Spectral partitions of quantum graphs

Delio Mugnolo

FernUniversität in Hagen

(joint work with J.B. Kennedy, P. Kurasov, and C. Léna)

February, 2019

Spectral partitions of quantum graphs

Delio Mugnolo

Clustering methods on domains

Partition notions and clusters of metric graphs

Existence results

Examples

Dirichlet partitions

Monotonicity and regularity features

Method

Convergence of graph partitions

Functionals on spaces of partitions

Further applications

Partitioning domains

Goal: subdivide $\Omega \subset \mathbb{R}^2$ in 2 subsets as homogeneous as possible

- nodal: find two subsets on which smooth functions are "almost constant", with most of the gradient at their mutual boundary.
- Cheeger: find two subsets of size as close as possible, penalizing size of their mutual boundary.

Idea: supports of positive and negative part of the first sign-changing eigenfunction of (Dirichlet) Laplacian or 1-Laplacian on Ω

Delio Mugnolo

Clustering methods on domains

Partition notions and clusters of metric graphs

Existence results

Examples

Dirichlet partitions

Monotonicity and regularity features

Methods

Convergence of graph partitions

Functionals on spaces of partitions

Further applications

Goal: subdivide $\Omega \subset \mathbb{R}^2$ in \boldsymbol{k} subsets as homogeneous as possible

- Courant 1923: the k-th eigenfunction of Δ^D_Ω has at most k nodal domain.
- Pleijel 1956: only finitely many eigenfunctions attain this bound, asymptotically #nodal domains of k-th eigenfunction is rather ≈ ²/₃k.

► Cheeger: ???

Spectral partitions of quantum graphs

Delio Mugnolo

Clustering methods on domains

Partition notions and clusters of metric graphs

Existence results

Examples

Dirichlet partitions

Monotonicity and regularity features

Method

Convergence of graph partitions

Functionals on spaces of partitions

Further applications

Spectral partitions on domains

Goal: find a partition \mathcal{P} of $\Omega \subset \mathbb{R}^n$ in **precisely** k open, connected, disjoint subdomains $\omega_1, \ldots, \omega_k$.

 $\mathcal{P} \equiv (\omega_1, \omega_2) \mapsto \max \{\lambda_1^D(\omega_1), \lambda_1^D(\omega_2)\}\$ has a minimum given by a nodal partition.

Idea: Consider the functional

$$\Lambda_{k,\infty}: \mathcal{P} \mapsto \max_{1 \leq i \leq k} \lambda_1^D(\omega_i)$$

or

$$\Lambda_{k,p}: \mathcal{P} \mapsto \left(rac{1}{k}\sum_{i=1}^k (\lambda_1^D(\omega_i))^p
ight)^{rac{1}{p}}, \qquad p>0.$$

Spectral partitions of quantum graphs

Delio Mugnolo

Clustering methods on domains

Partition notions and clusters of metric graphs

Existence results

Examples

Dirichlet partitions

Monotonicity and regularity features

Method

Convergence of graph partitions

Functionals on spaces of partitions

Further applications

Partition Transference principle Heat content partitions

・ロト ・西ト ・ヨト ・ヨー うへぐ

Spectral partitions on domains

Goal: find a partition \mathcal{P} of $\Omega \subset \mathbb{R}^n$ in **precisely** k open, connected, disjoint subdomains $\omega_1, \ldots, \omega_k$.

 $\mathcal{P} \equiv (\omega_1, \omega_2) \mapsto \max \{\lambda_1^D(\omega_1), \lambda_1^D(\omega_2)\}\$ has a minimum given by a nodal partition.

Idea: Consider the functional

$$\Lambda_{k,\infty}: \mathcal{P} \mapsto \max_{1 \leq i \leq k} \lambda_1^D(\omega_i)$$

or

$$\Lambda_{k,p}:\mathcal{P}\mapsto \left(rac{1}{k}\sum_{i=1}^k (\lambda_1^D(\omega_i))^p
ight)^{rac{1}{p}},\qquad p>0.$$

Spectral partitions of quantum graphs

Delio Mugnolo

Clustering methods on domains

Partition notions and clusters of metric graphs

Existence results

Examples

Dirichlet partitions

Monotonicity and regularity features

Method

Convergence of graph partitions

Functionals on spaces of partitions

Further applications

Partition Transference principle Heat content partitions

・ロ・・白・・ヨ・・ヨ・ クタマ

Rationale

Faber–Krahn: the first Dirichlet eigenvalue on ω is minimal (among all domains of \mathbb{R}^n with same volume) precisely when ω is a Euclidean ball.

 \rightsquigarrow In order to minimize $\Lambda_{k,p}$, each ω_i tends to get as close as possible to a ball.

Figure: Minimal partitions for p = 50 and k = 2, 3, 4, 5(Bogosel–Bonnaillie-Noël 2017)

Spectral partitions of quantum graphs

Delio Mugnolo

Clustering methods on domains

Partition notions and clusters of metric graphs

Existence results

Examples

Dirichlet partitions

Monotonicity and regularity features

Methods

Convergence of graph partitions

Functionals on spaces of partitions

Further applications

Existence of *p*-minimal *k*-partitions

Theorem (Conti–Terracini–Verzini, Calc. Var. 2005) $\Lambda_{k,p}$ has a minimum over a (reasonable) class of k-partitions, for all p > 0 and $k \ge 2$.

(proof based on abstract variational results for free boundary problems)

Spectral partitions of quantum graphs

Delio Mugnolo

Clustering methods on domains

Partition notions and clusters of metric graphs

Existence results

Examples

Dirichlet partitions

Monotonicity and regularity features

Method

Convergence of graph partitions

Functionals on spaces of partitions

Further applications

Partition Transference principle Heat content partitions

・ロ・・聞・・聞・・聞・ うらる

Further properties of planar partitions

Theorem (Helffer–Hoffmann-Ostenhoff–Terracini, Ann. H. Poincaré AN 2009)

Let n = 2 and \mathcal{P}^* be an ∞ -minimal k-partition.

If n = 2 and the dual graph of P[∗] is bipartite, then there is u s.t.

$$-\Delta^D_\Omega u = \Lambda_{k,p}(\mathcal{P}^*)u$$

and whose nodal set agrees with \mathcal{P}^* .

• \mathcal{P}^* is an equipartition, i.e., $\lambda_1^D(\omega_i) = \lambda_1^D(\omega_j)$ for all i, j.

Delio Mugnolo

Clustering methods on domains

Partition notions and clusters of metric graphs

Existence results

Examples

Dirichlet partitions

Monotonicity and regularity features

Method

Convergence of graph partitions

Functionals on spaces of partitions

Further applications

Graphs and metric graphs

G = (V, E), with $\blacktriangleright V = \{v_1, \dots, v_n\} \text{ finite}$ $\blacktriangleright E = \{e_1, \dots, e_m\} \text{ finite}$

A metric graph G is obtained by associating an interval $[0, \ell_e]$ with each edge e of G; G is the **discrete graph underlying** G.

Spectral partitions of quantum graphs

Delio Mugnolo

Clustering methods on domains

Partition notions and clusters of metric graphs

Existence results

Examples

Dirichlet partitions

Monotonicity and regularity features

Methods

Convergence of graph partitions

Functionals on spaces of partitions

Further applications

Graphs and metric graphs

G = (V, E), with $\blacktriangleright V = \{v_1, \dots, v_n\} \text{ finite}$ $\blacktriangleright E = \{e_1, \dots, e_m\} \text{ finite}$

A metric graph \mathcal{G} is obtained by associating an interval $[0, \ell_e]$ with each edge e of G; G is the **discrete graph underlying** \mathcal{G} .

Spectral partitions of quantum graphs

Delio Mugnolo

Clustering methods on domains

Partition notions and clusters of metric graphs

Existence results

Examples

Dirichlet partitions

Monotonicity and regularity features

Methods

Convergence of graph partitions

Functionals on spaces of partitions

Further applications

No boundary conditions can be imposed on functions in

$$L^2(\mathcal{G}) := \bigoplus_{\mathsf{e}\in\mathsf{E}} L^2(\mathsf{0},\ell_\mathsf{e})$$

so functions in $L^2(\mathcal{G})$ do not see the combinatorics of \mathcal{G} .

Introduce

 $C(\mathcal{G}) := \{ f \in \bigoplus_{e \in E} C[0, \ell_e] : f \text{ is continuous at each } v \in V \}$

and

 $H^1(\mathcal{G}) := \{ f = (f_e)_{e \in E} \in L^2(\mathcal{G}) \cap C(\mathcal{G}) : f_e \in H^1(0, \ell_e) \, \forall e \in E \}$

Spectral partitions of quantum graphs

Delio Mugnolo

Clustering methods on domains

Partition notions and clusters of metric graphs

Existence results

Examples

Dirichlet partitions

Monotonicity and regularity features

Methods

Convergence of graph partitions

Functionals on spaces of partitions

Further applications

No boundary conditions can be imposed on functions in

$$L^2(\mathcal{G}) := \bigoplus_{\mathsf{e}\in\mathsf{E}} L^2(\mathsf{0},\ell_\mathsf{e})$$

so functions in $L^2(\mathcal{G})$ do not see the combinatorics of \mathcal{G} .

Introduce

 $C(\mathcal{G}) := \{ f \in \bigoplus_{e \in E} C[0, \ell_e] : f \text{ is continuous at each } v \in V \}$

and

$$H^1(\mathcal{G}) := \{ f = (f_e)_{e \in \mathsf{E}} \in L^2(\mathcal{G}) \cap C(\mathcal{G}) : f_e \in H^1(0, \ell_e) \ \forall e \in \mathsf{E} \}$$

Spectral partitions of quantum graphs

Delio Mugnolo

Clustering methods on domains

Partition notions and clusters of metric graphs

Existence results

Examples

Dirichlet partitions

Monotonicity and regularity features

Method

Convergence of graph partitions

Functionals on spaces of partitions

Further applications

Partition Transference principle Heat content partitions

・ロ・・西・・ヨ・ ・ヨ・ うへぐ

Spectral gap of quantum graphs

Consider

$$\lambda_1(\mathcal{G}) := \inf_{\substack{f \in \mathcal{H}^1(\mathcal{G}) \\ f \perp 1}} \frac{\|f'\|_{L^2(\mathcal{G})}^2}{\|f\|_{L^2(\mathcal{G})}^2}$$

 $\lambda_1(\mathcal{G})$ is the spectral gap of $\Delta_{\mathcal{G}}$, the self-adjoint, positive semidefinite operator on $L^2(\mathcal{G})$ associated with

$$a(f) := \sum_{\mathbf{e} \in \mathsf{E}} \int_0^{\ell_{\mathbf{e}}} |f'|^2, \quad f \in H^1(\mathcal{G})$$

Nicaise, Bull. Sc. 1987;... Berkolaiko-Kennedy-Kurasov-M. 2018; ...

Spectral partitions of quantum graphs

Delio Mugnolo

Clustering methods on domains

Partition notions and clusters of metric graphs

Existence results

Examples

Dirichlet partitions

Monotonicity and regularity features

Method

Convergence of graph partitions

Functionals on spaces of partitions

Further applications

Partitioning metric graphs

Goal: subdivide G in k subsets as homogeneous as possible

Cheeger

Nicaise, Bull. Sc. math. 1987; Kurasov, Acta Phys. Pol. 2013; Kennedy–M., PAMM 2016; Del Pezzo–Rossi, Mich. Math. J. 2016

🕨 nodal

Gnutzmann–Smilansky–Weber, Waves Random Media 2004; Berkolaiko Comm. Math. Phys. 2008

Spectral partitions of quantum graphs

Delio Mugnolo

Clustering methods on domains

Partition notions and clusters of metric graphs

Existence results

Examples

Dirichlet partitions

Monotonicity and regularity features

Method

Convergence of graph partitions

Functionals on spaces of partitions

Further applications

Energy functional on partitions

For a given partition \mathcal{P} of \mathcal{G} into k clusters $\mathcal{G}_1, \ldots, \mathcal{G}_k$ consider

$$\Lambda_{k,\infty}: \mathcal{P} \mapsto \max_{1 \leq i \leq k} \lambda_1(\mathcal{G}_i).$$

or

$$\Lambda_{k,p}: \mathcal{P}\mapsto \left(rac{1}{k}\sum_{i=1}^k (\lambda_1(\mathcal{G}_i))^p
ight)^{rac{1}{p}}, \qquad p>0.$$

Goal: Minimize these functionals over all partitions of \mathcal{G} .

Spectral partitions of quantum graphs

Delio Mugnolo

Clustering methods on domains

Partition notions and clusters of metric graphs

Existence results

Examples

Dirichlet partitions

Monotonicity and regularity features

Methods

Convergence of graph partitions

Functionals on spaces of partitions

Further applications

How to partition a quantum graph?

Spectral partitions of quantum graphs

Delio Mugnolo

Clustering methods on domains

Partition notions and clusters of metric graphs

Existence results

Examples

Dirichlet partitions

Monotonicity and regularity features

Method

Convergence of graph partitions

Functionals on spaces of partitions

Further applications

Partition Transference principle Heat content partitions

・ロ・・聞・・聞・・ 聞・ 今々ぐ

proper partitions

(Band-Berkolaiko-Raz-Smilanski, Comm. Math. Phys. 2012)

Spectral partitions of quantum graphs

Delio Mugnolo

proper partitions

(Band-Berkolaiko-Raz-Smilanski, Comm. Math. Phys. 2012)

Spectral partitions of quantum graphs

Lax partitions are the most general ones: \mathfrak{P}_k ; rigid partitions are better behaved: \mathfrak{R}_k .

Spectral partitions of quantum graphs

Delio Mugnolo

Clustering methods on domains

Partition notions and clusters of metric graphs

Existence results

Examples

Dirichlet partitions

Monotonicity and regularity features

Methods

Convergence of graph partitions

Functionals on spaces of partitions

Further applications

Partition Transference principle Heat content partitions

・ロ・・聞・・聞・・ 聞・ 今々ぐ

Lax partitions are the most general ones: \mathfrak{P}_k ; rigid partitions are better behaved: \mathfrak{R}_k .

Heat content partitions

An invalid 2-partition...

... but a valid (and faithful) 3-partition.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Spectral partitions of quantum graphs

Delio Mugnolo

Clustering methods on domains

Partition notions and clusters of metric graphs

Existence results

Examples

Dirichlet partitions

Monotonicity and regularity features

Method

Convergence of graph partitions

Functionals on spaces of partitions

Further applications

Theorem

- 1) For each k and each p there is
 - a lax partition \mathcal{P}_{lax}^* minimizing $\Lambda_{k,p} : \mathfrak{P}_k \to \mathbb{R}$, $\tilde{\mathcal{P}}$ is generally not rigid;
 - a rigid partition \mathcal{P}^* minimizing $\Lambda_{k,p}|_{\mathfrak{R}_k} : \mathfrak{R}_k \to \mathbb{R}$.

2) The restrictions of $\Lambda_{k,p}$ to the classes of **proper** or **faithful** partitions don't generally have minima.

We call

 $\Lambda_{k,p}(\mathcal{P}_{lax}^*) \text{ lax } (k,p)\text{-energy};$ $\Lambda_{k,p}(\mathcal{P}^*) \text{ rigid } (k,p)\text{-energy}.$

Spectral partitions of quantum graphs

Delio Mugnolo

Clustering methods on domains

Partition notions and clusters of metric graphs

Existence results

Examples

Dirichlet partitions

Monotonicity and regularity features

Method

Convergence of graph partitions

Functionals on spaces of partitions

Further applications

Theorem

1) For each k and each p there is

- a lax partition \mathcal{P}_{lax}^* minimizing $\Lambda_{k,p} : \mathfrak{P}_k \to \mathbb{R}$, $\tilde{\mathcal{P}}$ is generally not rigid;
- a rigid partition \mathcal{P}^* minimizing $\Lambda_{k,p}|_{\mathfrak{R}_k} : \mathfrak{R}_k \to \mathbb{R}$.
- 2) The restrictions of $\Lambda_{k,p}$ to the classes of **proper** or **faithful** partitions don't generally have minima.

We call

∧_{k,p}(P^{*}_{lax}) lax (k, p)-energy;
 ∧_{k,p}(P^{*}) rigid (k, p)-energy.

Spectral partitions of quantum graphs

Delio Mugnolo

Clustering methods on domains

Partition notions and clusters of metric graphs

Existence results

Examples

Dirichlet partitions

Monotonicity and regularity features

Method

Convergence of graph partitions

Functionals on spaces of partitions

Further applications

When is a rigid partition minimal?

Proposition

If
$$\mathcal{P}^* \in \mathfrak{R}_k$$
 s.t. $\Lambda_{k,\infty}(\mathcal{P}^*) = \frac{\pi^2 k^2}{|\mathcal{G}|^2}$, then \mathcal{P}^* is the minimizer of $\Lambda_{k,\infty}$.

Spectral partitions of quantum graphs

Delio Mugnolo

Clustering methods on domains

Partition notions and clusters of metric graphs

Existence results

Examples

Dirichlet partitions

Monotonicity and regularity features

Method

Convergence of graph partitions

Functionals on spaces of partitions

Further applications

Partition Transference principle Heat content partitions

・ロ・・聞・・聞・・ 聞・ 今々ぐ

3-pumpkin and a rigid ∞ -minimal 2-partition

・ロト・西ト・ヨト・ヨー うへの

Spectral partitions of quantum graphs

Delio Mugnolo

Clustering methods on domains

Partition notions and clusters of metric graphs

Existence results

Examples

Dirichlet partitions

Monotonicity and regularity features

Method

Convergence of graph partitions

Functionals on spaces of partitions

Further applications

3-pumpkin and a rigid ∞ -minimal 2-partition

・ロ・・聞・・聞・・ 聞・ 今々ぐ

Spectral partitions of quantum graphs

Delio Mugnolo

Clustering methods on domains

Partition notions and clusters of metric graphs

Existence results

Examples

Dirichlet partitions

Monotonicity and regularity features

Method

Convergence of graph partitions

Functionals on spaces of partitions

Further applications

Headphone graph: its lax $(2, \infty)$ -energy is given by one rigid and one lax partition.

< ロ > < @ > < 注 > < 注 > 、 注 ・ の Q ()

Spectral partitions of quantum graphs

Delio Mugnolo

Clustering methods on domains

Partition notions and clusters of metric graphs

Existence results

Examples

Dirichlet partitions

Monotonicity and regularity features

Method

Convergence of graph partitions

Functionals on spaces of partitions

Further applications

Headphone graph: its lax $(2, \infty)$ -energy is given by one rigid and one lax partition.

Spectral partitions of quantum graphs

Delio Mugnolo

Clustering methods on domains

Partition notions and clusters of metric graphs

Existence results

Examples

Dirichlet partitions

Monotonicity and regularity features

Method

Convergence of graph partitions

Functionals on spaces of partitions

Further applications

6-pumpkin: its lax $(2, \infty)$ -energy is given by a rigid partition.

▲□▶▲圖▶▲≣▶▲≣▶ ▲≣ シシ۹の

Spectral partitions of quantum graphs

Delio Mugnolo

Clustering methods on domains

Partition notions and clusters of metric graphs

Existence results

Examples

Dirichlet partitions

Monotonicity and regularity features

Method

Convergence of graph partitions

Functionals on spaces of partitions

Further applications

6-pumpkin: its lax $(2, \infty)$ -energy is given by a rigid partition.

Spectral partitions of quantum graphs

Delio Mugnolo

Clustering methods on domains

Partition notions and clusters of metric graphs

Existence results

Examples

Dirichlet partitions

Monotonicity and regularity features

Method

Convergence of graph partitions

Functionals on spaces of partitions

Further applications

A dumbbell: lax $(2,\infty)$ -energy and rigid $(2,\infty)$ do not agree.

・ロット 日マ ・ 山マ ・ 山マ ・ 白マ ・ 白マ

Spectral partitions of quantum graphs

Delio Mugnolo

Clustering methods on domains

Partition notions and clusters of metric graphs

Existence results

Examples

Dirichlet partitions

Monotonicity and regularity features

Method

Convergence of graph partitions

Functionals on spaces of partitions

Further applications

Dirichlet problems

An **internally connected** partition is a rigid partition whose clusters are still connected after removal of separation points between clusters.

Spectral partitions of quantum graphs

Delio Mugnolo

Clustering methods on domains

Partition notions and clusters of metric graphs

Existence results

Examples

Dirichlet partitions

Monotonicity and regularity features

Method

Convergence of graph partitions

Functionals on spaces of partitions

Further applications

One can likewise study

$$\Lambda^D_{k,\infty}:\mathcal{P}\mapsto \max_{1\leq i\leq k}\lambda^D_1(\mathcal{G}_i).$$

or

$$\Lambda^D_{k,p}:\mathcal{P}\mapsto \left(rac{1}{k}\sum_{i=1}^k (\lambda^D_1(\mathcal{G}_i))^p
ight)^rac{1}{p},\qquad p>0;$$

Dirichlet conditions are imposed in each separation point; the restriction of $\Lambda_{k,p}^D$ to the class of internally connected partitions doesn't generally have a minimum.

Spectral partitions of quantum graphs

Delio Mugnolo

Clustering methods on domains

Partition notions and clusters of metric graphs

Existence results

Examples

Dirichlet partitions

Monotonicity and regularity features

Method

Convergence of graph partitions

Functionals on spaces of partitions

Further applications

Headphone graph: a minimal, internally connected Dirichlet partition

Spectral partitions of quantum graphs

Delio Mugnolo

Clustering methods on domains

Partition notions and clusters of metric graphs

Existence results

Examples

Dirichlet partitions

Monotonicity and regularity features

Method

Convergence of graph partitions

Functionals on spaces of partitions

Further applications

Partition Transference principle Heat content partitions

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲≣ • のへで

Monotonicity properties

Denote

$$\mathcal{L}_{k,p} := \min\{\Lambda_{k,p}(\mathcal{P}) : \mathcal{P} \in \mathfrak{R}_k\}$$

Proposition

\$\mathcal{L}_{k,p}\$ is monotonically increasing in p for any k.
 \$\mathcal{L}_{k,p}\$ is eventually monotonically increasing in k for any p.

Spectral partitions of quantum graphs

Delio Mugnolo

Clustering methods on domains

Partition notions and clusters of metric graphs

Existence results

Examples

Dirichlet partitions

Monotonicity and regularity features

Method

Convergence of graph partitions

Functionals on spaces of partitions

Further applications

Partition Transference principle Heat content partitions

・ロット 御マ キャント 中国 うろんら

Conjecture

Every \mathcal{G} admits a rigid 2-partition $\mathcal{P} = \{\mathcal{G}_1, \mathcal{G}_2\}$ such that

 $\lambda_1(\mathcal{G}) \leq \min\{\lambda_1(\mathcal{G}_1), \lambda_1(\mathcal{G}_2)\}.$

The conjecture is true for loops.

Proposition

The conjecture is true whenever G has a cutvertex.

If the conjecture fails for \mathcal{G} , then $\mathcal{L}_{1,p} > \mathcal{L}_{2,p}$ for any p.

Spectral partitions of quantum graphs

Delio Mugnolo

Clustering methods on domains

Partition notions and clusters of metric graphs

Existence results

Examples

Dirichlet partitions

Monotonicity and regularity features

Method

Convergence of graph partitions

Functionals on spaces of partitions

Further applications

Conjecture

Every \mathcal{G} admits a rigid 2-partition $\mathcal{P} = \{\mathcal{G}_1, \mathcal{G}_2\}$ such that

 $\lambda_1(\mathcal{G}) \leq \min\{\lambda_1(\mathcal{G}_1), \lambda_1(\mathcal{G}_2)\}.$

The conjecture is true for loops.

Proposition

The conjecture is true whenever G has a cutvertex.

If the conjecture fails for \mathcal{G} , then $\mathcal{L}_{1,p} > \mathcal{L}_{2,p}$ for any p.

Spectral partitions of quantum graphs

Delio Mugnolo

Clustering methods on domains

Partition notions and clusters of metric graphs

Existence results

Examples

Dirichlet partitions

Monotonicity and regularity features

Method

Convergence of graph partitions

Functionals on spaces of partitions

Further applications

Example: the minimal partition may depend on *p*.

► Each internally connected 2-partition is parametrized by a ∈ (0, 1).

For all p > 0 there is one a_p ∈ (0, 1) whose corresponding partition P_{a_p} achieves the minimum of Λ^D_{2,p}; p → a_p is real analytic, a_p > 0, d/dp a_p < 0, and lim_{p→∞} a_p = 0.

Spectral partitions of quantum graphs

Delio Mugnolo

Clustering methods on domains

Partition notions and clusters of metric graphs

Existence results

Examples

Dirichlet partitions

Monotonicity and regularity features

Method

Convergence of graph partitions

Functionals on spaces of partitions

Further applications

Example: minimal *rigid* partitions need not be equipartitions.

ペロト 4回ト 4 目 ト 4 目 ・ 9 へ (?)

Spectral partitions of quantum graphs

Delio Mugnolo

Clustering methods on domains

Partition notions and clusters of metric graphs

Existence results

Examples

Dirichlet partitions

Monotonicity and regularity features

Method

Convergence of graph partitions

Functionals on spaces of partitions

Further applications

Metrizing spaces of graphs

Given G, let

 $\Gamma_{G} := \{\mathcal{G} : underlying \text{ discrete graph of } \mathcal{G} \text{ is } G\}$;

each $\mathcal{G} \in \Gamma_G$ is uniquely determined by $(\ell_e)_{e \in E}$.

Γ_G is a (non-complete) metric space wrt

$$d_{\Gamma_{\mathsf{G}}}(\mathcal{G}, ilde{\mathcal{G}}) := d_{\mathbb{R}^m}\left((\ell_{\mathsf{e}}), (\ell_{ ilde{\mathsf{e}}})
ight)$$
 ;

• denote its completion by $\overline{\Gamma_{G}}$.

Spectral partitions of quantum graphs

Delio Mugnolo

Clustering methods on domains

Partition notions and clusters of metric graphs

Existence results

Examples

Dirichlet partitions

Monotonicity and regularity features

Methods

Convergence of graph partitions

Functionals on spaces of partitions

Further applications

Metrizing spaces of partitions

- For a given k, call two lax partitions \$\mathcal{P}\$, \$\tilde{\mathcal{P}}\$ "color equivalent" if \$\tilde{\mathcal{P}}\$ can be obtained from \$\mathcal{P}\$ by shifting the separation points inside edges' interiors;
- Color equivalence is an equivalence relation on \$\$\mathcal{P}_k\$;
- Two partitions in the same equivalence class are defined by clusters G₁,...,G_k having same underlying discrete graphs G₁,...,G_k.
- Given two lax k-partitions in the same equivalence class, define

$$d_{\mathfrak{P}_k}(\mathcal{P}_1,\mathcal{P}_2):=\sum_{i=1}^{\kappa}d_{\Gamma_{\mathsf{G}_i}}(\mathcal{G}_i,\tilde{\mathcal{G}}_i).$$

Spectral partitions of quantum graphs

Delio Mugnolo

Clustering methods on domains

Partition notions and clusters of metric graphs

Existence results

Examples

Dirichlet partitions

Monotonicity and regularity features

Method

Convergence of graph partitions

Functionals on spaces of partitions

Further applications

Partition Transference principle Heat content partitions

▲□▶ ▲冊▶ ▲ヨ▶ ▲ヨ▶ ― ヨ _ りへで

- \mathfrak{P}_k is a (non-complete) metric space wrt $d_{\mathfrak{P}_k}$;
- the limit of a sequence of partitions in the completion $\overline{\mathfrak{P}_k}$ is an *m*-partition for some $m \leq k$;
- the set of rigid k-partitions is closed in $\overline{\mathfrak{P}_k}$;
- the sets of proper, faithful, or internally connected partitions are not.

Delio Mugnolo

Clustering methods on domains

Partition notions and clusters of metric graphs

Existence results

Examples

Dirichlet partitions

Monotonicity and regularity features

Methods

Convergence of graph partitions

Functionals on spaces of partitions

Further applications

Unfortunately, $\overline{\mathfrak{P}_k}$ or $\overline{\mathfrak{R}_k}$ are NOT compact. And yet:

Theorem

 $J: A \to \mathbb{R}$ attains its minimum at a lax (resp., rigid) m-partition, $m \le k$, if

$$\blacktriangleright \ A \subset \overline{\mathfrak{P}_k} \ (resp., \ A \subset \overline{\mathfrak{R}_k})$$

J is lsc

If additionally

[coercivity-/monotonicity-type techn. assumpt.] then the minimizer is actually a k-partition.

Spectral partitions of quantum graphs

Delio Mugnolo

Clustering methods on domains

Partition notions and clusters of metric graphs

Existence results

Examples

Dirichlet partitions

Monotonicity and regularity features

Method

Convergence of graph partitions

Functionals on spaces of partitions

Further applications

Back to $\Lambda_{k,p}$

Meaning of the "coercivity" conditions: $\Lambda_{k,p}(\mathcal{P}) = +\infty$ if \mathcal{P} is an *m*-partition with m < k.

Indeed, $\Lambda_{k,p}$ satisfies it by Nicaise' inequality

$$\lambda_1(\mathcal{G}) \geq rac{\pi^2}{|\mathcal{G}|^2}$$

(Same for $\Lambda_{k,p}^D$, since $\lambda_1^D(\mathcal{G}) \geq \frac{\pi^2}{4|\mathcal{G}|^2}$)

Spectral partitions of quantum graphs

Delio Mugnolo

Clustering methods on domains

Partition notions and clusters of metric graphs

Existence results

Examples

Dirichlet partitions

Monotonicity and regularity features

Methods

Convergence of graph partitions

Functionals on spaces of partitions

Further applications

Clustering vertices/data

Goal: given a graph G = (V, E), subdivide V in k subsets as homogeneous as possible

nodal

Fiedler, Czech. Math. J. 1975; Davies–Gladwell–Leydold–Stadler, LAA 2001

Cheeger

Dodziuk, TAMS 1984; Alon–Milman, J. Comb. Th. 1985; Bühler–Hein, Proc. ICML 2009;

Lee-Oveis Gharan-Trevisan, JACM 2012

spectral

Osting-White-Oudet, SIAM J. Sci. Comp. 2014

Spectral partitions of quantum graphs

Delio Mugnolo

Clustering methods on domains

Partition notions and clusters of metric graphs

Existence results

Examples

Dirichlet partitions

Monotonicity and regularity features

Methods

Convergence of graph partitions

Functionals on spaces of partitions

Further applications

Partition

A von Below-like inequality

Proposition (Amini–Cohen-Steiner, Comment. Math. Helv. 2018)

$$rac{\lambda_k(\mathsf{G}_\mathcal{P})\;\Theta(\mathcal{P})}{2}\leq\lambda_k(\mathcal{G})$$

where

- $\lambda_k(\mathcal{G})$ k-th eigenvalue of $\Delta_{\mathcal{G}}$;
- λ_k(G_P) k-th eigenvalue of the normalized Laplacian of a proximity graph based on P̂ := P₁ ∪ P₂ (P₁, P₂ any lax partitions of G);

$$\blacktriangleright \Theta(\mathcal{P}) := \min \lambda_1(\mathcal{G}_i)$$

Spectral partitions of quantum graphs

Delio Mugnolo

Clustering methods on domains

Partition notions and clusters of metric graphs

Existence results

Examples

Dirichlet partitions

Monotonicity and regularity features

Methods

Convergence of graph partitions

Functionals on spaces of partitions

Further applications

Partition

Heat content

Given an open domain $\Omega \subset \mathbb{R}^n$:

$$Q_{\Omega}(t) := \int_{\Omega} e^{t\Delta_{D}} \mathbf{1}(x) dx$$
$$= \sum_{j=1}^{\infty} e^{t\lambda_{j}^{\Omega}} \left(\int_{\Omega} \phi_{j}^{\Omega}(x) dx \right)^{2}$$

►
$$Q_{\Omega}(t) = |\Omega| - \frac{2t}{\pi} |\partial(\Omega)| + o(t)$$
 as $t \to 0$
(v.d. Berg-Davies, Math. Z. 1989)

Further terms of the asymptotics depend on the geometry of $\partial \Omega$

(v.d. Berg-Le Gall, Math. Z. 1994, v.d. Berg-Gilkey, JFA 1994)

Spectral partitions of quantum graphs

Delio Mugnolo

Clustering methods on domains

Partition notions and clusters of metric graphs

Existence results

Examples

Dirichlet partitions

Monotonicity and regularity features

Methods

Convergence of graph partitions

Functionals on spaces of partitions

Further applications

Idea: Consider a parametrized version of spectral partitioning by studying

$$\Xi_{k,\infty}(\mathcal{P},t):=\max_{1\leq i\leq k}Q_{\mathcal{G}_i}(t),\quad t\geq 0,$$

for any given
$$\mathcal{P} = (\mathcal{G}_1, \dots, \mathcal{G}_k) \in \mathfrak{P}_k$$
.

Spectral partitions of quantum graphs

Delio Mugnolo

Clustering methods on domains

Partition notions and clusters of metric graphs

Existence results

Examples

Dirichlet partitions

Monotonicity and regularity features

Method

Convergence of graph partitions

Functionals on spaces of partitions

Further applications

Partition Transference principle

Heat content partitions

・ロット 御マ キャント 中国 うろんら

Conference advertisement

On mathematical aspects of interacting systems in low dimension

Hagen, Germany, June 24 to 27, 2019

Organizers:

- Joachim Kerner (joachim.kerner@fernuni-hagen.de)
- Delio Mugnolo (delio.mugnolo@fernuni-hagen.de)
- Wolfgang Spitzer (wolfgang.spitzer@fernuni-hagen.de)

Spectral partitions of quantum graphs

Delio Mugnolo

Clustering methods on domains

Partition notions and clusters of metric graphs

Existence results

Examples

Dirichlet partitions

Monotonicity and regularity features

Method

Convergence of graph partitions

Functionals on spaces of partitions

Further applications

Spectral partitions of quantum graphs

Delio Mugnolo

Clustering methods on domains

Partition notions and clusters of metric graphs

Existence results

Examples

Dirichlet partitions

Monotonicity and regularity features

Method

Convergence of graph partitions

Functionals on spaces of partitions

Further applications

Partition Transference principle Heat content partitions

・ロ・・西・・川・・田・ うへぐ

Thank you for your attention!