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University of Hradec Králové, Faculty of Science
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Gelfand’s and Levitan’s result

In 1953 Gelfand and Levitan2 proved that for eigenvalues
λn(q) of the operator − d2

dx2 + q(x) on (0, π) with Neumann
boundary conditions and eigenvalues λn(0) of the same
operator with q = 0 the following equality holds under the
conditon

∫ π
0 q(x) dx = 0

∞∑
n=1

[λn(q)− λn(0)] =
1

4
[q(π) + q(0)] .

2Gelfand, I. M. and Levitan, B., On a simple identity for the
characteristic values of a differential operator of the second order. (Russian),
Doklady Akad. Nauk SSSR 88 (1953), 593–596.
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Generalization to q with non-zero average

let us assume q̃(x) = q(x)− q̄, where q̄ = 1
π

∫ π
0 q(x) dx

the Schrödinger equation is

−u′′n(x) + q(x)un(x) = λn(q)un(x) ,

−u′′n(x) + q̃(x)un(x) = (λn(q)− q̄)un(x) = λn(q̃)un(x) .

moreover,

1

4
[q̃(π)+q̃(0)] =

1

4
[q(π)−q̄+q(0)−q̄] =

1

4
[q(π)+q(0)]− 1

2
q̄ .

we have

∞∑
n=1

[
λn(q)− λn(0)− 1

π

∫ π

0
q(x) dx

]
=

1

4
[q(π)+q(0)]− 1

2π

∫ π

0
q(x)dx
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Description of the model

set of ordinary differential equations

graph consists of set of vertices V, set of d not oriented finite
edges E (lengths of the edges are `j)

Hilbert space of the problem

H =
d⊕

j=1

L2([0, `j ])

the Hamiltonian acting as − d2

dx2 + qj(x), where qj(x) is
bounded – corresponds to the Hamiltonian of a quantum
particle for the choice ~ = 1, m = 1/2
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Domain of the Hamiltonian

domain consisting of functions in W 2,2(Γ) satisfying coupling
conditions at each vertex

coupling conditions given by

(Uv − Iv )Ψv + i(Uv + Iv )Ψ′v = 0 .

where Ψv = (ψ1(0), . . . , ψdv (0))T and
Ψ′v = (ψ1(0)′, . . . , ψdv (0)′)T are the vectors of limits of
functional values and outgoing derivatives where dv is the
number edges emanating from the vertex v and Uv is a
unitary dv × dv matrix

assume that −1 6∈ σ(Uv )

this set does not include Dirichlet, delta or standard coupling
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Flower-like model

description of coupling conditions using one-vertex graphs

suppose that Γ has d edges of finite length

the coupling condition

(U − I )Ψ + i(U + I )Ψ′ = 0

describes coupling on the whole graph; U is 2d × 2d unitary
matrix consisting of blocks Uv

the above equation decouples into conditions for particular
vertices

U encodes not only coupling at the vertices, but also the
topology of the graph

ℓ1

ℓ2ℓ3

ℓ4

ℓd
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Generalizations of Gelfand’s and Levitan’s formula to
graphs

first attempts to obtain a trace formula for graphs by Roth 3

a formula involving integrals of the potential and the
eigenfunctions by Carlson 4

results closer to Gelfand’s and Levitan’s formula: equilateral
star graphs with different boundary conditions 5 6, segment
with discontinuity boundary conditions 7

3Roth, J.-P. Spectre du laplacien sur un graphe, C.R. Acad. Sci. Paris 296
(1983), 793795.

4Carlson, R. Eigenvalue cluster traces for quantum graphs with equal edge
lengths Rocky Mountain. J. Math. 42 (2012), 467490.

5Yang, C.-F. Regularized trace for Sturm-Liouville differential operator on a
star-shaped graph. Complex Anal. Oper. Theory 7 (2013), 11851196.

6Yang, C.-F. and Yang, J.-X. Large eigenvalues and traces of Sturm-Liouville
equations on star-shaped graphs. Methods Appl. Anal. 14 (2007), 179196.

7Yang, C.-F. Traces of Sturm-Liouville operators with discontinuities.
Inverse Problems in Science and Engineering 22 (2014), 803813.
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Asymptotic behaviour of eigenvalues

we subtract the eigenvalue for zero potential, not a known
particular value – a more elegant result

asymptotic behaviour of the spectrum: the leading term of
the secular equation is

∏d
i=1(−k sin (k`i ))

we obtain d sequences of eigenvalues in the following way:
denote the sequence of all eigenvalues in increasing order by
{λn}∞n=1 and let the sequence {µn}∞n=1 correspond to the
non-negative zeros of the above product also arranged in
increasing order, with the first d entries being 0

pair λn with µn

define the subsequences {λin}∞n=0 as subsequences of {λn}∞n=1

which are paired with those zeros of
∏d

i=1(−k sin (k`i )) which
are positive zeros of sin (k`i ) for a given i (the first entry of
this sequence λi0 is paired with 0)
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Main result

Theorem 1 (Freitas,L.)

We assume a quantum graph with d edges with arbitrary lengths
`i , i = 1, . . . , d , and associated coupling matrix U not having −1
in its spectrum. Then, denoting the eigenvalues of the Hamiltonian
with a potential q and with the zero potential by λin(q) and
λin(0), respectively, in the way described above, and the
component of the potential on the i-th edge by qi ∈W 1,1((0, `i )),
the following trace formula holds

d∑
i=1

∞∑
n=0

[
λin(q)− λin(0)− 1

`i

∫ `i

0
qi (x)dx

]
=

=
d∑

i=1

{
1

4
[qi (`i ) + qi (0)]− 1

2`i

∫ `i

0
qi (x) dx

}
.
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The secular equation

we rewrite the coupling condition as

HΨ + Ψ′ = 0 ,

where H = −i(U + I )−1(U − I ) is a Hermitian 2d × 2d matrix

independent solutions on the edges

cj(x , k) = cos (kx) +

∫ x

0

sin (k(x − t))

k
qj(t)cj(t, k)dt ,

sj(x , k) =
sin (kx)

k
+

∫ x

0

sin (k(x − t))

k
qj(t)sj(t, k)dt .

Jǐŕı Lipovský Gelfand-Levitan Formula 10/18



the solution on each edge can be expressed as

fj(x) = Ajcj(x , k) + Bjsj(x , k) ,

we substitute this expression to the coupling conditions and
obtain

[HM1(k) + M2(k)](A1,B1,A2,B2, . . . ,Ad ,Bd)T = 0 .

M1(k) =


1 0 0 0 . . .

c1(`1, k) s1(`1, k) 0 0 . . .
0 0 1 0 . . .
0 0 c2(`2, k) s2(`2, k) . . .
...

...
...

...
. . .



M2(k) =


0 1 0 0 . . .

−c ′1(`1, k) −s ′1(`1, k) 0 0 . . .
0 0 0 1 . . .
0 0 −c ′2(`2, k) −s ′2(`2, k) . . .
...

...
...

...
. . .
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the first three terms of the secular equation

0 = ϕ(k) =
d∏

i=1

(−k sin (k`i )) +
d∑

i=1

 d∏
j=1

j 6=i

(−k sin (k`j))


[cos (k`i )(ai − TrHi )− 2ReH12i ]+

+
d∑

i,j=1
i<j

 d∏
o=1
o6=i ,j

(−k sin (k`o))

{sin (k`i ) sin (k`j)

d − 1
(aiTrHi + ajTrHj−

−bi − bj − detHi − detHj) + cos (k`i ) cos (k`j)[aiaj − aiTrHj−
−ajTrHi − (|H11ij |2 + |H12ij |2 + |H21ij |2 + |H22ij |2) + TrHiTrHj ]+

+ cos (k`i )[2(TrHi − ai )ReH12j − 2Re (H11ij H̄12ij + H22ij H̄21ij)]+

+ cos (k`j)[2(TrHj − aj)ReH12i − 2Re (H11ij H̄21ij + H22ij H̄12ij)]+

+4ReH12iReH12j − 2Re (H12ij H̄21ij + H11ij H̄22ij)
}

+

+ o
(
kd−2e|Imk|

∑d
i=1 `i

)
.
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Proof of the main result

Theorem 2 (Freitas,L.)

For all ε > 0 there exists K > 0 so that for all N > K and
N 6∈ ∪di=1 ∪n∈N0

(
nπ
`i
− ε
`i
, nπ
`i

+ ε
`i

)
the functions∏d

i=1(−k sin (k`i )) and ϕ(k)have the same number of zeros inside
the contour ΓN (counter-clockwise contour with vertices N − iN,
N + iN, −N + iN, −N − iN).

proof using the symmetric Rouché’s theorem

Theorem 3 (Rouché)

Let f and g be holomorphic functions in the bounded subset V of
C and continuous at its closure V̄ . Let us assume that on the
boundary ∂V of V the following relation holds |f − g | < |f |+ |g |.
Then functions f and g have the same number of zeros in V .
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Lemma 4 (Freitas,L.)

It is possible to choose ε > 0 and K > 0 such that there exists a
strictly increasing sequence {Np}∞p=1 with K < N1 and satisfying

Np 6∈ ∪di=1 ∪n∈N0

(
nπ

`i
− ε

`i
,
nπ

`i
+
ε

`i

)
and

lim
p→∞

Np = +∞.

and there are at most d eigenvalues λ = k2 of H with
Np ≤ k ≤ Np+1, for all p ∈ N. Furthermore, all these eigenvalues
belong to different sequences λin and there are at most d zeros µ
of
∏d

i=1 sin (k`i ) with Np ≤ µ ≤ Np+1, ∀p ∈ N. The number of
eigenvalues and zeros with this property is the same.

Cp the counter-clockwise rectangles with vertices
Np+1 − iNp+1, Np+1 + iNp+1, Np + iNp+1 and Np − iNp+1
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Theorem 5 (Freitas,L.)

Let us assume that inside the contour Cp there are the points nπ
`i

and kin =
√
λin for a given i . Then λin = k2

in behaves
asymptotically as

λin =

(
nπ

`i

)2

+
2

`i
[ai − TrHi − (−1)n2ReH12i ]+

+
2

nπ

d∑
j=1

j 6=i

[
cot

nπ`j
`i

(|H11ij |2 + |H12ij |2 + |H21ij |2 + |H22ij |2)+

+
1

sin
nπ`j
`i

2Re (H11ij H̄12ij + H22ij H̄21ij)+

(−1)n

sin
nπ`j
`i

2Re (H12ij H̄21ij + H11ij H̄22ij)+

(−1)n cot
nπ`j
`i

2Re (H11ij H̄21ij + H22ij H̄12ij)

]
+ O

(
1

n2

)
.

Jǐŕı Lipovský Gelfand-Levitan Formula 15/18



Corollary 6 (Freitas,L.)

The sum
d∑

i=1

∞∑
n=0

[
λin(q)− λin(0)− 2ai

`i

]
is absolutely convergent, where λin(q) and and λin(0) denote the
eigenvalues for the potential q and for the null potential,
respectively.

idea of the proof: subtracting rhs of the equation in
Theorem 5

the term with 1/n depends only on H, not on the potential
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Proof of Theorem 1

we choose the contours ΓN in the “allowed regions” with
N →∞
for sufficiently large N, there are d +

∑d
i=1

⌊
N`i
π

⌋
eigenvalues

the number of kn with k2
n = λn is double

we have

2
d∑

i=1

bN`i
π
c∑

n=0

[λin(q)− λin(0)] = − 1

2πi

∮
ΓN

ln
ϕ(k)

ϕ0(k)
2k dk .

we send N to infinity
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Paper on which the talk was based

P. Freitas, J. Lipovský: A Gelfand-Levitan trace formula for generic
quantum graphs, arXiv: 1901.07790 [math-ph]

Thank you for your attention!
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