graph

Aleksey Kostenko Quantum Graphs 2 / 36



Combinatorial and Metric Graphs

Definition

A (combinatorial) graph is the set of vertices V and edges E , Gd = (V, E).

For u, v ∈ V we shall write u ∼ v if there is eu,v ∈ E connecting u and v .
The function deg : V → Z≥1 ∪ {∞} defined by

deg : v 7→ #{u ∈ V| u ∼ v} = #Ev
is called the (combinatorial) degree, where Ev := {eu,v ∈ E| u ∼ v}.

Assumptions

V and E are at most countable

Gd is connected and locally finite (deg(v) <∞ for all v ∈ V)

No loops or multiple edges

Definition

If every edge e ∈ E is assigned with a length |e| ∈ (0,∞), then G = (V, E , | · |) is

called a metric graph

Aleksey Kostenko Quantum Graphs 2 / 36



Combinatorial and Metric Graphs

Definition

A (combinatorial) graph is the set of vertices V and edges E , Gd = (V, E).

For u, v ∈ V we shall write u ∼ v if there is eu,v ∈ E connecting u and v .
The function deg : V → Z≥1 ∪ {∞} defined by

deg : v 7→ #{u ∈ V| u ∼ v} = #Ev
is called the (combinatorial) degree, where Ev := {eu,v ∈ E| u ∼ v}.

Assumptions

V and E are at most countable

Gd is connected and locally finite (deg(v) <∞ for all v ∈ V)

No loops or multiple edges

Definition

If every edge e ∈ E is assigned with a length |e| ∈ (0,∞), then G = (V, E , | · |) is

called a metric graph

Aleksey Kostenko Quantum Graphs 2 / 36



Combinatorial and Metric Graphs

Definition

A (combinatorial) graph is the set of vertices V and edges E , Gd = (V, E).

For u, v ∈ V we shall write u ∼ v if there is eu,v ∈ E connecting u and v .
The function deg : V → Z≥1 ∪ {∞} defined by

deg : v 7→ #{u ∈ V| u ∼ v} = #Ev
is called the (combinatorial) degree, where Ev := {eu,v ∈ E| u ∼ v}.

Assumptions

V and E are at most countable

Gd is connected and locally finite (deg(v) <∞ for all v ∈ V)

No loops or multiple edges

Definition

If every edge e ∈ E is assigned with a length |e| ∈ (0,∞), then G = (V, E , | · |) is

called a metric graph
Aleksey Kostenko Quantum Graphs 2 / 36



Quantum Graphs

Given a metric graph G = (V, E , | · |), we can identify each edge e ∈ E
with an interval (0, |e|) and hence introduce the Hilbert space

L2(G) :=
⊕
e∈E

L2(e) =
{
f = {fe}e∈E : fe ∈ L2(e),

∑
e∈E
‖fe‖2L2(e) <∞

}

Next equip G with a Schrödinger-type operator Hmax :=
⊕

e∈E He , where:

He = − d2

dx2e
, dom(He) = H2(e).
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Quantum Graphs

Given a metric graph G = (V, E , | · |), we can identify each edge e ∈ E
with an interval (0, |e|) and hence introduce the Hilbert space

L2(G) :=
⊕
e∈E

L2(e) =
{
f = {fe}e∈E : fe ∈ L2(e),

∑
e∈E
‖fe‖2L2(e) <∞

}
Next equip G with a Schrödinger-type operator Hmax :=

⊕
e∈E He , where:

He =
(1

i

d

dxe
− A(xe)

)2
+ V (xe), dom(He) = Dmax(e).
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Quantum Graphs

Given a metric graph G = (V, E , | · |), we can identify each edge e ∈ E
with an interval (0, |e|) and hence introduce the weighted Hilbert space

L2(G;µ) :=
⊕
e∈E

L2(e;µe)

Next equip G with a Schrödinger-type operator Hmax :=
⊕

e∈E He , where:

He = − 1

µe

d

dxe
νe

d

dxe
, dom(He) = H2(e).
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}
Next equip G with a Schrödinger-type operator Hmax :=

⊕
e∈E He , where:

He = − d2

dx2e
, dom(He) = H2(e).

To give H the meaning of a quantum mechanical energy operator, it must
be self-adjoint, that is, we need to add boundary conditions at the vertices.

fe(v) := lim
xe→v

f (xe), f ′e (v) := lim
xe→v

f (xe)− fe(v)

|xe − v |
.

are well defined for all f ∈ dom(Hmax).
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Given a metric graph G = (V, E , | · |), we can identify each edge e ∈ E
with an interval (0, |e|) and hence introduce the Hilbert space

L2(G) :=
⊕
e∈E

L2(e) =
{
f = {fe}e∈E

∣∣ fe ∈ L2(e),
∑
e∈E
‖fe‖2L2(e) <∞

}
Next equip G with a Schrödinger-type operator Hmax :=

⊕
e∈E He , where:

He = − d2

dx2e
, dom(He) = H2(e).

To give H the meaning of a quantum mechanical energy operator, it must
be self-adjoint, that is, we need to add boundary conditions at the vertices.

(standard) Kirchhoff conditions: For all v ∈ V{
f is continuous at v ,∑

e∈Ev f
′
e (v) = 0.
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Quantum Graphs

Given a metric graph G = (V, E , | · |), we can identify each edge e ∈ E
with an interval (0, |e|) and hence introduce the Hilbert space

L2(G) :=
⊕
e∈E

L2(e) =
{
f = {fe}e∈E

∣∣ fe ∈ L2(e),
∑
e∈E
‖fe‖2L2(e) <∞

}
Next equip G with a Schrödinger-type operator Hmax :=

⊕
e∈E He , where:

He = − d2

dx2e
, dom(He) = H2(e).

To give H the meaning of a quantum mechanical energy operator, it must
be self-adjoint, that is, we need to add boundary conditions at the vertices.

Definition

A quantum graph is a metric graph equipped with the operator H acting
as the negative second order derivative along edges and accompanied by
Kirchhoff vertex conditions
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Equilateral Quantum Graphs

Suppose |e| = 1 for all e ∈ E .

Then the Kirchhoff Laplacian Hequil is self-adjoint.

Problem

Spectral analysis of Hequil?

Define the normalized/physical Laplacian on Gd by

(τnormf )(v) :=
1

deg(v)

∑
u∼v

f (v)− f (u), v ∈ V.

τnorm generates a bounded self-adjoint operator hnorm in `2(V; deg).

R. Courant, K. Friedrichs and H. Lewy, Über die partiellen
Differenzengleichungen der mathematischen Physik, Math. Ann. (1928)

Y. Colin de Verdiére, Spectres de Graphes, SMF, Paris, 1998.

W. Woess, Random Walks on Infinite Graphs and Groups, CUP, 2000.
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Equilateral Quantum Graphs

Suppose |e| = 1 for all e ∈ E .
Then the Kirchhoff Laplacian Hequil is self-adjoint.

Problem

Spectral analysis of Hequil?

Define the normalized/physical Laplacian on Gd by

(τnormf )(v) :=
1

deg(v)

∑
u∼v

f (v)− f (u), v ∈ V.

τnorm generates a bounded self-adjoint operator hnorm in `2(V; deg).

Theorem (von Below’87,..., Cattaneo, Exner,..., Pankrashkin’2012)

σj(Hequil) \ σD = {λ /∈ σD | 1− cos(
√
λ) ∈ σj(hnorm)}, j ∈ {p, ess, ac, sc}

with σD = {(πn)2}n∈N.

Hequil and hnorm are “locally” unitarily equivalent.
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(Non-equilateral) Quantum Graphs

Problem

Does there exist an analogous statement for non-equilateral graphs?

Consider the (minimal) discrete Laplacian hG defined on `2(V;m) by

(τGf )(v) :=
1

m(v)

∑
u∼v

f (v)− f (u)

|eu,v |
, m(v) =

∑
e∈Ev

|e|.

τG is the normalized Laplacian iff |e| = 1 for all e ∈ E and α ≡ 0 .

Theorem (E. B. Davies’1992)

hG is bounded ⇔ the weighted degree Deg is bounded on V,

Deg : v 7→ 1

m(v)

∑
u∼v

1

|eu,v |
=

∑
e∈Ev 1/|e|∑
e∈Ev |e|

Note that Deg is bounded on V if `∗(E) := infe∈E |e| > 0.
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(Non-equilateral) Quantum Graphs

Theorem 1 (Exner, AK, Malamud, Neidhardt’2018)

Let G be a metric graph with `∗(G) := supe∈E |e| <∞. Then:

(i) HG is self-adjoint ⇐⇒ hG is self-adjoint,

(ii) inf σ(HG) > 0 ⇐⇒ inf σ(hG) > 0.

(iii) inf σess(HG) > 0 ⇐⇒ inf σess(hG) > 0.

(iv) σ(HG) is discrete ⇐⇒ σ(hG) is discrete and #{e ∈ E : |e| > ε} is
finite for all ε > 0.

(v)
‖e−t hG‖`1→`∞ ≤ C1t

−D/2, t > 0,

for some D > 2 if and only if

‖e−t HG‖L1→L∞ ≤ C2t
−D/2, t > 0.

P. Exner, A. Kostenko, M. Malamud, & H. Neidhardt, Spectral theory
of infinite quantum graphs, Ann. Henri Poincaré 19, no. 11, (2018).
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−D/2, t > 0.

A. Kostenko and N. Nicolussi, Spectral estimates for infinite quantum
graphs, Calc. Var. Partial Differential Equations 58, no. 1, (2019).
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Quantum Graphs: Self-adjointness

For p : E → (0,∞), define a path metric %p on V w.r.t. G by

%p(u, v) := inf
P={v0,...,vn} : u=v0, v=vn

∑
k

p(evk−1,vk ).

The infimum is taken over all paths connecting u and v .

Examples

Natural path metric %0 with p0 : e 7→ |e|.
Star metric %m with pm : eu,v 7→ m(u) + m(v) with m(v) =

∑
e∈Ev |e|

Hopf–Rinow-type Theorem

(V, %p) is complete as a metric space ⇐⇒
(V, %p) is geodesically complete ⇐⇒
The distance balls in (V, %p) are finite (“finite ball condition”).

X. Huang, M. Keller, J. Masamune, R. Wojciechowski, A note on self-adjoint
extensions of the Laplacian on weighted graphs, J. Funct. Anal. 265 (2013).
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P={v0,...,vn} : u=v0, v=vn

∑
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p(evk−1,vk ).

The infimum is taken over all paths connecting u and v .

Examples

Natural path metric %0 with p0 : e 7→ |e|.
Star metric %m with pm : eu,v 7→ m(u) + m(v) with m(v) =

∑
e∈Ev |e|

Theorem 2 (Exner–AK–Malamud–Neidhardt)

If (V, %m) is complete as a metric space, then H is self-adjoint.

In particular, H is self-adjoint if infv∈V m(v) = infv∈V
∑

e∈Ev |e| > 0.

M. Keller and D. Lenz, Dirichlet forms and stochastic completeness of graphs
and subgraphs, J. reine angew. Math. 666 (2012).
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Gaffney-type Theorem: (G, %0) is complete ⇒ HG is self-adjoint.

The standard assumption for infinite QG is infe∈E |e| > 0!
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Quantum Graphs: Self-adjointness

•

Example 1.
• • • •

• • • • •

• • • • •

In Example 1, (V, %m) is complete ⇔ m(V) = 2vol(G) = 2
∑

e∈E |e| =∞.

Lemma

If vol(G) <∞, then H is non-self-adjoint.

Hence, in Example 1, H is self-adjoint ⇔ (V, %m) is complete!

Remark

The converse to Theorem 2 is not true!
For radially symmetric trees and antitrees, H is self-adjoint ⇔ m(V) =∞.
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Examples: Radially symmetric antitrees

S0

S1

S2

S3

Figure: Example of an antitree A with sn = n + 1.

Sn is the n-th combinatorial sphere, and sn := #Sn.
A is radially symmetric if edges connecting Sn with Sn+1 have the same
length, say `n, for all n ≥ 0.
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Examples: Radially symmetric antitrees

S0

S1

S2

S3

Figure: Example of an antitree A with sn = n + 1.

Theorem (AK–Nicolussi)

H is self-adjoint ⇐⇒ vol(A) =
∑

n≥0 snsn+1`n =∞
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S1

S2

S3

Figure: Example of an antitree A with sn = n + 1.

Theorem (AK–Nicolussi)

H is self-adjoint ⇐⇒ vol(A) =
∑

n≥0 snsn+1`n =∞

(A, %0) is complete ⇐⇒
∑

n≥0 `n =∞.
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Examples: Radially symmetric antitrees

S0

S1

S2

S3

Figure: Example of an antitree A with sn = n + 1.

Theorem (AK–Nicolussi)

H is self-adjoint ⇐⇒ vol(A) =
∑

n≥0 snsn+1`n =∞

(A, %0) is complete ⇐⇒
∑

n≥0 `n =∞.

(V, %m) is complete ⇐⇒
∑

n≥0(sn + sn+1)`n =∞
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Quantum Graphs: Self-adjointness

Summary

(i) H is self-adjoint if (V, %m) is complete.

(ii) H is non-self-adjoint if vol(G) =
∑

e∈E |e| <∞.

Problems

(i) Characterize metric graphs such that completeness of (V, %m) is also
necessary for self-adjointness.

(ii) Characterize metric graphs such that vol(G) =
∑

e∈E |e| =∞ is also
sufficient for self-adjointness.
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Quantum Graphs: Finite total volume

vol(G) =
∑

e∈E |e| <∞, then H is non-self-adjoint

Problem

Deficiency indices? Self-adjoint extensions? Boundary conditions?

Graph Ends

• A ray R in Gd is a path without intersections.
• Two rays are equivalent if there is a third ray containing infinitely many
vertices of both rays.
• An equivalence class of rays is a graph end; Ω(Gd) is the set of graph
ends.

Theorem (e.g., Diestel–Kühn ’2003)

Topological ends of G = graph ends of Gd .
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Topological ends of G = graph ends of Gd .

Aleksey Kostenko Quantum Graphs 24 / 36



Graph Ends: Examples

S0

S1

S2

S3

Figure: An antitree A with sn = n + 1.

Every antitree has exactly 1 end.
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Graph Ends: Examples

• Gd = Z has 2 ends.

• Gd = ZN has 1 end for all N ≥ 2.

• Bethe lattice (Cayley or regular tree T4)

Theorem (J. R. Stallings, Ann. of Math. (1968))

If Gd is a Cayley graph of a finitely generated group, then
#Ω(Gd) ∈ {1, 2,∞}.
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Quantum Graphs: Deficiency Indices

Theorem (AK–Mugnolo–Nicolussi, in preparation)

If vol(G) <∞, then n±(H) ≥ #Ω(Gd).

S0

S1

S2

S3

Figure: An antitree A with sn = n + 1.

For radially symmetric antitrees, n±(A) = 1 iff vol(A) <∞
However, there are antitrees with n±(A) =∞!
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Quantum Graphs: Deficiency Indices

Theorem (AK–Mugnolo–Nicolussi, in preparation)

If vol(G) <∞, then n±(H) ≥ #Ω(Gd). Moreover,

n±(H) = #Ω(Gd) if and only if either #Ω(Gd) =∞ or ker (H∗) ⊂ H1(G).

Here H1(G) is the usual Sobolev space on G.

Remarks

• Since 0 is a point of a regular type for H, n±(H) = dim (ker (H∗)).
• ker (H∗) consists of harmonic functions which belong to L2(G).
• H1(G) is a ’nice’ space (e.g., graph ends can be identified with its
Royden’s boundary, which gives a hope for reasonable traces of functions
in dom(H∗)).

In the discrete setting, see

A. Georgakopoulos, S. Haeseler, M. Keller, D. Lenz and R. Wojciechowski,
Graphs of finite measure, J. Math. Pures Appl. 103 (2015).
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Weighted Quantum Graphs

Given a metric graph G = (V, E , | · |).
Suppose we are given two more edge weights

µ : E → R>0, ν : E → R>0

Introduce the weighted Hilbert space L2(G;µ) :=
⊕

e∈E L
2(e;µe)

and equip G with a Schrödinger-type operator Hmax :=
⊕

e∈E H
e
µ,ν , where:

He
µ,ν = − 1

µe

d

dxe
νe

d

dxe
, dom(He

µ,ν) = H2(e).

The operator Hµ,ν with Kirchhoff conditions: For all v ∈ V{
f is continuous at v ,∑

e∈Ev νe f
′
e (v) = 0.
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Weighted Quantum Graphs

The analog of Theorem 1 for Hµ,ν holds true, however, with the (minimal)
discrete Laplacian defined on `2(V;mµ) by

(τGf )(v) :=
1

mµ(v)

∑
u∼v

bν(eu,v )(f (v)− f (u)),

where
mµ(v) =

∑
e∈Ev

µe |e|, bν(e) =
νe
|e|
.

Remark (self-adjointness)

If G is a path graph, then Hµ,ν is self-adjoint if and only if∑
n

µn|en|
(∑

k≤n

|ek |
νk

)2
=∞.

Hence
∑

mµ(vn) = 2
∑
µn|en| =∞ is only sufficient!
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Weighted Quantum Graphs

The analog of Theorem 1 for Hµ,ν holds true, however, with the (minimal)
discrete Laplacian defined on `2(V;mµ) by

(τGf )(v) :=
1

mµ(v)

∑
u∼v

bν(eu,v )(f (v)− f (u)),

where
mµ(v) =

∑
e∈Ev

µe |e|, bν(e) =
νe
|e|
.

Weighted discrete Laplacian

For m : V → R>0 and b : E → R>0, consider in `2(V;m)

(τ f )(v) :=
1

m(v)

∑
u∼v

b(eu,v )(f (v)− f (u)).

QUESTION: For a given τ (i.e., a pair of functions m and b), does there
exist a “weighted” G (i.e., weights | · |, µ and ν) such that τ = τG?
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Weighted Quantum Graphs: Examples

Normalized/Physical Laplacian

Take µe = νe = |e| for all e ∈ E , then

mµ(v) = deg(v), bν(e) = 1.

Electric Networks/Random Walks on Graphs

Take νe = |e|b(e) and µe = b(e)
|e| for all e ∈ E , then

mµ(v) =
∑
e∈E

b(e) = m(e), bν(e) = b(e).

Path Graphs and Jacobi Matrices

Every Jacobi matrix can be realized as a boundary operator for a weigthed
quantum path graph (with δ-interactions at the vertices)
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Weighted Quantum Graphs

Combinatorial Laplacian: m ≡ 1, b ≡ 1

(τcombf )(v) :=
∑
u∼v

f (v)− f (u) = deg(v)f (v)−
∑
u∼v

f (u)︸ ︷︷ ︸
adjacency matrix

.

If Gd has loose ends, then one can’t construct a metric with Hµ,ν!
For an antitree A, only if

∑n
k=0(−1)ksn−k > 0 for all n ≥ 0.

Theorem (G. Zaimi ’2011: mathoverflow.net/questions/59117)

Let Gd = (V, E) be simple, connected, locally finite. Then there are
lengths | · | : E → R>0 and weights µ : E → R>0 such that∑

e∈Ev

µ(e)|e| = 1 for all v ∈ V,

if and only if for each e ∈ E there is a disjoint cycle cover containing e in
one of its cycles.

Aleksey Kostenko Quantum Graphs 33 / 36

mathoverflow.net/questions/59117


Weighted Quantum Graphs

Combinatorial Laplacian: m ≡ 1, b ≡ 1

(τcombf )(v) :=
∑
u∼v

f (v)− f (u) = deg(v)f (v)−
∑
u∼v

f (u)︸ ︷︷ ︸
adjacency matrix

.

If Gd has loose ends, then one can’t construct a metric with Hµ,ν!

For an antitree A, only if
∑n

k=0(−1)ksn−k > 0 for all n ≥ 0.

Theorem (G. Zaimi ’2011: mathoverflow.net/questions/59117)

Let Gd = (V, E) be simple, connected, locally finite. Then there are
lengths | · | : E → R>0 and weights µ : E → R>0 such that∑

e∈Ev

µ(e)|e| = 1 for all v ∈ V,

if and only if for each e ∈ E there is a disjoint cycle cover containing e in
one of its cycles.

Aleksey Kostenko Quantum Graphs 33 / 36

mathoverflow.net/questions/59117


Weighted Quantum Graphs

Combinatorial Laplacian: m ≡ 1, b ≡ 1

(τcombf )(v) :=
∑
u∼v

f (v)− f (u) = deg(v)f (v)−
∑
u∼v

f (u)︸ ︷︷ ︸
adjacency matrix

.

If Gd has loose ends, then one can’t construct a metric with Hµ,ν!
For an antitree A, only if

∑n
k=0(−1)ksn−k > 0 for all n ≥ 0.

Theorem (G. Zaimi ’2011: mathoverflow.net/questions/59117)

Let Gd = (V, E) be simple, connected, locally finite. Then there are
lengths | · | : E → R>0 and weights µ : E → R>0 such that∑

e∈Ev

µ(e)|e| = 1 for all v ∈ V,

if and only if for each e ∈ E there is a disjoint cycle cover containing e in
one of its cycles.

Aleksey Kostenko Quantum Graphs 33 / 36

mathoverflow.net/questions/59117


Weighted Quantum Graphs

Combinatorial Laplacian: m ≡ 1, b ≡ 1

(τcombf )(v) :=
∑
u∼v

f (v)− f (u) = deg(v)f (v)−
∑
u∼v

f (u)︸ ︷︷ ︸
adjacency matrix

.

If Gd has loose ends, then one can’t construct a metric with Hµ,ν!
For an antitree A, only if

∑n
k=0(−1)ksn−k > 0 for all n ≥ 0.

Theorem (G. Zaimi ’2011: mathoverflow.net/questions/59117)

Let Gd = (V, E) be simple, connected, locally finite. Then there are
lengths | · | : E → R>0 and weights µ : E → R>0 such that∑

e∈Ev

µ(e)|e| = 1 for all v ∈ V,

if and only if for each e ∈ E there is a disjoint cycle cover containing e in
one of its cycles.

Aleksey Kostenko Quantum Graphs 33 / 36

mathoverflow.net/questions/59117


Weighted Quantum Graphs

Combinatorial Laplacian: m ≡ 1, b ≡ 1

(τcombf )(v) :=
∑
u∼v

f (v)− f (u) = deg(v)f (v)−
∑
u∼v

f (u)︸ ︷︷ ︸
adjacency matrix

.

If Gd has loose ends, then one can’t construct a metric with Hµ,ν!
For an antitree A, only if

∑n
k=0(−1)ksn−k > 0 for all n ≥ 0.

The way to fix this problem is to allow loops!

M. Folz, Volume growth and stochastic completeness of graphs, Trans.
Amer. Math. Soc. 366 (2014).

X. Huang, A note on the volume growth criterion for stochastic completeness
of weighted graphs, Potential Anal. 40 (2014).
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Combinatorial Laplacian: m ≡ 1, b ≡ 1

(τcombf )(v) :=
∑
u∼v

f (v)− f (u) = deg(v)f (v)−
∑
u∼v

f (u)︸ ︷︷ ︸
adjacency matrix

.

If Gd has loose ends, then one can’t construct a metric with Hµ,ν!
For an antitree A, only if

∑n
k=0(−1)ksn−k > 0 for all n ≥ 0.

The way to fix this problem is to allow loops!
Then every weighted discrete Laplacian can be realized as a boundary
operator for a quantum graph operator (in the sense of Theorem 1),
however, the metric graph might be with loops.

A. Kostenko, M. Malamud, and N. Nicolussi, Weighted quantum graphs, in
preparation.
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Thank you for your attention!
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