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The combinatorial setting

Let G = (V, E) be a finite, simple and connected graph with vertex set
V = V(E) and edge set E = E(G).
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E, = {e € E | eis incident to v}.

Let m: V — (0,00) denote a positive weight function on the vertex set,
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The combinatorial setting

Let G = (V, E) be a finite, simple and connected graph with vertex set
V = V(E) and edge set E = E(G). We shall write u ~ v if u,v € V are
adjacent. Let

E, = {e € E | eis incident to v}.

Let m: V — (0,00) denote a positive weight function on the vertex set,
let
m(U) := Y m(u) for UC V.
uel
Consider the space /2,(V;C9) of functions f : V — C9 equipped with the
norm

AR ycoy = S m(u)|F(u)P.

vev
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The combinatorial setting

Let 4 : E — (0,00) be a positive edge weight. The (weighted) degree of a
vertex v € V with respect to p is

dlf = > pe), Ghnax = max d (1)
eGEv
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The combinatorial setting

Let 4 : E — (0,00) be a positive edge weight. The (weighted) degree of a
vertex v € V with respect to p is

dj =) ule), Opnax = max df (1)
eEEv

On /2,(V) we consider the (weighted) combinatorial Laplacian £,

CAW) = —— S we)(F(u) — F(v)), ue V

e={u,v}€E,

m(u)
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The combinatorial setting

Let 4 : E — (0,00) be a positive edge weight. The (weighted) degree of a

vertex v € V with respect to p is

db — db = max dt
2 e%;u(e), hrax = max dy

On /2,(V) we consider the (weighted) combinatorial Laplacian £,

CAW) = —— S we)(F(u) — F(v)), ue V

m(u) e={u,v}€E,

and its associated quadratic form g given by

af)= > wle)lf(u) - (V)P

e={u,v}€E
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The spectral gap of the combinatorial Laplacian

Lemma
The first positive eigenvalue of L is given by

M(L) = inf #,
fe2(V)\{0},
eljﬁm%Xf } 2(V)

where
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The spectral gap of the combinatorial Laplacian

Lemma
The first positive eigenvalue of L is given by

q(f)

e
ref Vi 1711 vicr

M(L) =

where
flmly e Y m(v)f(v)=0.
veVv
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The metric setting

Consider a metric graph
g =(G,1),
where

e G = (V,E)is a (combinatorial) connected, simple and finite graph
and

o /: E— (0,00),e+> I is a weight function on the edge set.
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The metric setting

Consider a metric graph
g =(G,1),
where

e G = (V,E)is a (combinatorial) connected, simple and finite graph
and

o /: E— (0,00),e+> I is a weight function on the edge set.
We introduce the following quantities:

@ the total length L = ZeEE le,

o the (weighted) degree d) = > .z I for ve V.
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The metric setting

On the hilbert space

G; CY) = P L2(0.1e: ), |Ifl[f2(g.coy = D IFellfaqo 00y

ecE ecE
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The metric setting

On the hilbert space

G;CY) = P L2(0,1: C), [||Ragicoy = D el Bagoicoy-

ecE ecE

we consider the Kirchhoff-Laplacian —A given by

(—Af)e = ———fe, for f € P H*(0, Ie)

ecE

d?
dx 2

such that

{f is continuous in v

forall v e V.
dvevfe(v) =0 }
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Comparing the spectral gaps

Lemma
We choose the weights

1
m(v) = d, = Z le u(e) = T
ecE, €

then the first positive positive eigenvalues of the respective Laplacians
satisfy the estimate

A(—A) <6 (L).
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Comparing the spectral gaps

Lemma
We choose the weights

1
m(v) = d, = Z le u(e) = T
ecE, €

then the first positive positive eigenvalues of the respective Laplacians
satisfy the estimate

A(—A) <6 (L).

Proof

Consider edgewise affine functions and compare the Rayleigh quotients.
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What is known in the manifold case?

Theorem (Hassannezhad '11)

Given a closed, oriented Riemannian manifold M of genus g > 0 we have

gtk

A(=Awm) = CVoI(I\/I)'

Previous results: Hersch '70, Yang, Yau 80, Korevaar '93
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What is known in the (classical) combinatorial case?

(LO(u) =D (Flu)—f(v), ue V. (m=1,p=1)

v~u
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(LO(u) =D (Flu)—f(v), ue V. (m=1,p=1)

v~u

Theorem (Spielman, Teng '07)

Ai(L) < C(T"\?r, if G is planar.
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What is known in the (classical) combinatorial case?

(LO(u) =D (Flu)—f(v), ue V. (m=1,p=1)

v~u

Theorem (Spielman, Teng '07)

Ai(L) < C(TT;]X, if G is planar.

Theorem (Kelner '06)

A1(L) < pOIy(dmax)li\/’, if G is of genus g > 0

Theorem (Amini, Cohen-Steiner '18)

d2.. (g + k)

(L)< C max|v| if G is of genus g > 0
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Circle-Packings for Planar Graphs in the plane

The proof of Spielman and Teng used the following representation of planar
graphs.

Theorem (Koebe '36, Andreev '70, Thurston '78)

A graph G = (V, E) is planar, iff there exists a family of closed disks
(Dy)yev in the plane, such that the following holds for any two vertices

vV # u:

@ Ifv and u are adjacent, the two disks D, und D, intersect at exactly
one point.

e If v and u are not adjacent, the two disks D,, and D, are disjoint.

In the above case (D,),cv is called a circle-packing for G in R2.
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Example of a circle-packing
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Caps on the unit sphere S?

We shall transfer the concept of circle packings to the unit sphere.

o A subset k C S? is called a circular line, if k is a non-trivial
intersection of the sphere S? and a hyperplane H in R3.
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Caps on the unit sphere S?

We shall transfer the concept of circle packings to the unit sphere.
o A subset k C S? is called a circular line, if k is a non-trivial
intersection of the sphere S? and a hyperplane H in R3.

@ A connected, closed subset C C S? is called (spherical) cap, if its
boundary is a circular line.

@ There is exactly one point p(C) € C of equal euclidian distance r(C)
to any point on the boundary of C. We call p(C) the center and r(C)
the radius of C.
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Caps on the unit sphere S?

We shall transfer the concept of circle packings to the unit sphere.

o A subset k C S? is called a circular line, if k is a non-trivial
intersection of the sphere S? and a hyperplane H in R3.

@ A connected, closed subset C C S? is called (spherical) cap, if its
boundary is a circular line.

@ There is exactly one point p(C) € C of equal euclidian distance r(C)
to any point on the boundary of C. We call p(C) the center and r(C)
the radius of C.

2

@ The surface area of Cis w- r(C)~.
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Caps on the unit sphere S?

We shall transfer the concept of circle packings to the unit sphere.

o A subset k C S? is called a circular line, if k is a non-trivial
intersection of the sphere S? and a hyperplane H in R3.

@ A connected, closed subset C C S? is called (spherical) cap, if its
boundary is a circular line.

@ There is exactly one point p(C) € C of equal euclidian distance r(C)
to any point on the boundary of C. We call p(C) the center and r(C)
the radius of C.

2

@ The surface area of Cis w- r(C)~.

Fact

The stereographic projection R? — S2 maps disks in R? to caps in S? and
vice versa.
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Circle-Packings for Planar Graphs in the plane

Theorem (Koebe '36, Andreev '70, Thurston '78)

A graph G = (V, E) is planar, iff there exists a family of closed disks
(Dy)yvev, such that the following holds for any two vertices v # u:

@ /fv and u are adjacent, the two disks D,, und D, intersect at exactly
one point.

@ /f v and u are not adjacent, the two disks D,, and D, are disjoint.

In the above case (D,),cy is called a circle-packing for G in R2.
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Circle-Packings for Planar Graphs intheplane

Theorem (Koebe '36, Andreev '70, Thurston '78)
A graph G = (V, E) is planar, iff there exists a family of elosed-disks
B )vev, such that the following holds for any two vertices v # u:

@ /fv and u are adjacent, the two disks-Dy—und-Dy intersect at exactly
one point.

@ /fv and u are not adjacent, the two disks-D—und-Dy; are disjoint.
In the above case {Dy )y is called a circle-packing for G nRZ2.
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Circle-Packings for Planar Graphs in the sphere

Theorem (Koebe '36, Andreev '70, Thurston '78)
A graph G = (V, E) is planar, iff there exists a family of spherical caps
(Cy)vev, such that the following holds for any two vertices v # u:

@ /fv and u are adjacent, the two caps C, und C, intersect at exactly
one point.

@ I/f v and u are not adjacent, the two caps C, and C, are disjoint.

In the above case (C,),cv is called a circle-packing for G in S°.
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A first eigenvalue bound for the combinatorial Laplacian

Lemma
Assume G is planar and there is a circle-packing (C,),ev for G, such that

Z m(v)p(C,) =0,

vev

then

dfna
< X
M(L) <8

holds.
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Proof of the Lemma

Idea

Use a circle-packing (C,),cv representing the planar graph G to obtain a
test function f in the vector-valued variational formulation.
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Proof of the Lemma

Idea

Use a circle-packing (C,),cv representing the planar graph G to obtain a
test function f in the vector-valued variational formulation.

o Let p, =p(C)) and r, = r(C,) for v € V.
e We consider f € /2(V;C3) given by f(v) = p, for v € V.
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Proof of the Lemma

Idea

Use a circle-packing (C,),cv representing the planar graph G to obtain a
test function f in the vector-valued variational formulation.

o Let p, =p(C)) and r, = r(C,) for v € V.
e We consider f € /2(V;C3) given by f(v) = p, for v € V.
Then

11 viczy = Y m(v)lpul?

veVv
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Proof of the Lemma

Idea

Use a circle-packing (C,),cv representing the planar graph G to obtain a
test function f in the vector-valued variational formulation.

o Let p, =p(C)) and r, = r(C,) for v € V.
e We consider f € /2(V;C3) given by f(v) = p, for v € V.
Then

||f||i2n(v;<c3) = Z m(v)|pv|* = m(V).

veVv
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Proof of the Lemma

Moreover

af)= > ue)lpu—pl

e={u,v}€E
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Proof of the Lemma

Moreover

af)= > ue)lpu—pl

e={u,v}€E
<2 > e +r)
e={u,v}€E
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Proof of the Lemma

Moreover

af)= > ue)lpu—pl

e={u,v}€E

<2 Y e+ r)
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Proof of the Lemma

Moreover

af)= > ue)lpu—pl

e={u,v}€E

<2 Y e+ r)
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Proof of the Lemma

Using these two estimates we obtain

a(f) g b

1fllevicsy — m(V)
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Proof of the Lemma

Using these two estimates we obtain

o
q(f) <8 dhnax .
fllpv,esy = m(V)

By assumption

Z m(v)f(v) = Z m(v)p, = 0.

veV veV
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Proof of the Lemma

Using these two estimates we obtain

a(f) g o

1flleqviesy = m(V)

By assumption

Z m(v)f(v) = Z m(v)p, = 0.

veV vev

Therefore the min-max principle yields

n
(L) < g-omex
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Uniqueness of circle packings

Question

How do we find a circle-packing, such that the orthogonality condition
above is fulfilled?
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Uniqueness of circle packings

Question

How do we find a circle-packing, such that the orthogonality condition
above is fulfilled?

Theorem (Koebe '36, Andreev '70, Thurston '78)

If G is maximal planar, then the circle packing representation in S? is
unique up to conformal maps and reflections in S2.
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Uniqueness of circle packings

Question

How do we find a circle-packing, such that the orthogonality condition
above is fulfilled?

Theorem (Koebe '36, Andreev '70, Thurston '78)

If G is maximal planar, then the circle packing representation in S? is
unique up to conformal maps and reflections in S2.

Canonical Approach

Find a conformal map S?2 — S? that maps a given circle packing to a circle
packing that satisfies the orthogonality condition.

v
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A Uniformization Theorem

Theorem (P. '19)
Let G be planar and (C,)yecv be a circle packing for G in S%. Assume that

m(V) > 2(m(u) + m(v)) for all {u,v} € E,
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A Uniformization Theorem

Theorem (P. '19)
Let G be planar and (C,),cv be a circle packing for G in S%. Assume that

m(V) > 2(m(u) + m(v)) for all {u,v} € E,

then there exists a conformal map f : S> — S2, such that
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ldea of the proof

o After rescaling we may assume m(V) = 1.
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ldea of the proof

o After rescaling we may assume m(V) = 1.

o Consider a certain family of conformal maps f, : S — S for
a € R3 |a| < 1, that moves the circles along the sphere in a
convenient way.
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ldea of the proof

o After rescaling we may assume m(V) = 1.

o Consider a certain family of conformal maps f, : S — S for
a € R3,|a| < 1, that moves the circles along the sphere in a
convenient way.

@ Define the map & given by

®(a) = Z m(v)p (fa(Cy)) -

veV
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ldea of the proof

o After rescaling we may assume m(V) = 1.

o Consider a certain family of conformal maps f, : S — S for
a € R3,|a| < 1, that moves the circles along the sphere in a
convenient way.

@ Define the map & given by

®(a) =Y m(v)p(fa(C)).

veV

@ Using a fixpoint argument one may show that ® must be 0 for some «
under the assumption on the vertex weight m.
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An eigenvalue bound for planar combinatorial graphs

Corollary

Let G be planar and assume that
m(V) > 2(m(v) + m(u)) for all {u,v} € E,

then we obtain the estimate

d#mx
m(V)’

M(L) <8
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An eigenvalue bound for planar quantum graphs

Corollary

Let G be planar and assume that
L>d +d forall {uv}eE,

then we obtain the estimate

9

dt
M(—A) <24 ”FX

where p(e) = 1.
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How to drop the condition L > d! + d!?

o Consider an arbitrary metric graph
G = (G, Ig) over some combinatorial,
connected and finite graph
G = (V(G), E(G)), that is not
necessarily simple.
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How to drop the condition L > d! + d!?

o Consider an arbitrary metric graph
G = (G, Ig) over some combinatorial,
connected and finite graph
G = (V(G), E(G)), that is not
necessarily simple.

o Let G’ = (G',I') be the subdivsion
graph obtained after dividing each edge
into four edges of equal length. We
shall write

V(G/) = Vhew U Voig-
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How to drop the condition L > d! + d!?

o Consider an arbitrary metric graph
G = (G, Ig) over some combinatorial,
connected and finite graph
G = (V(G), E(G)), that is not
necessarily simple.

o Let G’ = (G',I') be the subdivsion
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Figure: Subdivsion of K;
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How to drop the condition L > d! + d!?

o Consider an arbitrary metric graph
G = (G, Ig) over some combinatorial,
connected and finite graph
G = (V(G), E(G)), that is not
necessarily simple.

o Let G’ = (G',I') be the subdivsion
graph obtained after dividing each edge
into four edges of equal length. We
shall write

V(G/) = Vhew U Voig-

o Note

U'=1L, M(-Ag)=M(-Ag).

Figure: Subdivsion of K;
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How to drop the condition L > d! + d!?

We have

d”:{

Figure: Subdivsion of K;
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How to drop the condition L > d! + d!?

We have

J' =1 v € Void,
=

Figure: Subdivsion of K;
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How to drop the condition L > d! + d!?

We have

d
d”:{

<=

, v E Vo,

N6~

, V& Vpew and vis on e.

Figure: Subdivsion of K;
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How to drop the condition L > d! + d!?

We have
dl
g =37 VE Volds
55 V&€ Vhew and vison e.
and thus

dl +d <L
holds for u,v € V(G’) with u ~ v
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How to drop the condition L > d! + d!?

We have
dl
g =37 VE Volds
55 V&€ Vhew and vison e.
and thus

dl +d <L

holds for u,v € V(G') with u ~ v, so by our
last corollary

dt
A(—A) < 24%

Figure: Subdivsion of K;
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How to drop the condition L > d! + d!?

We have
dl
g =37 VE Volds
55 V&€ Vhew and vison e.
and thus

dl +d <L

holds for u,v € V(G') with u ~ v, so by our
last corollary

o Ao
< 192 .
L — L

A(—A) <24
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Summary

Theorem (P.'19)

If G =(G,1) is a planar, finite, compact and connected metric graph, then
we have the spectral bound

n
dmax

A (—A) < 192
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Summary

Theorem (P.'19)

If G =(G,1) is a planar, finite, compact and connected metric graph, then
we have the spectral bound

i
dmax

A (—A) < 192

Remark

The planarity assumption cannot be dropped! (Example: Complete
equilateral graphs of constant length / =1.)
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Summary

Theorem (P.'19)

If G =(G,1) is a planar, finite, compact and connected metric graph, then
we have the spectral bound

w
dmax

Mi(-A) < 10272

Remark

The planarity assumption cannot be dropped! (Example: Complete
equilateral graphs of constant length / =1.)

To Do

Generalize our results to higher order eigenvalues and graphs of higher
genus.

Marvin Pliimer (University of Hagen) Planar quantum graphs February 28, 2019 28 /29



Thank you for your attention!
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