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Quantum graph

Metric graph
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Differential expression on the edges

`q,a =

(
i
d

dx
+ a(x)

)2

+ q(x)

Matching conditions
Via irreducible unitary matrices Sm associated with each internal vertex Vm

i(Sm − I )~ψm = (Sm + I )∂ ~ψm, m = 1, 2, . . . ,M.
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Differential expression on the edges with zero magnetic potential

` = − d2

dx2
+ q(x)

Matching conditions
Via irreducible unitary matrices Sm associated with each internal vertex Vm

i(Sm − I )~ψm = (Sm + I )∂ ~ψm, m = 1, 2, . . . ,M.
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Our assumption:

The metric graph Γ is connected and formed by a finite number of compact
edges.

Exceptional parameters

Single interval [0, `] as a metric graph
The interval has the smallest Laplacian spectral gap among all graphs of
the same total length.

Laplacian q(x) ≡ 0

− d2

dx2

Zero potential is the only potential that can be determined a priori without
knowing the metric graph.

Standard matching conditions{
the function is continuous at Vm,
the sum of normal derivatives is zero.

Standard conditions appear if one requires continuity of the functions from
the quadratic form domain. Easy to prescribe if nothing is known about the
metric graph.

Kurasov (Stockholm) Almost Periodic Functions and Graphs February 26, 2019, Graz 4 / 24



Our assumption:

The metric graph Γ is connected and formed by a finite number of compact
edges.

Exceptional parameters

Single interval [0, `] as a metric graph
The interval has the smallest Laplacian spectral gap among all graphs of
the same total length.

Laplacian q(x) ≡ 0

− d2

dx2

Zero potential is the only potential that can be determined a priori without
knowing the metric graph.

Standard matching conditions{
the function is continuous at Vm,
the sum of normal derivatives is zero.

Standard conditions appear if one requires continuity of the functions from
the quadratic form domain. Easy to prescribe if nothing is known about the
metric graph.

Kurasov (Stockholm) Almost Periodic Functions and Graphs February 26, 2019, Graz 4 / 24



Our assumption:

The metric graph Γ is connected and formed by a finite number of compact
edges.

Exceptional parameters

Single interval [0, `] as a metric graph
The interval has the smallest Laplacian spectral gap among all graphs of
the same total length.

Laplacian q(x) ≡ 0

− d2

dx2

Zero potential is the only potential that can be determined a priori without
knowing the metric graph.

Standard matching conditions{
the function is continuous at Vm,
the sum of normal derivatives is zero.

Standard conditions appear if one requires continuity of the functions from
the quadratic form domain. Easy to prescribe if nothing is known about the
metric graph.

Kurasov (Stockholm) Almost Periodic Functions and Graphs February 26, 2019, Graz 4 / 24



Our assumption:

The metric graph Γ is connected and formed by a finite number of compact
edges.

Exceptional parameters

Single interval [0, `] as a metric graph
The interval has the smallest Laplacian spectral gap among all graphs of
the same total length.

Laplacian q(x) ≡ 0

− d2

dx2

Zero potential is the only potential that can be determined a priori without
knowing the metric graph.

Standard matching conditions{
the function is continuous at Vm,
the sum of normal derivatives is zero.

Standard conditions appear if one requires continuity of the functions from
the quadratic form domain. Easy to prescribe if nothing is known about the
metric graph.

Kurasov (Stockholm) Almost Periodic Functions and Graphs February 26, 2019, Graz 4 / 24



Spectral properties
Any Schrödinger operator with any vertex conditions is asymptotically
isospectral to a Laplacian with scaling-invariant vertex conditions on
essentially the same metric graph (+ Suhr)

kn(LSq (Γ))− kn(LS
∞

0 (Γ∞))→ 0
(
O(1/n)

)
The approximating operator LS

∞

0 (Γ∞) is determined by:
I the potential is zero q ≡ 0;
I S∞ are obtained from S by substituting all eigenvalues 6= ±1 with 1;
I Γ∞ is a graph obtained from Γ

Laplacian with scaling-invariant vertex conditions:
I q ≡ 0 ⇒ eigenfunctions are given by exponentials on the edges;
I the vertex conditions are determined by S∞ - unitary and Hermitian ⇒ the

vertex scattering matrices are energy-independent

⇒ the spectrum is given by zeroes of trigonometric polynomials

P(k) =
∑
j∈J

aje
iwjk .

Conclusion The theory of almost periodic functions can be applied to
describe spectral asymptotics.
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The spectrum λn = k2
n is discrete and satisfies Weyl’s asymptotics

kn ∼
π

L
n L − the total length of the graph.

NB! No further asymptotic expansion is available:

kn =
π

L
n + c0 + c−1

1

n
+ . . .
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Two exceptions:

Equilateral graphs: the spectrum of the Laplacian with scaling-invariant
vertex conditions is periodic (in k). The Schrödinger asymptotics: ∃N ∈ N

kn =
π

L

[ n
N

]
N + k{ n

N }N︸ ︷︷ ︸
= π

L n+O(1)

+O(1/n), j = 1, 2, . . . ,N.

The Laplacian spectrum is uniformly discrete, but multiple eigenvalues may
occur.

In general situation the spectrum of the scaling-invariant (or standard)
Laplacian is not necessarily uniformly discrete.

Weak vertex couplings: all matrices Sm in the vertex conditions do not
have −1 as an eigenvalue. The spectrum is approximated by the spectra of
Neumann Laplacians on disconnected intervals. (Freitas-Lipovsky)
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To solve the inverse problem one has to reconstruct all three members of the
quantum graph triple

the metric graph Γ;

the real potential q(x) ∈ L1(Γ);

the vertex conditions, i.e. the matrices Sm.

This problem is not solvable if the spectral data are just the eigenvalues of the
quantum graph:

isospectral standard Laplacians on trees;

potential on a single interval is determined by two spectra:
Neuman-Neuman and Neumann-Dirichlet;

standard Laplacian on a single interval is isospectral to the union of
half-intrevals with Nuemann-Neumann and Dirichlet-Neumann conditions.

One exception: Ambartsumian theorem.
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Our goal is to investigate the inverse spectral problem when the quantum
graph does not differ much from the Laplacian on a single interval (the
parameters do not differ from the exceptional ones).

We start by investigating the inverse problem when
two parameters are fixed and one is varying

Potential varyes (graph-interval, standard conditions)

Graph varies (potential zero, standard conditions)

Vertex conditions vary (graph-interval, potential zero)

and continue to the case, where just one parameter is fixed

Standard vertex conditions fixed (graph and potential vary)

Graph-interval is fixed (potential and conditions vary)

Potential is fixed - Laplace operator (graph and vertex conditions vary)
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Viktor Ambratsumian (1908-1996)

Worked at Pulkovo (Pulkowo) observatory
Vice-rector of Leningrad Univ.
President of Armenian Academy of Sciences 1947-1993.

Our goal is to prove an Ambartsumian type theorem for quantum graphs
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Interval with standard conditions
Classical Ambartsumian theorem
I = [0, `], q ∈ L1(I )

λn(Lstq (I )) = λn(Lst0 (I )⇒ q(x) ≡ 0

Proof
1. Spectral asymptotics using transformation operator

kn(Lstq (I )) =
π

`

(
n +

∫ `
0
q(x)dx

`

1

2

(
`

π

)2
1

n
+ o(1/n)

)

2. The trial function ψ(x) ≡ 1 minimises the quadratic form∫ `

0

|ψ′(x)|dx +

∫ `

0

q(x)|ψ(x)|2dx = 0

and therefore is the ground state

−ψ′′(x) + q(x)ψ(x) = 0⇒ q(x) ≡ 0.

Zero potential is exceptional
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Standard Laplacian on arbitrary metric graph

Geometric version of Ambartsumian theorem
Two may be different metric graphs I = [0, `] and Γ; q(x) ≡ 0

λn(Lst0 (Γ)) = λn(Lst0 (I )⇒ Γ = I

(Nicaise, Friedlander, B.Solomjak, Kurasov-Naboko, KKMB, ...)

Proof The interval minimises the Laplacian spectral gap among all metric
graphs of the same total length.

Eulerian path technique: Double the graph. All vertices have even degree, There
exists an Eulerian path, Cut the doubled graph into a circle. The circle of
double length has the same spectral gap as the interval. The spectral gap could
just become smaller during our changes.

The interval is exceptional
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Laplacian on the interval

Laplacian with Robin conditions on the interval
Let Lh

0(I ) be a Robin Laplacian on the interval I = [0, `].

λn(Lh′

0 (I )) = λn(Lh
0(I ))⇒ h′ = h

(Of course, up to the permutation of the end points)

The standard conditions are not necessarily exceptional
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We continue by investigating the inverse problem when just
one parameter is fixed and two are varying

Standard vertex conditions fixed (graph and potential vary)

Graph-interval is fixed (potential and conditions vary)

Potential is fixed - Laplace operator (graph and vertex conditions vary)
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Schrödinger operators on arbitrary graphs with
standard vertex conditions

Theorem (Boman-K.-Suhr)

λn(Lstq (Γ)) = λn(Lst0 (I ))⇒
{

Γ = I
q(x) ≡ 0.

This theorem is not a simple combination of the classical Ambartsumian
theorem and its geometric version.
Proof
1. The spectrum of Lstq (Γ) is asymptotically close to the spectrum of Lst0 (Γ).
2. The spectrum of the Laplacian is given by a trigonometric polynomial and
therefore is close to integers if and only if it coincide with the integers.
3. Geometric version of Ambratsumian theorem implies that the graph Γ is just
the interval.
4. Classical Ambarstumian theorem implies that q(x) ≡ 0.

The standard conditions are exceptional
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Schrödinger operators with Robin conditions on the
interval

Use Crum’s article where Darboux transform was used to add eigenvalues to the
Schrödinger operator on the interval.

Start with the Dirichlet Laplacian: λn =
(
πn
`

)2
. Its spectrum differs from the

Neumann Laplacian by just one eigenvalue λ = 0. We add this eigenvalue by
Crum’s method
Interval [0, 1]

q(x) =
−1

x + 1
, h0 = −1, h1 =

1

2

ψ1(x) =
1

x + 1

ψn+1 = − 1

π2n2

(
n cos nx − sin nx

x + 1

)
We constructed a family of Robin Schrödinger operators isospectral to the
Neumann Laplacian ⇒ no Ambartsumian-type theorem.
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Laplace operators on arbitrary graphs with arbitrary
vertex conditions

Γ - the two intervals of length 1/2 connected at one vertex.
We assume standard (=Neumann) conditions at the outer vertices. Conditions
at the central vertex are given as

i(S − I )

(
u(x1)
u(x2)

)
= (S + I )

(
∂u(x1)
∂u(x2)

)
with the 2× 2 matrix S unitary and Hermitian

S−1 = S∗ = S .

Then it holds:
λn(LS,st0 (Γ)) = λn(Lst0 (I ))

The proof is essentially based on the fact that S2 = I. and explicit calculation of
the ground state.
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Every such 2× 2 matrix possess the representation:

S(a, θ) =

(
a

√
1− a2e iθ√

1− a2e−iθ −a

)
This family interpolates between the case of single interval (standard vertex
conditions at the central vertex) and two intervals with Dirichlet and Neumann
conditions (

0 1
1 0

)
⇔
(

1 0
0 −1

)
no Ambartsumian-type theorem

Kurasov (Stockholm) Almost Periodic Functions and Graphs February 26, 2019, Graz 18 / 24



Further extensions of Ambartsumian theorem

A theorem by Brian Davies

A theorem by P.K. and Rune Suhr and
its implications
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A theorem by Brian Davies
Theorem
The metric graph is arbitrary but fixed.

λn(Lstq (Γ)) = λn(Lst0 (Γ))⇒ q(x) ≡ 0

Proof
1. λ1(Lstq (Γ)) = 0 &

∫
q(x)dx = 0⇒ q(x) ≡ 0

- the same proof as before would show that the potential is zero.
2. Let HΓ be the heat kernel for Lst0 (Γ)

lim
t→0

√
tHΓ(t, x , x) =

1√
4π
, x ∈ Γ \ (∪Mm=1Vm)

3. Perturbation formula for traces of the semigroups

tr [e−L
st
q (Γ)t ]− tr [e−L

st
0 (Γ)t ] = −t

∫
Γ

HΓ(t, x , x)q(x)dx + ρ(t),

where ρ(t) = O(t3/2).
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A theorem by P.K. and Rune Suhr

Theorem Assume that the Laplacians on Γ1 and Γ2 are asymptotically
isospectral

kn(Lst0 (Γ1))− kn(Lst0 (Γ2))→ 0

then the operators are isospectral.

Proof
1. The spectrum of Laplacians with standard vertex conditions is given by zeroes
of trigonometric polynomials, which are analytic almost periodic functions.

2. If the zeroes of two almost periodic functions are asymptotically close, then
they coincide. The proof is based on the existence of ε-shifts.
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Implications of the two theorems

Theorem 1
Two Schrödinger operators Lstq1

(Γ1) and Lstq2
(Γ2) are asymptotically isospectral if

and only if the Laplacians

Lst0 (Γ1) and Lst0 (Γ2)

are isospectral.
Proof: spectral asymptotics + Theorem by PK and RS

λn(Lstq (Γ)− λn(Lst0 (Γ) = O(1)

⇒ kn(Lstq (Γ)− kn(Lst0 (Γ) = o(1)

Kurasov (Stockholm) Almost Periodic Functions and Graphs February 26, 2019, Graz 22 / 24



Implications of the two theorems

Theorem 2
A Schrödinger operator Lstq1

(Γ1) is isospectral to a Laplacian Lst0 (Γ2) only if

q(x) ≡ 0.

Proof
1. The Laplacian Lst0 (Γ1) is asymptotically isospectral to Lst0 (Γ2) ⇒ they are
isospectral.

2. The Schrödinger and Laplace operators on Γ1 are isospectral ⇒ the theorem
by Davies implies q ≡ 0.
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Higher order operators on metric graphs

First order operator: momentum operator 1
i

d
dx or the Dirac operator

diag( 1
i

d
dx ,−

1
i

d
dx ).

The vertex conditions are given by unitary matrices (d/2× d/2 or d × d),
the vertex scattering matrices are always independent of the energy.
The spectrum of every such operator is given by a trigonometric
polynomial;

Second order operator: Laplacian − d2

dx2 .
The vertex conditions are given by d × d unitary matrices, the vertex
scattering matrices tend to Hermitian unitary matrices for large energies.
The spectrum is asymptotically close to zeroes of a trigonometric
polynomial, corresponding to a certain scaling-invariant Laplacian on
essentially the same metric graph.

Fourth order operator: bi-Laplacian d4

dx4 .
The vertex conditions may be given by 2d × 2d transmission matrices,
having vertex scattering matrices as a d × d block.
The spectrum is asymptotically close to zeroes of a trigonometric
polynomial, corresponding to a certain Dirac operator on the same metric
graph.
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