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Some basic facts about waves

What are waves, their periods, amplitudes, etc.?
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Waves are functions

In general, waves are oscillations

u(x, t) = e iωt−ik·xu0(x),

where ω is a frequency, k is a wave-number, and u0(x) is
1-periodic function along the direction of the wave propagation
(along the vector k). Wave length (space-period) L, time-period
T , and amplitude U are

L = 2π/|k|, T = 2π/ω, U = max |u0|.

1) If u0(x) is periodic along the wave propagation and bounded,
non-decreasing along other directions then u(x, t) is a volume
wave.
2) If u0(x) is periodic along the wave propagation and decreasing
along other directions then u(x, t) is a guided wave.
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Dispersion diagrams (spectrum)

Usually, for a given wave

u(x, t) = e iωt−ik·xu0(x),

the parameters ω, k, and u0(x) are related by certain equations

ω = ω(k), u0 = u0[k, ω].

To find them, we should substitute u into the wave equation

ü = Au,

where A is some periodic operator, e.g. A = ρ−1∇ · µ∇ or
discrete Aun = ρ−1

∑
n∼n′ µn′(un′ − un), etc.. After substitution

−ω2u0 = Aku0.

Hence, ω2 = ω2(k) are ”eigenvalues”, and u0 = u0[k, ω] are
corresponding ”eigenvectors” of −Ak.
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Volume, guided waves and dispersion diagrams
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About local waves

Usually, we can not observe guided (local) waves in
uniform and purely periodic structures.

To observe them we should consider periodic
structures with embedded defects of lower
dimension.
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Example of periodic lattices with defects

https://phys.org http://physicsworld.com
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Periodic lattices

We can define N-periodic lattice
with M-point unit cell as follows

Γ = [1, ...,M]× ZN .
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Periodic operators

Any (bounded) operator

A : `2(Γ)→ `2(Γ)

which commutes with all shift op-
erators

Smu(j ,n) = u(j ,n+m), u ∈ `2(Γ)

is called a periodic operator.
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Fourier-Floquet-Bloch transform

The corresponding transformation based on Fourier series

F : `2(Γ)→ L2N,M := L2([0, 1]N → CM),

(Fu)j(k) =
∑

n∈ZN

e2πik·nu(j ,n)

allows us to rewrite our periodic operator A as an operator of
multiplication by a matrix-valued function A

Â := FAF−1 : L2N,M → L2N,M , Âu = Au.
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Periodic operators after F-F-B transform

A periodic operator A unitarily
equivalent to the following oper-
ator

Â : L2N,M → L2N,M ,

Âu(k) = A0(k)u(k)

with some (usually continuous)
M × M matrix-valued function
A0(k) depending on the ”quasi-
momentum” k ∈ [0, 1]N .
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Spectrum of periodic operators

For the operator of multiplication by the matrix-valued function

Âu(k) = A0(k)u(k)

the spectrum is just eigenvalues of this matrix for different
quasi-momentums

sp(Â) = {λ : det(A0(k)− λI) = 0 for some k} =

M⋃

j=1

⋃

k∈[0,1]N
{λj(k)}.
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Periodic operators with linear defects (N = 2)

In this case our periodic operator

Â : L2N,M → L2N,M ,

takes the form

Âu = A0u + A1〈B1u〉1

with some (usually continuous)
matrix-valued functions A, B and

〈·〉1 :=

∫ 1

0
·dk1.
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Periodic operators with linear and point defects (N = 2)

In this case our periodic operator

Â : L2N,M → L2N,M ,

takes the form

Âu = A0u+A1〈B1u〉1+A2〈B2u〉2

with some (usually continuous)
matrix-valued functions A, B and

〈·〉2 :=

∫ 1

0

∫ 1

0
·dk1dk2.
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Periodic operator with defects (general case)

In general, a periodic operator with defects is unitarily equivalent
to the operator Â : L2N,M → L2N,M of the form

Âu = A0u + A1〈B1u〉1 + ...+ AN〈BNu〉N .

with continuous matrix-valued functions A, B and

〈·〉1 =

∫ 1

0
·dk1, 〈·〉j+1 =

∫ 1

0
〈·〉jdkj+1.

Remark. For simplicity we will write A instead of Â. The spectrum of this
operator is

sp(A) = {λ : A− λI is non − invertible} = {λ : Ã is non − invertible},

where Ã has the same form as A but with A0 − λI instead of A0.
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Test for invertibility of a periodic operator with defects

A = A0 ·+A1〈B1·〉1 + ...+ AN〈BN ·〉N

= (A0 · )(I + A−1
0 A1〈B1·〉1 + ...+ A−1

0 AN〈BN ·〉N)

= (A0 · )(I + A10〈B1·〉1 + ...+ AN0〈BN ·〉N)

= (A0·) (I + A10〈B1·〉1)(I− A10(I + 〈B1A10〉1)−1〈B1·〉1)︸ ︷︷ ︸
=I

(I+A10〈B1·〉1+...+AN0〈BN ·〉N)

= (A0 · )(I + A10〈B1·〉1)(I + A21〈B2·〉2 + ...+ AN1〈BN ·〉N)

= (A0 · )(I + A10〈B1·〉1)(I + A21〈B2·〉2)(I + A32〈B3·〉3 + ...+ AN2〈BN ·〉N)

= ...............................

= (A0 · )(I + A10〈B1·〉1)(I + A21〈B2·〉2)...(I + AN,N−1〈BN ·〉N)
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Test for invertibility of a periodic operator with defects

Theorem (from J. Math. Anal. Appl., 2015)

Step 0. Define π0 = detE0, E0 = A0.

If π0(k0) = 0 for some k0 ∈ [0, 1]N then A is non-invertible else define
Aj0 = A−1

0 Aj , j = 1, ...,N.

Step 1. Define π1 = detE1, E1 = I + 〈B1A10〉1.

If π1(k01) = 0 for some k01 ∈ [0, 1]N−1 then A is non-invertible else define
Aj1 = Aj0 − A10E

−1
1 〈B1Aj0〉1, j = 2, ...,N.

Step 2. Define π2 = detE2, E2 = I + 〈B2A21〉2.

If π2(k02) = 0 for some k02 ∈ [0, 1]N−2 then A is non-invertible else define
Aj2 = Aj1 − A21E

−1
2 〈B2Aj1〉2, j = 3, ...,N.

*********

Step N. Define πN = detEN , EN = I + 〈BNAN,N−1〉N . If πN = 0 then A is
non-invertible else A is invertible.
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Summary

The following expansion as a product of elementary operators is fulfilled

A = A0 ·+A1〈B1·〉1 + ...+ AN〈BN ·〉N

= (A0·)(I + A10〈B1·〉1)(I + A21〈B2·〉2)...(I + AN,N−1〈BN ·〉N),

where Aij are derived from An, Bn by using algebraic operations (including
taking inverse matrices) and a few number of integrations. The inverse is

A−1 = (I− AN,N−1E
−1
N 〈BN ·〉N)...(I− A10E

−1
1 〈B1·〉1)(A−1

0 ·),

where Ej = I + 〈BjAj,j−1〉j . The determinant is

πππ(A) = (π1, ..., πN), πj = detEj .
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Embedded defects
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Determinants in the case of embedded defects

In this case the operator has a form

A· = A0 ·+A1〈·〉1 + ...+ AN〈·〉N ,

where An does not depend on k1, ..., kn.
Define the matrix-valued integral continued fractions

C0 = A0, C1 = A1+

〈
I

A0

〉−1

1

, C2 = A2+

〈
I

A1 +
〈

I
A0

〉−1
1

〉−1

2

and so on Cj = Aj + 〈C−1j−1〉−1j . Then

πj(A) = det(〈C−1j−1〉jCj).

Note that if all Aj are self-adjoint then A is self-adjoint and all Cj

are self-adjoint. J. Math. Phys., 2017
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Spectrum of periodic operators with defects

The spectrum of A has the form

sp(A) =
N⋃

n=0

σn, σn = {λ : π̃n = 0 for some k},

where π̃n ≡ πn(A− λI) ≡ πn(λ, kn+1, ..., kN).

The component σ0 coincides with the spectrum of purely periodic
operator A0u without defects. All components σn, n < N are
continuous (intervals), the component σN is discrete.
Also note that σn does not depend on the defects of dimensions
greater than n, i.e. of An+1, Bn+1, An+2, Bn+2 and so on.
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Determinants of periodic operators with defects

For all continuous matrix-valued functions A, B on [0, 1]N of
appropriate sizes introduce

H = {A : A = A0 ·+A1〈B1·〉1 + ...+ AN〈BN ·〉N} ⊂ B(L2N,M),

G = {A ∈ H : A is invertible}.

Theorem (arxiv.org, 2015)

The set H is a an operator algebra. The subset G is a group. The
mapping

πππ(A) := (π0(A), ..., πN(A))

is a group homomorphism between G and C0 × C1 × ...× CN ,
where Cn is the commutative group of non-zero continuous
functions depending on (kn+1, ..., kN) ∈ [0, 1]N−n.
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Traces of periodic operators with defects

Define

τττ(A) = lim
t→0

πππ(I + tA)− πππ(I)

t
.

Then

Theorem (arxiv.org, 2015)

The following identities are fulfilled

τττ(A) = (TrA0, 〈TrB1A1〉1, ..., 〈TrBNAN〉N),

τττ(αA+ βB) = ατττ(A) + βτττ(B), τττ(AB) = τττ(BA),

πππ(eA) = eτττ(A), πππ(AB) = πππ(A)πππ(B).
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Example. Laplace operator.

Continuous Laplace operator

∆U(x) =
N∑

n=1

∂2

∂x2
j

U(x), x = (xn) ∈ RN .

Discrete approximation of Laplace operator with a step h ∈ R is

∆discrU(hn) =
N∑

n=1

U(hn + hen)− 2U(hn) + U(hn− hen)

h2
,

where
n ∈ ZN , en = (δmn)Nm=1 is a basis,

or easier
∆discrUn =

∑
n′∼n

(Un′ − Un), n ∈ ZN ,

where n′ ∼ n means neighbor points.
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Example. Laplace operator.

To discrete Laplace operator

∆discrUn =
∑
n′∼n

(Un′ − Un), n ∈ ZN .

we apply FFB transformation

u(k) =
∑
n∈ZN

e2πik·nUn, k = (kn) ∈ [0, 1]N .

Then we obtain

∆̂discru(k) =
∑

σ=±1,n=1,..,N

(e2πiσknu(k)− u(k))

=
N∑

n=1

(e2πikn + e−2πikn − 2)u(k) =

(
−4

N∑
n=1

sin2 πkn

)
u(k).
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Example. Uniform lattice with guide and single defect.
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Wave equation has the form (λ ∼ ω2 is an ”energy”)

−(∆disc)u(x , y) = λ


Mu(x , y), x = y = 0,

M̃u(x , y), x = 0, y 6= 0,

Mu(x , y), otherwise

u ∈ `2(Z2)

After applying Floquet-Bloch transformation it becomes

4(sin2 πk1+sin2 πk2)û = λMû+λ(M̃−M)

∫ 1

0

ûdk1+λ(M−M̃)

∫ 1

0

∫ 1

0

ûdk1dk2
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Example. Uniform lattice with guide and single defect.

Taking M = 1 (uniform value) and denoting

A = 4(sin2 πk1 + sin2 πk2), M1 = M̃ −M, M2 = M − M̃

we may rewrite our wave equation as

(A− λ)u − λM1〈u〉1 − λM2〈u〉2 = 0 or Au = 0.

The determinant of A is πππ(A) = (π0, π1, π2). Using previously
defined integral continued fractions (p.21) we can compute

π0 = A− λ, π1 = 1−
〈
λM1

π0

〉

1

, π2 = 1−
〈
λM2

π0π1

〉

2

.

Thus the procedure of finding determinants consists of the steps
”take inverse and integrate, take inverse and integrate...”.

28



Example. Uniform lattice with guide and single defect.

Propagative dispersion curve is

π0 = 0 ⇔ λ = λp(k1, k2) = 4(sin2 πk1 + sin2 πk2).

Guided dispersion curve is

π1 = 0 ⇔ λ = λg(k2) =
−4 sin2 πk2 − 2± 2

√
4M2

1 sin2 πk2(1 + sin2 πk2) + 1

M2
1 − 1

.

Localised eigenvalues λ = λloc are determined from the equation

π2 = 0 ⇔ 1 +

∫ 1

0

λM2dk1

λM1 +
√

(λ− 2− 4 sin2 πk1)2 − 4
= 0.

The total spectrum is

σ = σ0 ∪ σ1 ∪ σ2, σ0 = λp([0, 1]2), σ1 = λg([0, 1]), σ3 = {λloc}.
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Example. Guided and localised spectrum.

k1

ω

0 π

5

k1

ω
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5

propagative wave

guided wave

Propagative dispersion surface (red) is

λp(k1, k2) = 4(sin2 πk1 + sin2 πk2).

Guided dispersion curve (green) is

λg(k2) =
−4 sin2 πk2 − 2± 2

√
4M2

1 (1 + sin2 πk2) sin2 πk2 + 1

M2
1 − 1

.
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Example. Localised spectrum.

0
ω

Dloc

5ωloc
0

ω

Dloc

5ωloc

Localised eigenvalues λ = λloc are determined from the equation

Dloc(λ) := 1 +

∫ 1

0

λM2dk1

λM1 +
√

(λ− 2− 4 sin2 πk1)2 − 4
= 0.
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Example. Large mass of the guide

Dloc(8) = 1 +

∫ 1

0

2M2dk1

2M1 + | cosπk1|
√

2− sin2 πk1
=

1 +
M2

M1

(
1−

∫ 1/2

0

cosπk1
√

2− sin2 πk1dk1
M1

+ O

(
1

M2
1

))
=

1 +
M2

M1

(
1−

(
1

4
+

1

2π

)
1

M1
+ O

(
1

M2
1

))

Since Dloc(+∞) = 1+M1+M2
1+M1

= M

M̃
> 0 and Dloc is monotonic for

λ > 8 then it has zero (which is an isolated eigenvalue) if and only
if Dloc(8) < 0 which yields

M2 = −M1 −
1

4
− 1

2π
+ O

(
1

M1

)
⇒ M =

3

4
− 1

2π
+ O

(
1

M̃

)
.
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Example. Masses for which the local eigenvalue exists.

M̃

M

1
2+

√
2

10

1

I II III

upper limit of M = 1 +
π

4 ln(M̃ − 1)
+ ..., M̃ → 1 + 0,

upper limit of M → 3

4
− 1

2π
, M̃ →∞.
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Example. Uniform lattice with guide and single defect.
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M For the random uniform distribu-
tion of the masses of the media,
of the guide, and of the point de-
fect (< M) the probability of ex-
istence of the isolated eigenvalue
is exactly

3

4
− 1

2π
.

Comput. Mech., 2014
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Wave propagation in the lattice with defects and sources

Wave equation

∆discrUn(t) = S2
n Ün(t) +

∑
n′∈NF

Fn′(t)δnn′ , n ∈ Z2

Assuming harmonic sources and applying F-B transformation we obtain

Av = −ω2a∗S〈va〉+ b∗f.

Using the explicit form for inverse integral operator (p.19) we may derive
explicit solution of the last equation

v = A−1

(
−ω2a∗SG

〈
ab∗

A

〉
+ b∗

)
f,

where

G = (I + ω2AS)−1, A =

〈
aa∗

A

〉
.
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Wave simulations. Inverse problem.

Two formulas allow us to recover the
defect properties from the information
about amplitudes of waves at the re-
ceivers

S〈ua〉 = ω−2C−1

(〈
cb∗

A

〉
f − 〈uc〉

)
,

〈ua〉 = −AC−1

(〈
cb∗

A

〉
f−〈uc〉

)
+

〈
ab∗

A

〉
f,

where

c =

e−in1·k

...

e−inN ·k


nj∈NR

, C =

〈
ca∗

A

〉
.

Eur. J. Mech. A-Solid., 2015

Inverse Probl., 2016
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Cloaking device.

The same formulas are applicable for constructing ”invisible objects”
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Remark about extended Fredholm operators

We have seen that for the operators

A = A0 ·+A1

∫ 1

0
B1 · dk1 + ...+ AN

∫ 1

0
..

∫ 1

0
BN · dk1..dkN ,

where Aj ≡ Aj(k), Bj ≡ Bj(k) are M×M matrices and k = (k1, ..., kN)

the procedure for finding inverse operators, spectra, etc is based
on some matrix operations and few number of integrations. We
call such procedures ”explicit”. By the continuity, these procedures
can be extended to the case

A = A0 ·+
∫ 1

0
A1 · dx1 + ...+

∫ 1

0
..

∫ 1

0
AN · dx1..dxN ,

where Aj ≡ Aj(k, xj) and xj = (x1, ..., xj), · = u(kN−j , xj).

Of course, we lose some kind of explicitness in this case.
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Remark about perpendicular defects, 2D case

Consider 2D case. Algebras of parallel defects are

H = {A0 ·+A1

∫ 1

0

B1 · dk1 + A2

∫ 1

0

∫ 1

0

B2 · dk1dk2},

H̃ = {A0 ·+A1

∫ 1

0

B1 · dk2 + A2

∫ 1

0

∫ 1

0

B2 · dk1dk2}

Algebra of perpendicular defects is

A = {A0·+A1

∫ 1

0

B1·dk1+A2

∫ 1

0

B2·dk2+

∫ 1

0

∫ 1

0

B3·dx1dx2}.

Even for ”simple” operators from A we lose the ”explic-
itness” of finding inverse operators and spectra.

J. Math. Anal. Appl., 2016
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Finite-dimensional approximation, 2D case

Suppose that all kernels are p-step (piecewise constant) functions. Then

A = Alg

(
χi (k1)·, χj(k2)·,

∫ 1

0

·dk1,
∫ 1

0

·dk2
)
, χi (k) =

{
1, k ∈ [ i−1

p
, i
p

),

0, otherwise.

and all operators from A have a form

A = A ·+
∫ 1

0

B · dx1 +

∫ 1

0

C · dx2 +

∫ 1

0

∫ 1

0

D · dx1dx2, where

A(k1, k2) =

p∑
i,j=1

aijχi (k1)χj(k2), B(k1, k2, x1) =

p∑
i,j,m=1

bijmpχi (k1)χj(k2)χm(x1),

C =

p∑
i,j,n=1

cijnpχi (k1)χj(k2)χn(x2), D =

p∑
i,j,m,n=1

dijmnp
2χi (k1)χj(k2)χm(x1)χn(x2).

and all coefficients aij , bijm, cijn, dijmn ∈ C.
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Expansion as a product of simple algebras

Introduce the following mapping

σ : A→ Cp2 × (Cp×p)p × (Cp×p)p × Cp2×p2 , where

σ = ((σ1
ij)

p
i,j=1, (σ

2
j )pj=1, (σ

3
i )pi=1, σ

4),

and matrices σ1
ij , σ

2
j , σ

3
i , σ

4 are defined by

σ1
ij(A) = aij ∈ C,

σ2
j (A) = (δimaij + bijm)pi,m=1 ∈ Cp×p,

σ3
i (A) = (δjnaij + cijn)pj,n=1 ∈ Cp×p,

σ4(A) = (δimδjnaij + δjnbijm + δimcijn + dijmn)p
2

r,s=1 ∈ Cp2×p2 ,

where r = i + p(j − 1), s = m + p(n − 1) and δ is the Kronecker δ.

Theorem (2016)

1) The mapping σ is an algebra isomorphism. 2) The operator A is invertible if
all matrices σ(A) are invertible and

A−1 = σ−1((σ1
ij)
−1, (σ2

j )−1, (σ3
i )−1, (σ4)−1).

3) The spectrum of A consists of all eigenvalues of matrices σ(A).
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Example 1.

Consider the simplest case p = 1. Then

(
a ·+b

∫ 1

0
·dk1 + c

∫ 1

0
·dk2 + d

∫ 1

0

∫ 1

0
·dk1dk2

)−1
=

a−1 · − b

a(a + b)

∫ 1

0
·dk1 −

c

a(a + c)

∫ 1

0
·dk2+

(2a + b + c + d)bc − a2d

a(a + b)(a + c)(a + b + c + d)

∫ 1

0

∫ 1

0
·dk1dk2.
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Example 2. Schrödinger operator.

Consider a spectral problem for the Schrödinger operator

A : `2(Z2)→ `2(Z2), AUn = −∆Un + VnUn, n ∈ Z2,

Vn =


0, n1n2 6= 0,

V1, n1 = 0, n2 6= 0,

V2, n2 = 0, n1 6= 0

V1 + V2 + V3, n1 = n2 = 0

, n = (n1, n2) ∈ Z2.

After applying FFB transformation F it takes the form

Â = FAF−1 : L2 → L2, Â = A·+V1

∫ 1

0

·dx1+V2

∫ 1

0

·dx2+V3

∫ 1

0

∫ 1

0

·dx1dx2,

where A = 4− 2 cos 2πk1 − 2 cos 2πk2.
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Example 2. Discrete approximation of the operator

Following the notations before the theorem we have

aij = A((i − 1/2)/p, (j − 1/2)/p), bijm = V1/p, cijn = V2/p, dijmn = V3/p
2

for i , j = 1, ..., p. Recall that the matrices σ are defined by

σ1
ij = aij ∈ C,

σ2
j = (δimaij + bijm)pi,m=1 ∈ Cp×p,

σ3
i = (δjnaij + cijn)pj,n=1 ∈ Cp×p,

σ4 = (δimδjnaij + δjnbijm + δimcijn + dijmn)p
2

r,s=1 ∈ Cp2×p2 .

The difference εp between the initial operator and the approximated one (and,
hence, the distance between spectra) has the form

dist(sp(Â), sp(Âp)) 6 εp = ‖Â − Âp‖ 6
1

2p
max
k1,k2
|∇A(k1, k2)| 6 4π

p
.

We consider the potentials

V1 = −8, V2 = 2, V3 = 1, p = 100.
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Example 2. Propagative spectrum: eig. of σ1
ij

λ

k1
0

8

1
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Example 2. Guided spectrum: eig. of σ2
j

λ

k2
0

8

1

−8

λ

k2
0

8

1

−846



Example 2. Guided spectrum: eig. of σ3
i

λ

k1
0

8

1

λ

k1
0

8

1
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Example 2. Local spectrum: eig. of σ4

λ0 8−8

(a)

λ0 8−8

(b)

λ0 8−8
(c)

λ0 8−8

(d)

λ0 8−8

(e)

isolated eigenvalue
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General matrix-valued multidimensional case

Consider the general algebra

L
1
p

N,M = Alg

(
A·, χi (kj)·,

∫ 1

0
·dxj
)
,

where A ∈ CM×M are all matrices of the dimension M, and
i = 1, .., p, j = 1, ..,N. Then it can be shown that

L
1
p

N,M '
N∏

n=0

(CMpn×Mpn)(Nn)pN−n
,

where
(N
n

)
are binomial coefficients. The isomorphisms σ and σ−1

have explicit forms.
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