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Definition

Let (sn)n be a sequence with s0 = 1 and sn ∈ N, n ≥ 1. The antitree for
(sn)n is the (discrete) graph Ad = (V, E) obtained as follows:

For every n ∈ N...
1 Put sn new vertices. Denote this vertex set by Sn.
2 Then connect every vertex in Sn with every vertex in Sn−1.

Ex.: sn := n + 1

S0

S1

S2

S3

If every edge e ∈ E is assigned a finite edge length 0 < |e| <∞, then
A = (V, E , | · |) is called a metric antitree.

⇒ Quantum Graphs H (= Laplacians) on metric antitrees
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Motivation: QG’s on different graph types?

Finite graphs: (= finitely many edges)
σ(H) is purely discrete and the eigenvalues satisfy Weyl’s law.

Infinite periodic graphs:
σ(H) “usually” has band-gap structure (=union of closed intervals).
(Berkolaiko&Kuchment, “Introduction to Quantum Graphs”, 2013)

Infinite (symmetric) Trees: Trees can be well analyzed. But:
Their structure excludes (some) interesting phenomena!
(e.g. Solomyak 90’s; Breuer&Frank 08; Exner,Seifert&Stollmann 14)

Goal:

A model that can be fully analyzed - but still with “rich behavior”?

Random walks on antitrees have diverse behavior!
(Counter-examples to “Grigoryan’s completeness theorem for graphs”;
Wojchiechowski 2011)
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The Kirchhoff Laplacian H

Let A be a metric antitree and L2(A) =
⊕

e∈E L
2(0, |e|) its L2-space.

Then consider the maximal operator Hmax :=
⊕

e∈E He , where

He = −d2/dx2e , dom(He) = H2((0, |e|)).

Kirchhoff conditions: For every vertex v :

{
f is continuous at v∑

e edges at v f
′
e (v) = 0,

}

Definition:

Define the pre-minimal Laplacian as H0 := Hmax � dom(H0) with domain

dom(H0) = {f ∈ dom(Hmax)|f ∈ L2comp(A), f satisfies KH conditions}.

Define the Kirchhoff Laplacian H by taking closure, H := H0.
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Idea: Antitrees are highly symmetrical ⇒ “dimension reduction”

Additional assumption:

The antitree A is radially symmetric, i.e. for each n ≥ 0, edges
connecting the vertex sets Sn and Sn+1 have the same length, say `n > 0.

Theorem (Kostenko–N.):

The “symmetric part” Hsym of H is equivalent to the Sturm-Liouville
operator defined on L2([0,L);µ) by (here, tn :=

∑
j<n `j , L =

∑
n `n)

τ f := − 1

µ(x)

d

dx
µ(x)

d

dx
f , µ(x) =

∑
n≥0

snsn+11[tn,tn+1)(x),

and Neumann BC (f ′(0) = 0) at x = 0. Also, H decomposes as

H = Hsym ⊕
⊕
n≥1

hn,

where hn, n ≥ 1 are equivalent to regular, s.a. Sturm-Liouville operators.
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Self-adjointness problem

Basic Questions:

Is H self-adjoint? (For infinite graphs, H is not always self-adjoint! )

If not, what are the deficiency indices n±(H) := dim ker(H∗ ± i)?

... and how do the self-adjoint extensions look like?

Theorem (Kostenko–N.):

Let A be a r.s. AT of volume vol(A) :=
∑

e∈E |e| =
∑

n snsn+1`n. Then

H is self-adjoint ⇐⇒ vol(A) =∞.

Moreover, if H is not self-adjoint, then n±(H) = 1.

The symmetry assumption is crucial. We can construct non-symmetric,
finite volume antitress with n±(H) = +∞!
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The Finite Volume Case (= H is not self-adjoint)

Theorem (Kostenko–N.):

(i) Self-adjoint extensions form a one-parameter family Hθ, θ ∈ [0, π)
given by boundary conditions at “infinity”

cos(θ)f (∞) = sin(θ)f ′(∞), θ ∈ [0, π), (0.1)

where f (∞) := lim|x |→L f (x) and f ′(∞) := limr→L
∑
|x |=r f

′(x).

(ii) The spectrum of Hθ is purely discrete for all θ and eigenvalues satisfy
Weyl’s law

N(λ; Hθ) =
vol(A)

π

√
λ(1 + o(1)), λ→ +∞.

Here, N(λ; Hθ) = #(eigenvalues ≤ λ) is the ev. counting function.
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The Infinite Volume Case (= H is s.a.): Basic properties

Theorem (Kostenko–N.):

(i) The spectrum of H is purely discrete if and only if

lim
n→∞

∑
k≤n

sksk+1`k
∑
k≥n

`k
sksk+1

= 0.

(ii) H−1 is trace class (i.e.,
∑

λ∈σ(H) |λ|−1 <∞) if and only if

∑
n≥1

snsn+1`
2
n <∞ and

∑
n≥0

`n
snsn+1

n−1∑
k=0

sksk+1`k <∞.

Idea: Apply results from spectral theory of Krein strings!

Similarly: characterization of invertibility, spectral gap estimates,...

I. S. Kac & M. G. Krein, Criteria for the discreteness of the spectrum of a
singular string, Izv. VUZov, Matematika, no. 2 (3), 136–153 (1958).

I. S. Kac & M. G. Krein, On the spectral functions of the string, AMS, 1974.
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The Infinite Volume Case (= H is s.a.): Spectral Types

σ(H) = σac(H) ∪ σpp(H) ∪ σsc(H)

Recall the decomposition: H = Hsym ⊕
⊕

n≥1 hn

AT’s have “large point spectrum”: {k2π2/`2n; k , n ∈ N} ⊆ σpp(H)

... however, “typically” no absolutely continuous spectrum!

Theorem (Kostenko–N.):

Suppose the sets {`n}n≥0 and { sn+2

sn
}n≥0 are finite and lim infn≥0

sn+2

sn
> 1.

Then: σac(H) 6= ∅ if and only if {(`n, sn+2

sn
)}n≥0 is eventually periodic.

C. Remling, The absolutely continuous spectrum of Jacobi matrices, Ann.
Math. 174, no. 1, 125–171 (2011).
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AT’s have “large point spectrum”: {k2π2/`2n; k , n ∈ N} ⊆ σpp(H)

... however, “typically” no absolutely continuous spectrum!

Theorem (Kostenko–N.):

Assume that infn `n > 0. If

sup
n
`n =∞ and lim inf

n≥0
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sn
> 1,

then σ(H) = R≥0 and σac(H) = ∅.
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The Infinite Volume Case (= H is s.a.): Spectral Types II

But, for some antitrees σac(H) is very large!

Theorem (Kostenko–N.):∑
n≥0

(sn+2

sn
− 1
)2

<∞ and inf
n≥0

`n > 0 =⇒ σac(H) = R≥0.

Example: Take sn = n + 1:

sn+2

sn
− 1 =

n + 3

n + 1
− 1 =

2

n + 1

Trace class arguments do not apply!
In some sense, the condition means Hilbert–Schmidt perturbation!

Idea: Use “Szegö’s theorem” for Krein strings

Bessonov&Denisov, A spectral Szegő theorem on the real line, preprint,
arXiv:1711.05671 (2017).
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Idea: Use “Szegö’s theorem” for Krein strings
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Bessonov&Denisov, A spectral Szegő theorem on the real line, preprint,
arXiv:1711.05671 (2017).

Noema Nicolussi 26 February 2019 11 / 12

http://arxiv.org/abs/1711.05671


The Infinite Volume Case (= H is s.a.): Spectral Types II

But, for some antitrees σac(H) is very large!

Theorem (Kostenko–N.):∑
n≥0

(sn+2

sn
− 1
)2

<∞ and inf
n≥0

`n > 0 =⇒ σac(H) = R≥0.

Example: Take sn = n + 1:

sn+2

sn
− 1 =

n + 3

n + 1
− 1 =

2

n + 1

Trace class arguments do not apply!
In some sense, the condition means Hilbert–Schmidt perturbation!
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Bessonov&Denisov, A spectral Szegő theorem on the real line, preprint,
arXiv:1711.05671 (2017).

Noema Nicolussi 26 February 2019 11 / 12

http://arxiv.org/abs/1711.05671


The Infinite Volume Case (= H is s.a.): Spectral Types II

But, for some antitrees σac(H) is very large!

Theorem (Kostenko–N.):∑
n≥0

(sn+2

sn
− 1
)2

<∞ and inf
n≥0

`n > 0 =⇒ σac(H) = R≥0.

Example: Take sn = n + 1:

sn+2

sn
− 1 =

n + 3

n + 1
− 1 =

2

n + 1

Trace class arguments do not apply!
In some sense, the condition means Hilbert–Schmidt perturbation!

Idea: Use “Szegö’s theorem” for Krein strings

Bessonov&Denisov, A spectral Szegő theorem on the real line, preprint,
arXiv:1711.05671 (2017).
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Example: Polynomial antitrees

Let q ∈ N and s > 0. Consider the polynomial antitree Aq,s given by

sn = (n + 1)q, `n = (n + 1)−s .

Theorem (Kostenko–N.):

Let H be the Kirchhoff-Laplacian on Aq,s . Then

H is self-adjoint ⇐⇒ s ≤ 2q + 1.

Assume further that H is self-adjoint (s ≤ 2q + 1). Then:

If s < 1, then σac(H) = R≥0.

H is invertible if and only if s ≥ 1.

The spectrum σ(H) is purely discrete if and only if s > 1.

H−1 is trace class if and only if s > q + 1
2 .

Thank you for your attention!

A. Kostenko and N. Nicolussi, Quantum Graphs on Radially Symmetric
Antitrees, submitted, arXiv:1901.05404 (2019).
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