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The combinatorial setting

Let G = (V ,E ) be a �nite, simple and connected graph with vertex set

V = V (E ) and edge set E = E (G ).

We shall write u ∼ v if u, v ∈ V are

adjacent. Let

Ev = {e ∈ E | e is incident to v}.

Let m : V → (0,∞) denote a positive weight function on the vertex set,

let

m(U) :=
∑
u∈U

m(u) for U ⊂ V .

Consider the space l2m(V ;Cd) of functions f : V → Cd equipped with the

norm

||f ||2l2(V ;Cd ) =
∑
v∈V

m(u)|f (u)|2.
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The combinatorial setting

Let µ : E → (0,∞) be a positive edge weight. The (weighted) degree of a

vertex v ∈ V with respect to µ is

dµv =
∑
e∈Ev

µ(e), dµmax = max
v∈V

dµv (1)

On l2m(V ) we consider the (weighted) combinatorial Laplacian L,

(Lf )(u) =
1

m(u)

∑
e={u,v}∈Ev

µ(e)(f (u)− f (v)), u ∈ V

and its associated quadratic form q given by

q(f ) =
∑

e={u,v}∈E

µ(e)|f (u)− f (v)|2.
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The spectral gap of the combinatorial Laplacian

Lemma

The �rst positive eigenvalue of L is given by

λ1(L) = inf
f ∈l2m(V )\{0},

f⊥m1V

q(f )

||f ||2
l2m(V )

,

where

f ⊥m 1V ⇔
∑
v∈V

m(v)f (v) = 0.
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The metric setting

Consider a metric graph

G = (G , l),

where

G = (V ,E ) is a (combinatorial) connected, simple and �nite graph

and

l : E → (0,∞), e 7→ le is a weight function on the edge set.

We introduce the following quantities:

the total length L =
∑

e∈E le ,

the (weighted) degree d l
v =

∑
e∈Ev

le for v ∈ V .
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The metric setting

On the hilbert space

L2(G;Cd) :=
⊕
e∈E

L2(0, le ;Cd), ||f ||2L2(G;Cd ) =
∑
e∈E
||fe ||2L2(0,le ;Cd ).

we consider the Kirchho�-Laplacian −∆ given by

(−∆f )e = − d
2

dx2e
fe , for f ∈

⊕
e∈E

H2(0, le),

such that {
f is continuous in v∑

v∈V f ′e (v) = 0

}
for all v ∈ V .
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Comparing the spectral gaps

Lemma

We choose the weights

m(v) = d l
v =

∑
e∈Ev

le , µ(e) =
1

le

then the �rst positive positive eigenvalues of the respective Laplacians

satisfy the estimate

λ1(−∆) ≤ 6λ1(L).

Proof

Consider edgewise a�ne functions and compare the Rayleigh quotients.
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What is known in the manifold case?

Theorem (Hassannezhad '11)

Given a closed, oriented Riemannian manifold M of genus g > 0 we have

λk(−∆M) ≤ C
g + k

Vol(M)
.

Previous results: Hersch '70, Yang, Yau '80, Korevaar '93
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What is known in the (classical) combinatorial case?

(Lf )(u) =
∑
v∼u

(f (u)− f (v)), u ∈ V . (m ≡ 1, µ ≡ 1)

Theorem (Spielman, Teng '07)

λ1(L) ≤ C
dmax

|V |
, if G is planar.

Theorem (Kelner '06)

λ1(L) ≤ poly(dmax)
g

|V |
, if G is of genus g > 0

Theorem (Amini, Cohen-Steiner '18)

λk(L) ≤ C
d2
max(g + k)

|V |
if G is of genus g ≥ 0

Marvin Plümer (University of Hagen) Planar quantum graphs February 28, 2019 10 / 29



What is known in the (classical) combinatorial case?

(Lf )(u) =
∑
v∼u

(f (u)− f (v)), u ∈ V . (m ≡ 1, µ ≡ 1)

Theorem (Spielman, Teng '07)

λ1(L) ≤ C
dmax

|V |
, if G is planar.

Theorem (Kelner '06)

λ1(L) ≤ poly(dmax)
g

|V |
, if G is of genus g > 0

Theorem (Amini, Cohen-Steiner '18)

λk(L) ≤ C
d2
max(g + k)

|V |
if G is of genus g ≥ 0

Marvin Plümer (University of Hagen) Planar quantum graphs February 28, 2019 10 / 29



What is known in the (classical) combinatorial case?

(Lf )(u) =
∑
v∼u

(f (u)− f (v)), u ∈ V . (m ≡ 1, µ ≡ 1)

Theorem (Spielman, Teng '07)

λ1(L) ≤ C
dmax

|V |
, if G is planar.

Theorem (Kelner '06)

λ1(L) ≤ poly(dmax)
g

|V |
, if G is of genus g > 0

Theorem (Amini, Cohen-Steiner '18)

λk(L) ≤ C
d2
max(g + k)

|V |
if G is of genus g ≥ 0

Marvin Plümer (University of Hagen) Planar quantum graphs February 28, 2019 10 / 29



What is known in the (classical) combinatorial case?

(Lf )(u) =
∑
v∼u

(f (u)− f (v)), u ∈ V . (m ≡ 1, µ ≡ 1)

Theorem (Spielman, Teng '07)

λ1(L) ≤ C
dmax

|V |
, if G is planar.

Theorem (Kelner '06)

λ1(L) ≤ poly(dmax)
g

|V |
, if G is of genus g > 0

Theorem (Amini, Cohen-Steiner '18)

λk(L) ≤ C
d2
max(g + k)

|V |
if G is of genus g ≥ 0

Marvin Plümer (University of Hagen) Planar quantum graphs February 28, 2019 10 / 29



Circle-Packings for Planar Graphs in the plane

The proof of Spielman and Teng used the following representation of planar

graphs.

Theorem (Koebe '36, Andreev '70, Thurston '78)

A graph G = (V ,E ) is planar, i� there exists a family of closed disks

(Dv )v∈V in the plane, such that the following holds for any two vertices

v 6= u:

If v and u are adjacent, the two disks Dv und Du intersect at exactly

one point.

If v and u are not adjacent, the two disks Dv and Du are disjoint.

In the above case (Dv )v∈V is called a circle-packing for G in R2.
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Example of a circle-packing
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Caps on the unit sphere S2

We shall transfer the concept of circle packings to the unit sphere.

A subset k ⊂ S2 is called a circular line, if k is a non-trivial

intersection of the sphere S2 and a hyperplane H in R3.

A connected, closed subset C ⊂ S2 is called (spherical) cap, if its

boundary is a circular line.

There is exactly one point p(C ) ∈ C of equal euclidian distance r(C )
to any point on the boundary of C . We call p(C ) the center and r(C )
the radius of C .

The surface area of C is π · r(C )2.

Fact

The stereographic projection R2 → S2 maps disks in R2 to caps in S2 and

vice versa.
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Circle-Packings for Planar Graphs in the sphere

Theorem (Koebe '36, Andreev '70, Thurston '78)

A graph G = (V ,E ) is planar, i� there exists a family of spherical caps
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1 If v and u are adjacent, the two caps Cv und Cu intersect at exactly

one point.
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A �rst eigenvalue bound for the combinatorial Laplacian

Lemma

Assume G is planar and there is a circle-packing (Cv )v∈V for G , such that∑
v∈V

m(v)p(Cv ) = 0,

then

λ1(L) ≤ 8
dµmax

m(V )

holds.
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Proof of the Lemma

Idea

Use a circle-packing (Cv )v∈V representing the planar graph G to obtain a

test function f in the vector-valued variational formulation.

Let pv = p(Cv ) and rv = r(Cv ) for v ∈ V .

We consider f ∈ l2m(V ;C3) given by f (v) = pv for v ∈ V .

Then

||f ||2l2m(V ;C3) =
∑
v∈V

m(v)|pv |2 = m(V )

.
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Proof of the Lemma

Moreover

q(f ) =
∑

e={u,v}∈E

µ(e)|pu − pv |2

≤ 2
∑

e={u,v}∈E

µ(e)(r2u + r2v )

= 2
∑
v∈V

dµv r
2
v

≤ 2dµmax

∑
v∈V

r2v .

≤ 8dµmax

(2)
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Proof of the Lemma

Using these two estimates we obtain

q(f )

||f ||l2(V ;C3)
≤ 8

dµmax

m(V )
.

By assumption ∑
v∈V

m(v)f (v) =
∑
v∈V

m(v)pv = 0.

Therefore the min-max principle yields

λ1(L) ≤ 8
dµmax

m(V )
.
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Uniqueness of circle packings

Question

How do we �nd a circle-packing, such that the orthogonality condition

above is ful�lled?

Theorem (Koebe '36, Andreev '70, Thurston '78)

If G is maximal planar, then the circle packing representation in S2 is

unique up to conformal maps and re�ections in S2.

Canonical Approach

Find a conformal map S2 → S2 that maps a given circle packing to a circle

packing that satis�es the orthogonality condition.
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A Uniformization Theorem

Theorem (P. '19)

Let G be planar and (Cv )v∈V be a circle packing for G in S2. Assume that

m(V ) > 2(m(u) + m(v)) for all {u, v} ∈ E ,

then there exists a conformal map f : S2 → S2, such that∑
v∈V

m(v)p
(
f (Cv )

)
= 0.
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Idea of the proof

After rescaling we may assume m(V ) = 1.

Consider a certain family of conformal maps fα : S2 → S2 for

α ∈ R3, |α| < 1, that moves the circles along the sphere in a

convenient way.

De�ne the map Φ given by

Φ(α) =
∑
v∈V

m(v)p (fα(Cv )) .

Using a �xpoint argument one may show that Φ must be 0 for some α
under the assumption on the vertex weight m.
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An eigenvalue bound for planar combinatorial graphs

Corollary

Let G be planar and assume that

m(V ) > 2(m(v) + m(u)) for all {u, v} ∈ E ,

then we obtain the estimate

λ1(L) ≤ 8
dµmax

m(V )
.
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An eigenvalue bound for planar quantum graphs

Corollary

Let G be planar and assume that

L > d l
u + d l

v for all {u, v} ∈ E ,

then we obtain the estimate

λ1(−∆) ≤ 24
dµmax

L
,

where µ(e) = 1
le
.
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How to drop the condition L > d l
v + d l

u?

Consider an arbitrary metric graph

G = (G , lG ) over some combinatorial,

connected and �nite graph

G = (V (G ),E (G )), that is not
necessarily simple.

Let G′ = (G ′, l ′) be the subdivsion

graph obtained after dividing each edge

into four edges of equal length. We

shall write

V (G ′) = Vnew ∪ Vold .

Note

L′ = L, λ1(−∆G′) = λ1(−∆G). Figure: Subdivsion of K4
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How to drop the condition L > d l
v + d l

u?

We have

d l ′
v =

{

d l
v
4 , v ∈ Vold,
le
2 , v ∈ Vnew and v is on e.

and thus

d l ′
v + d l ′

u < L

holds for u, v ∈ V (G ′) with u ∼ v , so by our

last corollary

λ1(−∆) ≤ 24
dµ

′
max

L
≤ 192

dµmax

L

.
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Summary

Theorem (P.'19)

If G = (G , l) is a planar, �nite, compact and connected metric graph, then

we have the spectral bound

λ1(−∆) ≤ 192
dµmax

L
.

Remark

The planarity assumption cannot be dropped! (Example: Complete

equilateral graphs of constant length l ≡ 1.)

To Do

Generalize our results to higher order eigenvalues and graphs of higher

genus.
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Thank you for your attention!
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