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Breather solutions in nonlinear Klein-Gordon equations

Nonlinear Klein-Gordon equation on the necklace graph

∂2
t u(x , t) = ∂2

xu(x , t)− (α + ε)u(x , t) + u(x , t)3, x ∈ int Γ, t ∈ R,

and Kirchhoff boundary conditions at the vertex points (continuity and
conservation of flows).
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Breather solutions:

I real-valued,

I time-periodic, u(t) = u
(
t + 2π

ω

)
, t ∈ R,

I spatially localized, lim|x|→∞ |u(x , t)| = 0, t ∈ R.
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Existence results on the real line

I Sine-Gordon equation

∂2
t u(x , t)− ∂2

xu(x , t) + sin(u(x , t)) = 0, x , t ∈ R.

has breathers, explicitly given by

u(x , t) = 4 arctan

(
m sin(ωt)

ω cosh(mx)

)
, m2 + ω2 = 1.

I No persistence under small perturbations:

∂2
t u(x , t)− ∂2

xu(x , t) + f (u) = 0, f (0) = 0, f ′(0) = 1,

has no breathers for f (u) 6= sin(u). [Denzler ’93]

Breathers in nonlinear PDEs are very rare!



Existence results

However, the situation is different if one introduces spatial
inhomogeneities.

I Breathers on lattices [MacKay, Aubry ’94]:

∂2
t un(t)− (un+1 − 2un + un−1) + f (un) = 0, f (0) = 0, f ′(0) > 0.

I Small amplitude breathers in nonlinear Klein-Gordon equation with
periodic coefficients [Blank, Chirilus-Bruckner, Lescarret, Schneider
’11]:

V (x)∂2
t u(x , t) = ∂2

xu(x , t)− q(x)u(x , t) + u(x , t)3, x , t ∈ R.
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V (x)
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q(x) = (q0 − ε2)V (x)



Breather solutions in nonlinear Klein-Gordon equations on
the necklace graph

Existence theorem:
Let k be an odd integer. For sufficiently small ε > 0, the cubic Klein-
Gordon equation

∂2
t u(x , t) = ∂2

xu(x , t)− (k2/4 + ε)u(x , t) + u(x , t)3

with Kirchhoff boundary conditions at the vertices possesses breather
solutions of amplitude O(

√
ε) and frequency ω = k/2. These solutions

are symmetric in the upper and lower semicircle.

Precisely, there exist functions u : R× R→ R satisfying

I u(x , t) = u(x , t + 2π
ω ), for all t, x ∈ R,

I lim|x|→∞u(x , t)eβ|x| = 0, for all t ∈ R and a constant β > 0.



Creation of standing pulse

I ”time-periodic” u(x , t) = u
(
x , t + 2π

ω

)
, x , t ∈ R, ”real-valued”.

 Fourier series representation in time

u(x , t) =
∑

m∈Nodd

um(x)cos(mωt)

gives system with new dynamic variable x (→ spatial dynamics)

−m2ω2um = ∂2
xum − (α + ε)um + (u ∗ u ∗ u)m, m ∈ Nodd.

I ”spatially localized” lim|x|→∞ |u(x , t)| = 0, t ∈ R.
 Find a homoclinic to zero in this infinite dimensional system

Is center manifold reduction possible?
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Ingredients of the proof

1. Spectral situation and time-2π-maps

2. Discrete center manifold theorem

3. Analysis of the reduced system
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1) Spectral situation

1. σpp(−∂2
x |Γ) = {m2 : m ∈ N}: eigenvalues of infinite multiplicity and

antisymmetric eigenstates (generated by simple loop states).

2. σac(−∂2
x |Γ): band-gap structure with symmetric (generalized)

eigenstates.

Floquet-Bloch bands:

Bloch wave ansatz W (x) = e ilx f (l , x) with 2π-periodic functions f (l) leads to the
eigenvalue problems −(∂x + il)2f = ω(l)f and σ(−∂2

x ) =
⋃

l∈[−1/2,1/2] σ(−(∂x + il)2).



1) Time-2π-maps on the invariant subspace of symmetric
functions

We identify the symmetric necklace graph with the real line equipped
with a singular periodic potential.

Family of time-2π-maps for x ∈ [0, 2π) for symmetric solutions:

TUn(x) = Un+1(x), n ∈ Z, Un(x) =

(
u(x + 2πn)
u′+(x + 2πn)

)
with right-sided derivatives u′+ at the vertex points.



1) Time-2π-maps and monodromy matrices

The spatial dynamics system

−m2ω2um = ∂2
xum − (α + ε)um + (u ∗ u ∗ u)m, m ∈ Nodd.

has time-2π-mappings

T (Um)n(x) = Mx(m2ω2 − α)(Um)n(x) + Nm(x , ε,Un), n ∈ Z, m ∈ Nodd,

with explicitly computable monodromy matrices Mx(m2ω2 − α).

 Idea: apply a discrete version of the center manifold theorem to
the family of time-2π-maps



Ingredients of the proof

1. Spectral situation and time-2π-maps

2. Discrete center manifold theorem

3. Analysis of the reduced system



2) Discrete center manifold theorem

Center eigenvalues = eigenvalues on
the unit circle.
To prove the existence of an (invari-
ant) center manifold,

we need a spectral gap around the
unit circle.

Re

Im

σh

σc

dimension of center manifold = #{eigenvalues on unit circle}
Center manifold theorem:
The dynamics of small solutions are determined on the center manifold.
→ Flow can be restricted to the center manifold.

Reduction of dimension



2) Spectral situation on the necklace graph

Characterization of the spectrum with monodromy matrices:

rutsch λ ∈ σac(−∂2
x |Γ) ⇔ |tr(M(λ))| ≤ 2

rutsch λ ∈ σac(−∂2
x |Γ) ⇔ Eigenvalues of M(λ) on unit circle



2) Choice of breather frequency ω and constant α

Key relation:

1.
∣∣trM(m2ω2 − α)

∣∣ ≤ 2 ⇔ Eigenvalues of M(m2ω2 − α) on unit circle

2. #{Eigenvalues of M(m2ω2 − α) on unit circle} = dimension of
center manifold

Choice of breather frequency:
For constants ω = k/2, α = ω2

with k ∈ Nodd we find that∣∣trM(ω2 − α)
∣∣ = 2,∣∣trM(m2ω2 − α)
∣∣ > 2,

for all odd m ≥ 3.
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2) Occurrence of the spectral gaps

Schrödinger operator with periodic potential on the real line:

Hper = − d2

dx2
+ Vper withVper ∈ Cm(R),

has bandgap structure with width O(n−(m−1)) of the nth spectral gap for
n→∞. To avoid gaps becoming smaller, Vper might be at most once
differentiable.

Linear part on necklace graphs gives rise to the desired gap structure
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3) Analysis of the reduced system
Lowest order approximation of the dynamics on the center manifolds is
given by the ODE

∂2
xu1(x) = ε2u1(x)− u3

1(x).

with um = 0 for all m ≥ 3.

⇒ Existence of a homoclinic to zero [Pelinovsky, Schneider ’16]

Figure: blue line: homoclinic on the graph;

dashed green line: homoclinic on the real line without potential

Persistence of the homoclinic under higher order perturbations:
I transversal intersection
I reversibility

→ phase portrait is reflection symmetric at the u1-axis



Summary

Nonlinear Klein-Gordon equation on the necklace graph

∂2
t u(x , t) = ∂2

xu(x , t)− (k2/4 + ε)u(x , t) + u(x , t)3, x ∈ int Γ, t ∈ R,

with Kirchhoff boundary conditions at the vertex points and an odd
integer k.

Existence of breathers:

I real pulse solutions of amplitude O(
√
ε), symmetric in the upper

and lower semicircle,

I u(x , t) = u(x , t + 4π
k ), for all t, x ∈ R,

I u(t, x)→ 0 as |x | → ∞ exponentially fast for all t ∈ R.



Discrete version of the necklace graph

Discrete Klein Gordon system

∂2
t uj = f (v+

j − uj) + f (v−j − uj)− h(uj − wj−1)− ru(uj),

∂2
t v

+
j = g(wj − v+

j )− f (v+
j − uj)− rv (v+

j ),

∂2
t v
−
j = g(wj − v−j )− f (v−j − uj)− rv (v−j ),

∂2
t wj = h(uj+1 − wj)− g(wj − v+

j )− g(wj − v−j )− rw (wj),

with relative displacement coordinates uj , v
±
j ,wj and interaction forces

f , g , h, local forces ru, rv , rw , for j ∈ Z on the discrete graph

f

f

g

g
huj

v+j

v−j

wj

Nonlinearity: expansions f (x) = f1x + f2x
2 + ...



Discrete non-symmetric breathers

Spectral situation:

I Eigenvalue ω with
anti-symmetric eigenstates

I Eigenstates that are not
present in the initial data
will not be excited at any
time!

Left: f1 = 1, g1 = 0.3, h1 = 2 (FPU);

Right: f1 = 1, g1 = 0.3, h1 = 2 and r1 = 0.5 (dKG)

Non-symmetric breathers bifurcate from a simple eigenvalue (Crandall-
Rabinowitz theorem), if the non-resonance condition m2ω2 /∈ σac is satis-
fied for all m ∈ N0.

Future work: Transferring these ideas to the metric graph



Thank you.


