On the notion of effective impedance via ordered fields

Anna Muranova IRTG 2235, Bielefeld University, Germany

February 25, 2019 Differential Operators on Graphs and Waveguides TU Graz, Austria

Advisor: Alexander Grigoryan

Definition

Let (V, μ) be a locally finite weighted graph without isolated points (weights are positive/non-negative). Then for any function $f : V \to \mathbb{R}$, the function, defined by

$$\Delta_{\mu}f(x) = \frac{1}{\mu(x)}\sum_{y}(f(y) - f(x))\mu_{xy},$$

is called the *(classical)* Laplace operator on (V, μ) .

• Alexander Grigoryan. Introduction to Analysis on Graphs, 2018.

Fact

The Laplace operator on graphs is related with electric networks with resistors (since resistors have positive resistance) and direct current. The concept of *network* and *effective resistance of the network* is introduced in this case.

- David A. Levin, Yuval Peres, Elizabeth L. Wilmer. *Markov Chains and Mixing Times*. 2009.
- Doyle P.G., Snell J.L. Random walks and electric networks. 1984.

• • = • • = •

Question

What about electric networks with other elements (coils, capacitors, and resistors)? All together they are called *impedances*. Note, that current in this case should be alternating.

- R. P. Feynman. The Feynman lectures on physics, Volume 2: Mainly Electromagnetism and Matter. 1964
- O. Brune. Synthesis of a finite two-terminal network whose driving-point impedance is a prescribed function of frequency. Thesis (Sc. D.). Massachusetts Institute of Technology, Dept. of Electrical Engineering, 1931.

3

Definition

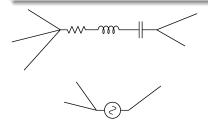
Network is a (finite) connected graph (V, E) where

- to each edge $xy \in E$ the triple of non-negative numbers R_{xy} (resistance), L_{xy} (inductance), and C_{xy} (capacitance) is associated;
- two fixed vertices a_0, a_1 "are connected to a source of alternating current".

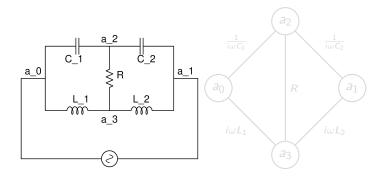
The *impedance* of the edge xy is

$$z_{xy} = R_{xy} + i\omega L_{xy} + \frac{1}{i\omega C_{xy}},$$

where ω is the frequency of the current.



Example

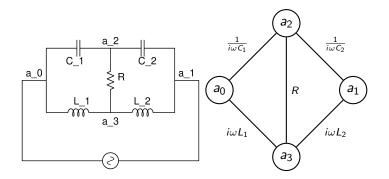


< 🗇 >

★ E ► ★ E ►

Ξ.

Example



医下尿 医下

< (T) >

æ -

By Ohm's complex law and Kirchhoff's complex law, the voltage v(x) as a function on V satisfies the following *Dirichlet problem*:

$$\begin{cases} \Delta_{\rho} v(x) := \sum_{y:y \sim x} (v(x) - v(y)) \rho_{xy} = 0 \text{ on } V \setminus \{a_0, a_1\}, \\ v(a_0) = 0, v(a_1) = 1, \end{cases}$$
(1)

where $\rho_{xy} = \frac{1}{z_{xy}}$ is the *admittance* of the edge *xy*. ρ_{xy} is hence a *complex-valued weight* of *xy*. Operator Δ_{ρ} is called the *Laplace operator*.

Note, that if |V| = n, then (1) is a $n \times n$ system of linear equations.

Definition

Effective impedance of the network is

$$Z_{eff} = rac{1}{\sum_{x:x\sim a_0} v(x)
ho_{xa_0}} = rac{1}{\mathcal{P}_{eff}},$$

where v(x) is a solution of the Dirichlet problem. \mathcal{P}_{eff} is called effective admittance and it is equal to the current through a_0 due to the unit voltage on the source.

By Ohm's complex law and Kirchhoff's complex law, the voltage v(x) as a function on V satisfies the following *Dirichlet problem*:

$$\begin{cases} \Delta_{\rho} v(x) := \sum_{y:y \sim x} (v(x) - v(y)) \rho_{xy} = 0 \text{ on } V \setminus \{a_0, a_1\}, \\ v(a_0) = 0, v(a_1) = 1, \end{cases}$$
(1)

where $\rho_{xy} = \frac{1}{z_{xy}}$ is the *admittance* of the edge *xy*. ρ_{xy} is hence a *complex-valued weight* of *xy*. Operator Δ_{ρ} is called the *Laplace operator*.

Note, that if |V| = n, then (1) is a $n \times n$ system of linear equations.

Definition

Effective impedance of the network is

$$Z_{eff} = \frac{1}{\sum_{x:x \sim a_0} v(x) \rho_{xa_0}} = \frac{1}{\mathcal{P}_{eff}},$$

where v(x) is a solution of the Dirichlet problem. \mathcal{P}_{eff} is called effective admittance and it is equal to the current through a_0 due to the unit voltage on the source.

By Ohm's complex law and Kirchhoff's complex law, the voltage v(x) as a function on V satisfies the following *Dirichlet problem*:

$$\begin{cases} \Delta_{\rho} v(x) := \sum_{y:y \sim x} (v(x) - v(y)) \rho_{xy} = 0 \text{ on } V \setminus \{a_0, a_1\}, \\ v(a_0) = 0, v(a_1) = 1, \end{cases}$$
(1)

where $\rho_{xy} = \frac{1}{z_{xy}}$ is the *admittance* of the edge *xy*. ρ_{xy} is hence a *complex-valued weight* of *xy*. Operator Δ_{ρ} is called the *Laplace operator*.

Note, that if |V| = n, then (1) is a $n \times n$ system of linear equations.

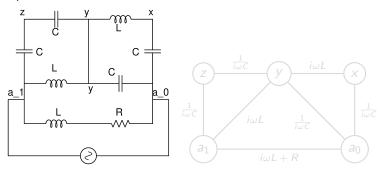
Definition

Effective impedance of the network is

$$Z_{\mathrm{eff}} = rac{1}{\sum_{x:x\sim a_0} v(x)
ho_{xa_0}} = rac{1}{\mathcal{P}_{\mathrm{eff}}},$$

where v(x) is a solution of the Dirichlet problem. \mathcal{P}_{eff} is called effective admittance and it is equal to the current through a_0 due to the unit voltage on the source.

There are easy examples, when the Dirichlet problem has no solution or has multiple solutions



• In the case $\omega = \sqrt{\frac{2}{LC}}$ the Dirichlet problem has infinitely many solutions $(v(x), v(y), v(z)) = (-2\tau + 1, 2\tau - 1, \tau);$

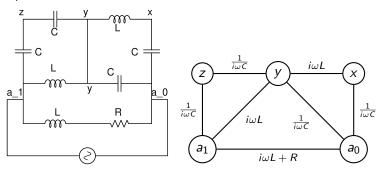
• In the case $\omega = \sqrt{\frac{1}{3LC}}$ the Dirichlet problem has no solutions.

Question

How to define $\mathcal{P}_{e\!f\!f}$ in this cases?

つへぐ

There are easy examples, when the Dirichlet problem has no solution or has multiple solutions



• In the case $\omega = \sqrt{\frac{2}{LC}}$ the Dirichlet problem has infinitely many solutions $(v(x), v(y), v(z)) = (-2\tau + 1, 2\tau - 1, \tau);$

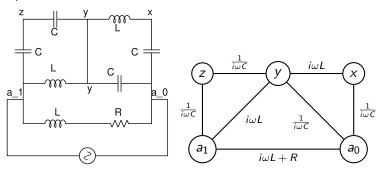
• In the case $\omega = \sqrt{\frac{1}{3LC}}$ the Dirichlet problem has no solutions.

Question

How to define \mathcal{P}_{eff} in this cases?

つくぐ

There are easy examples, when the Dirichlet problem has no solution or has multiple solutions



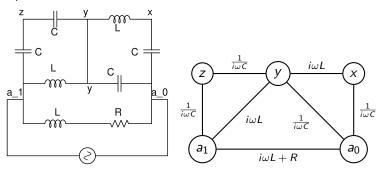
• In the case $\omega = \sqrt{\frac{2}{LC}}$ the Dirichlet problem has infinitely many solutions $(v(x), v(y), v(z)) = (-2\tau + 1, 2\tau - 1, \tau);$

• In the case $\omega = \sqrt{\frac{1}{3LC}}$ the Dirichlet problem has no solutions.

Question

How to define \mathcal{P}_{eff} in this cases?

There are easy examples, when the Dirichlet problem has no solution or has multiple solutions



• In the case $\omega = \sqrt{\frac{2}{LC}}$ the Dirichlet problem has infinitely many solutions $(v(x), v(y), v(z)) = (-2\tau + 1, 2\tau - 1, \tau);$

• In the case $\omega = \sqrt{\frac{1}{3LC}}$ the Dirichlet problem has no solutions.

Question

How to define \mathcal{P}_{eff} in this cases?

Theorem 1

In the case of existence of multiple solutions of the Dirichlet problem (1) the value of $\mathcal{P}_{e\!f\!f}$ does not depend on the choice of solution.

Proof.

If one writes the Dirichlet problem (1) in the form

$$\left\{ egin{aligned} A\hat{v} &= b, \ v(a_0) &= 0, v(a_1) = 1, \end{aligned}
ight.$$

where A is a symmetric $(n-2) \times (n-2)$ matrix, then $\mathcal{P}_{eff} = (Ae - b)^T \hat{v} + \rho_{a_1a_0}$. And for any two solutions \hat{v}_1, \hat{v}_2 , we have:

$$(Ae - b)^{T} \hat{v}_{1} = e^{T} A^{T} \hat{v}_{1} - b^{T} \hat{v}_{1} = e^{T} A \hat{v}_{1} - (A \hat{v}_{2})^{T} \hat{v}_{1} = e^{T} b - \hat{v}_{2}^{T} A^{T} \hat{v}_{1} = e^{T} A \hat{v}_{2} - \hat{v}_{2}^{T} A \hat{v}_{1} = e^{T} A \hat{v}_{2} - \hat{v}_{2}^{T} A \hat{v}_{2} = e^{T} A^{T} \hat{v}_{2} - \hat{v}_{2}^{T} A^{T} \hat{v}_{2} = e^{T} A^{T} \hat{v}_{2} - (A \hat{v}_{2})^{T} \hat{v}_{2} = e^{T} A^{T} \hat{v}_{2} - b^{T} \hat{v}_{2} = (Ae - b)^{T} \hat{v}_{2}.$$

In the case of lack of solution we set by definition $\mathcal{P}_{\textit{eff}}=+\infty$.

Conservation of the complex power

Note that for

$$z_{xy} = R_{xy} + i\omega L_{xy} + \frac{1}{i\omega C}$$

we have Re $z_{xy} \geq 0$. Also, Re $\rho_{xy} \geq 0$. By physical meaning, Re Z_{eff} and Re \mathcal{P}_{eff} should be non-negative.

Theorem 2

$$\mathcal{P}_{eff} = \frac{1}{2} \sum_{x \sim y} |v(x) - v(y)|^2 \rho_{xy}.$$

Key point of the proof (Green's formula)

For any two functions f, g on V

$$\sum_{x \in V} \Delta_z f(x) \overline{g(x)} = \frac{1}{2} \sum_{x, y \in V} (\nabla_{xy} f) \overline{(\nabla_{xy} g)} \rho_{xy}, \tag{2}$$

where g(x) is a complex conjugation of g(x).

Corollary

Conservation of the complex power

Note that for

$$z_{xy} = R_{xy} + i\omega L_{xy} + \frac{1}{i\omega C}$$

we have Re $z_{xy} \ge 0$. Also, Re $\rho_{xy} \ge 0$. By physical meaning, Re Z_{eff} and Re \mathcal{P}_{eff} should be non-negative.

Theorem 2

$$\mathcal{P}_{eff} = rac{1}{2} \sum_{x \sim y} |v(x) - v(y)|^2
ho_{xy}.$$

Key point of the proof (Green's formula)

For any two functions f, g on V

$$\sum_{x \in V} \Delta_z f(x) \overline{g(x)} = \frac{1}{2} \sum_{x, y \in V} (\nabla_{xy} f) \overline{(\nabla_{xy} g)} \rho_{xy}, \qquad (2)$$

where $\overline{g(x)}$ is a complex conjugation of g(x).

Corollary

Conservation of the complex power

Note that for

$$z_{xy} = R_{xy} + i\omega L_{xy} + \frac{1}{i\omega C}$$

we have Re $z_{xy} \ge 0$. Also, Re $\rho_{xy} \ge 0$. By physical meaning, Re Z_{eff} and Re \mathcal{P}_{eff} should be non-negative.

Theorem 2

$$\mathcal{P}_{eff} = rac{1}{2} \sum_{x \sim y} |v(x) - v(y)|^2
ho_{xy}.$$

Key point of the proof (Green's formula)

For any two functions f, g on V

$$\sum_{x \in V} \Delta_z f(x) \overline{g(x)} = \frac{1}{2} \sum_{x, y \in V} (\nabla_{xy} f) \overline{(\nabla_{xy} g)} \rho_{xy}, \qquad (2)$$

where $\overline{g(x)}$ is a complex conjugation of g(x).

Corollary

$${\sf Re}\, {\cal P}_{eff} \geq 0.$$

Note that all ρ_{xy} depend on ω . Therefore one can consider $\mathcal{P}_{eff}(\omega)$ as function on frequency.

Conjecture

```
\mathcal{P}_{eff}(\omega) depends continuously on \omega \geq 0.
```

Difficulty is in the case when solution of the Dirichlet problem does not exist or is not unique.

Questions:

- is it possible that the solution of the Dirichlet problem (1) $v(\omega)$ has no limit, when $\omega \to \omega_0$, but the Dirichlet problem (1) for $\omega = \omega_0$ still has (multiple) solutions?
- is it possible that the solution of the Dirichlet problem (1) $v(\omega)$ has no limit, but \mathcal{P}_{eff} has limit when $\omega \to \omega_0$?

3

In domain, where the solution of the Dirichlet problem is unique, $\mathcal{P}_{eff}(\omega)$ is a rational function of ω .

Alternative approach to definition of $\mathcal{P}_{eff}(\omega)$

We put $\lambda = i\omega$ and consider ρ_{xy} as a rational function of λ

$$\rho_{xy} = \frac{i\omega}{L_{xy}(i\omega)^2 + R_{xy}i\omega + \frac{1}{C_{xy}}} = \frac{\lambda}{L_{xy}\lambda^2 + R_{xy}\lambda + \frac{1}{C_{xy}}}$$

with real coefficients.

ъ.

Let us denote by $\mathbb{R}(\lambda)$ the set of all rational functions on λ with real coefficients.

Definition

 $\mathbb{R}(\lambda)$ is an ordered field, where the **total order** \succ is defined as follows:

$$f(\lambda) = \frac{a_n \lambda^n + \dots + a_1 \lambda + a_0}{b_m \lambda^m + \dots + b_1 \lambda + b_0} \succ 0, \text{ if } \frac{a_n}{b_m} \succ 0$$

and

$$f(\lambda) \succ g(\lambda)$$
, if $f(\lambda) - g(\lambda) \succ 0$.

We will write

$$f(\lambda) \succeq g(\lambda)$$
, if $f(\lambda) - g(\lambda) \succ 0$ or $f(\lambda) = g(\lambda)$.

The ordered field $\mathbb{R}(\lambda)$ is non-Archimidean: $\lambda \succ n$ for any $n = \underbrace{1 + \cdots + 1}_{n \to \infty}$.

通 と く ヨ と く ヨ と

2

Let us denote by $\mathbb{R}(\lambda)$ the set of all rational functions on λ with real coefficients.

Definition

 $\mathbb{R}(\lambda)$ is an ordered field, where the **total order** \succ is defined as follows:

$$f(\lambda) = \frac{a_n \lambda^n + \dots + a_1 \lambda + a_0}{b_m \lambda^m + \dots + b_1 \lambda + b_0} \succ 0, \text{ if } \frac{a_n}{b_m} \succ 0$$

and

$$f(\lambda) \succ g(\lambda)$$
, if $f(\lambda) - g(\lambda) \succ 0$.

We will write

$$f(\lambda) \succeq g(\lambda)$$
, if $f(\lambda) - g(\lambda) \succ 0$ or $f(\lambda) = g(\lambda)$.

The ordered field $\mathbb{R}(\lambda)$ is non-Archimidean: $\lambda \succ n$ for any $n = \underbrace{1 + \cdots + 1}_{n}$.

通 と く ヨ と く ヨ と

= 990

Consider now a graph (V, E) with edge weights $\rho \succ 0$, $\rho \in K$, where K is an ordered field (for example, $K = \mathbb{R}(\lambda)$).

Dirichlet problem

$$\begin{cases} \Delta_{\rho} v(x) := \sum_{y:y \sim x} (v(x) - v(y)) \rho_{xy} = 0 \text{ on } V \setminus \{a_0, a_1\}, \\ v(a_0) = 0 \in K, v(a_1) = 1 \in K. \end{cases}$$

Theorem 3

The Dirichlet problem has always a unique solution v over the ordered field K and $0 \leq v(x) \leq 1$ for any $x \in V$. Consequently, the effective admittance

$$\mathcal{P}_{eff} = \sum_{x:x\sim a_0} v(x) \rho_{xa_0}$$

is always well-defined, and $\mathcal{P}_{eff} \succeq 0$.

In particular, in case $K = \mathbb{R}(\lambda)$ this gives unique effective admittance $\mathcal{P}_{eff}(\lambda)$ for any electrical network as rational function of $\lambda = i\omega$.

化压力 化压力

э

Consider now a graph (V, E) with edge weights $\rho \succ 0$, $\rho \in K$, where K is an ordered field (for example, $K = \mathbb{R}(\lambda)$).

Dirichlet problem

$$\begin{cases} \Delta_{\rho} v(x) := \sum_{y:y \sim x} (v(x) - v(y)) \rho_{xy} = 0 \text{ on } V \setminus \{a_0, a_1\}, \\ v(a_0) = 0 \in K, v(a_1) = 1 \in K. \end{cases}$$

Theorem 3

The Dirichlet problem has always a unique solution v over the ordered field K and $0 \leq v(x) \leq 1$ for any $x \in V$. Consequently, the effective admittance

$$\mathcal{P}_{eff} = \sum_{x:x\sim a_0} v(x) \rho_{xa_0}$$

is always well-defined, and $\mathcal{P}_{eff} \succeq 0$.

In particular, in case $K = \mathbb{R}(\lambda)$ this gives unique effective admittance $\mathcal{P}_{eff}(\lambda)$ for any electrical network as rational function of $\lambda = i\omega$.

э

A maximum/minimum principle

Let Ω be a non-empty subset of V. Then, for any function $v : V \to K$, that satisfies $\Delta_{\rho}v(x) = 0$ on $V \setminus \Omega$, we have

 $\max_{V \setminus \Omega} v \preceq \max_{\Omega} v \text{ and } \min_{V \setminus \Omega} v \succeq q \min_{\Omega} v.$

A maximum/minimum principle holds for the Dirichlet problem over an ordered field and gives a uniqueness of the solution. This implies existence due to the general theory of finite dimensional linear operators.

3

Theorem 4

Let v be a solution (over a field K) of the Dirichlet problem for finite network, whose weights are positive elements from ordered field K. Then for any other function $f: V \to K$ such that $f(a_0) = 0$, $f(a_1) = 1$, the following inequality holds:

$$\sum_{xy\in E} (v(x)-v(y))^2 \rho_{xy} \preceq \sum_{xy\in E} (f(x)-f(y))^2 \rho_{xy}.$$

Moreover,

$$\mathcal{P}_{eff} = \frac{1}{2} \sum_{x \sim y} (v(x) - v(y))^2 \rho_{xy}.$$

Sketch of the proof

Write f as f = g + v and use Green's formula for graphs over an ordered field:

$$\sum_{x\in V} \Delta_{\rho} f(x) g(x) = \frac{1}{2} \sum_{x,y\in V} (\nabla_{xy} f) (\nabla_{xy} g) \rho_{xy},$$

which looks exactly like classical Green's formula for weighted graphs.

Statement

If the determinant of the Dirichlet problem (1) is not zero for some ω_0 , then $\mathcal{P}_{eff} = \mathcal{P}_{eff}(i\omega_0)$. In the last expression the l.h.s. is calculated, using the (unique) solution of complex Dirichlet problem for the case $\omega = \omega_0$, and r.h.s. is calculated, using theory of ordered field.

Conjecture

 $\mathcal{P}_{eff} = \mathcal{P}_{eff}(i\omega_0)$ for any positive ω_0 .

Thank you!

イロト イヨト イヨト イヨト

₹...