An eigenvalue bound for the Kirchhoff-Laplacian on planar quantum graphs

Marvin Plümer

University of Hagen

February 28, 2019
The combinatorial setting

Let $G = (V, E)$ be a finite, simple and connected graph with vertex set $V = V(E)$ and edge set $E = E(G)$.

We shall write $u \sim v$ if $u, v \in V$ are adjacent. Let $E_v = \{ e \in E | e \text{ is incident to } v \}$.

Let $m : V \rightarrow (0, \infty)$ denote a positive weight function on the vertex set, let $m(U) := \sum_{u \in U} m(u)$ for $U \subset V$.

Consider the space $l^2_m(V; \mathbb{C})$ of functions $f : V \rightarrow \mathbb{C}$ equipped with the norm $| | f | |^2_{l^2_m(V; \mathbb{C})} = \sum_{v \in V} m(v) | f(v) |^2$.

The combinatorial setting

Let $G = (V, E)$ be a finite, simple and connected graph with vertex set $V = V(E)$ and edge set $E = E(G)$. We shall write $u \sim v$ if $u, v \in V$ are adjacent. Let

$$E_v = \{ e \in E \mid e \text{ is incident to } v \}.$$
The combinatorial setting

Let \(G = (V, E) \) be a finite, simple and connected graph with vertex set \(V = V(E) \) and edge set \(E = E(G) \). We shall write \(u \sim v \) if \(u, v \in V \) are adjacent. Let

\[
E_v = \{ e \in E \mid e \text{ is incident to } v \}.
\]

Let \(m : V \to (0, \infty) \) denote a positive weight function on the vertex set, let

\[
m(U) := \sum_{u \in U} m(u) \text{ for } U \subset V.
\]
The combinatorial setting

Let $G = (V, E)$ be a finite, simple and connected graph with vertex set $V = V(E)$ and edge set $E = E(G)$. We shall write $u \sim v$ if $u, v \in V$ are adjacent. Let

$$E_v = \{ e \in E \mid e \text{ is incident to } v \}.$$

Let $m : V \to (0, \infty)$ denote a positive weight function on the vertex set, let

$$m(U) := \sum_{u \in U} m(u) \text{ for } U \subset V.$$

Consider the space $l^2_m(V; \mathbb{C}^d)$ of functions $f : V \to \mathbb{C}^d$ equipped with the norm

$$\|f\|_{l^2_m(V; \mathbb{C}^d)}^2 = \sum_{v \in V} m(u)|f(u)|^2.$$
The combinatorial setting

Let $\mu : E \to (0, \infty)$ be a positive edge weight. The (weighted) degree of a vertex $v \in V$ with respect to μ is

$$d^\mu_v = \sum_{e \in E_v} \mu(e), \quad d^\mu_{\text{max}} = \max_{v \in V} d^\mu_v \quad (1)$$
The combinatorial setting

Let $\mu : E \rightarrow (0, \infty)$ be a positive edge weight. The (weighted) degree of a vertex $v \in V$ with respect to μ is

$$d^\mu_v = \sum_{e \in E_v} \mu(e), \quad d^\mu_{\text{max}} = \max_{v \in V} d^\mu_v$$

(1)

On $l^2_m(V)$ we consider the (weighted) combinatorial Laplacian \mathcal{L},

$$(\mathcal{L}f)(u) = \frac{1}{m(u)} \sum_{e = \{u, v\} \in E_v} \mu(e)(f(u) - f(v)), \quad u \in V$$
The combinatorial setting

Let $\mu : E \rightarrow (0, \infty)$ be a positive edge weight. The (weighted) degree of a vertex $v \in V$ with respect to μ is

$$d_\mu^v = \sum_{e \in E_v} \mu(e), \quad d_\mu^\text{max} = \max_{v \in V} d_\mu^v \quad (1)$$

On $l_2^m(V)$ we consider the (weighted) combinatorial Laplacian \mathcal{L},

$$(\mathcal{L}f)(u) = \frac{1}{m(u)} \sum_{e = \{u, v\} \in E_v} \mu(e)(f(u) - f(v)), \quad u \in V$$

and its associated quadratic form q given by

$$q(f) = \sum_{e = \{u, v\} \in E} \mu(e)|f(u) - f(v)|^2.$$
The spectral gap of the combinatorial Laplacian

Lemma

The first positive eigenvalue of \mathcal{L} is given by

$$\lambda_1(\mathcal{L}) = \inf_{\substack{f \in l^2_m(V) \setminus \{0\}, \|f\|_2^2, \|f\|_l^2_m(V)}} \frac{q(f)}{|f \perp_m 1_V|},$$

where

$$f \perp_m 1_V \iff \sum_{v \in V} m(v)f(v) = 0.$$
Lemma

The first positive eigenvalue of \mathcal{L} is given by

$$\lambda_1(\mathcal{L}) = \inf_{f \in l^2_m(V;\mathbb{C}^d) \setminus \{0\}, \|f\|_{l^2_m(V;\mathbb{C}^d)}^2, f \perp_m 1_V} \frac{q(f)}{\|f\|_{l^2_m(V;\mathbb{C}^d)}^2},$$

where

$$f \perp_m 1_V \iff \sum_{v \in V} m(v)f(v) = 0.$$
The metric setting

Consider a metric graph

\[\mathcal{G} = (G, l), \]

where

- \(G = (V, E) \) is a (combinatorial) connected, simple and finite graph
- \(l : E \to (0, \infty), e \mapsto l_e \) is a weight function on the edge set.
Consider a metric graph

\[G = (G, l), \]

where
- \(G = (V, E) \) is a (combinatorial) connected, simple and finite graph and
- \(l : E \to (0, \infty), e \mapsto l_e \) is a weight function on the edge set.

We introduce the following quantities:
- the total length \(L = \sum_{e \in E} l_e \),
- the (weighted) degree \(d^l_v = \sum_{e \in E_v} l_e \) for \(v \in V \).
The metric setting

On the Hilbert space

\[L^2(G; \mathbb{C}^d) := \bigoplus_{e \in E} L^2(0, l_e; \mathbb{C}^d), \quad \|f\|_{L^2(G; \mathbb{C}^d)}^2 = \sum_{e \in E} \|f_e\|_{L^2(0, l_e; \mathbb{C}^d)}^2. \]
The metric setting

On the hilbert space

\[L^2(G; \mathbb{C}^d) := \bigoplus_{e \in E} L^2(0, l_e; \mathbb{C}^d), \quad \|f\|_{L^2(G; \mathbb{C}^d)}^2 = \sum_{e \in E} \|f_e\|_{L^2(0, l_e; \mathbb{C}^d)}^2. \]

we consider the Kirchhoff-Laplacian \(-\Delta\) given by

\[(-\Delta f)_e = -\frac{d^2}{dx_e^2} f_e, \quad \text{for } f \in \bigoplus_{e \in E} H^2(0, l_e), \]

such that

\[
\begin{cases}
 f \text{ is continuous in } v \\
 \sum_{v \in V} f_e'(v) = 0
\end{cases}
\]

for all \(v \in V. \)
Comparing the spectral gaps

Lemma

We choose the weights

\[m(v) = d_v^l = \sum_{\ell \in E_v} l_{\ell}, \quad \mu(e) = \frac{1}{l_{\ell}} \]

then the first positive positive eigenvalues of the respective Laplacians satisfy the estimate

\[\lambda_1(-\Delta) \leq 6 \lambda_1(\mathcal{L}). \]
Comparing the spectral gaps

Lemma

We choose the weights

\[
m(v) = d^l_v = \sum_{e \in E_v} l_e, \quad \mu(e) = \frac{1}{l_e}
\]

then the first positive eigenvalues of the respective Laplacians satisfy the estimate

\[
\lambda_1(-\Delta) \leq 6 \lambda_1(\mathcal{L}).
\]

Proof

Consider edgewise affine functions and compare the Rayleigh quotients.
What is known in the manifold case?

Theorem (Hassannezhad ’11)

Given a closed, oriented Riemannian manifold M of genus $g > 0$ we have

$$
\lambda_k(-\Delta_M) \leq C \frac{g + k}{\text{Vol}(M)}.
$$

Previous results: Hersch ’70, Yang, Yau ’80, Korevaar ’93
What is known in the (classical) combinatorial case?

\[(\mathcal{L}f)(u) = \sum_{v \sim u} (f(u) - f(v)), \; u \in V. \; (m \equiv 1, \mu \equiv 1)\]
What is known in the (classical) combinatorial case?

\[(L f)(u) = \sum_{v \sim u} (f(u) - f(v)), \ u \in V. \ (m \equiv 1, \mu \equiv 1)\]

Theorem (Spielman, Teng ’07)

\[\lambda_1(L) \leq C \frac{d_{\text{max}}}{|V|}, \ \text{if } G \text{ is planar.}\]
What is known in the (classical) combinatorial case?

\[(\mathcal{L}f)(u) = \sum_{v \sim u} (f(u) - f(v)), \quad u \in V. \quad (m \equiv 1, \mu \equiv 1)\]

Theorem (Spielman, Teng ’07)

\[\lambda_1(\mathcal{L}) \leq C \frac{d_{\text{max}}}{|V|}, \quad \text{if } G \text{ is planar.}\]

Theorem (Kelner ’06)

\[\lambda_1(\mathcal{L}) \leq \text{poly}(d_{\text{max}}) \frac{g}{|V|}, \quad \text{if } G \text{ is of genus } g > 0\]
What is known in the (classical) combinatorial case?

$$(Lf)(u) = \sum_{v \sim u} (f(u) - f(v)), \ u \in V. \ (m \equiv 1, \mu \equiv 1)$$

Theorem (Spielman, Teng ’07)

$$\lambda_1(L) \leq C \frac{d_{\text{max}}}{|V|}, \text{ if } G \text{ is planar.}$$

Theorem (Kelner ’06)

$$\lambda_1(L) \leq \text{poly}(d_{\text{max}}) \frac{g}{|V|}, \text{ if } G \text{ is of genus } g > 0$$

Theorem (Amini, Cohen-Steiner ’18)

$$\lambda_k(L) \leq C \frac{d_{\text{max}}^2(g+k)}{|V|}, \text{ if } G \text{ is of genus } g \geq 0$$
Circle-Packings for Planar Graphs in the plane

The proof of Spielman and Teng used the following representation of planar graphs.

Theorem (Koebe ’36, Andreev ’70, Thurston ’78)

A graph $G = (V, E)$ is planar, iff there exists a family of closed disks $(D_v)_{v \in V}$ in the plane, such that the following holds for any two vertices $v \neq u$:

- If v and u are adjacent, the two disks D_v and D_u intersect at exactly one point.
- If v and u are not adjacent, the two disks D_v and D_u are disjoint.

In the above case $(D_v)_{v \in V}$ is called a circle-packing for G in \mathbb{R}^2.
Example of a circle-packing
Caps on the unit sphere S^2

We shall transfer the concept of circle packings to the unit sphere.

- A subset $k \subset S^2$ is called a circular line, if k is a non-trivial intersection of the sphere S^2 and a hyperplane H in \mathbb{R}^3.
Caps on the unit sphere S^2

We shall transfer the concept of circle packings to the unit sphere.

- A subset $k \subset S^2$ is called a circular line, if k is a non-trivial intersection of the sphere S^2 and a hyperplane H in \mathbb{R}^3.
- A connected, closed subset $C \subset S^2$ is called (spherical) cap, if its boundary is a circular line.
Caps on the unit sphere S^2

We shall transfer the concept of circle packings to the unit sphere.

- A subset $k \subset S^2$ is called a circular line, if k is a non-trivial intersection of the sphere S^2 and a hyperplane H in \mathbb{R}^3.

- A connected, closed subset $C \subset S^2$ is called (spherical) cap, if its boundary is a circular line.

- There is exactly one point $p(C) \in C$ of equal euclidian distance $r(C)$ to any point on the boundary of C. We call $p(C)$ the center and $r(C)$ the radius of C.

The surface area of C is $\pi \cdot r(C)^2$.

Fact

The stereographic projection $\mathbb{R}^2 \rightarrow S^2$ maps disks in \mathbb{R}^2 to caps in S^2 and vice versa.
Caps on the unit sphere S^2

We shall transfer the concept of circle packings to the unit sphere.

- A subset $k \subset S^2$ is called a circular line, if k is a non-trivial intersection of the sphere S^2 and a hyperplane H in \mathbb{R}^3.

- A connected, closed subset $C \subset S^2$ is called (spherical) cap, if its boundary is a circular line.

- There is exactly one point $p(C) \in C$ of equal euclidian distance $r(C)$ to any point on the boundary of C. We call $p(C)$ the center and $r(C)$ the radius of C.

- The surface area of C is $\pi \cdot r(C)^2$.
Caps on the unit sphere S^2

We shall transfer the concept of circle packings to the unit sphere.

- A subset $k \subset S^2$ is called a circular line, if k is a non-trivial intersection of the sphere S^2 and a hyperplane H in \mathbb{R}^3.

- A connected, closed subset $C \subset S^2$ is called (spherical) cap, if its boundary is a circular line.

- There is exactly one point $p(C) \in C$ of equal euclidian distance $r(C)$ to any point on the boundary of C. We call $p(C)$ the center and $r(C)$ the radius of C.

- The surface area of C is $\pi \cdot r(C)^2$.

Fact

The stereographic projection $\mathbb{R}^2 \to S^2$ maps disks in \mathbb{R}^2 to caps in S^2 and vice versa.
Theorem (Koebe '36, Andreev '70, Thurston '78)

A graph $G = (V, E)$ is planar, iff there exists a family of closed disks $(D_v)_{v \in V}$, such that the following holds for any two vertices $v \neq u$:

1. If v and u are adjacent, the two disks D_v and D_u intersect at exactly one point.
2. If v and u are not adjacent, the two disks D_v and D_u are disjoint.

In the above case $(D_v)_{v \in V}$ is called a circle-packing for G in \mathbb{R}^2.
Theorem (Koebe ’36, Andreev ’70, Thurston ’78)

A graph $G = (V, E)$ is planar, iff there exists a family of closed disks $(D_v)_{v \in V}$, such that the following holds for any two vertices $v \neq u$:

1. If v and u are adjacent, the two disks D_v and D_u intersect at exactly one point.
2. If v and u are not adjacent, the two disks D_v and D_u are disjoint.

In the above case $(D_v)_{v \in V}$ is called a circle-packing for G in \mathbb{R}^2.
Theorem (Koebe ’36, Andreev ’70, Thurston ’78)

A graph $G = (V, E)$ is planar, iff there exists a family of spherical caps $(C_v)_{v \in V}$, such that the following holds for any two vertices $v \neq u$:

1. If v and u are adjacent, the two caps C_v and C_u intersect at exactly one point.
2. If v and u are not adjacent, the two caps C_v and C_u are disjoint.

In the above case $(C_v)_{v \in V}$ is called a circle-packing for G in S^2.
A first eigenvalue bound for the combinatorial Laplacian

Lemma

Assume G is planar and there is a circle-packing $(C_v)_{v \in V}$ for G, such that

$$\sum_{v \in V} m(v) p(C_v) = 0,$$

then

$$\lambda_1(\mathcal{L}) \leq 8 \frac{d_{\text{max}}^\mu}{m(V)}$$

holds.
Proof of the Lemma

Idea

Use a circle-packing \((C_v)_{v \in V}\) representing the planar graph \(G\) to obtain a test function \(f\) in the vector-valued variational formulation.
Proof of the Lemma

Idea

Use a circle-packing \((C_v)_{v \in V}\) representing the planar graph \(G\) to obtain a test function \(f\) in the vector-valued variational formulation.

- Let \(p_v = p(C_v)\) and \(r_v = r(C_v)\) for \(v \in V\).
Proof of the Lemma

Idea

Use a circle-packing \((C_v)_{v \in V}\) representing the planar graph \(G\) to obtain a test function \(f\) in the vector-valued variational formulation.

- Let \(p_v = p(C_v)\) and \(r_v = r(C_v)\) for \(v \in V\).
- We consider \(f \in l_m^2(V; \mathbb{C}^3)\) given by \(f(v) = p_v\) for \(v \in V\).
Proof of the Lemma

Idea

Use a circle-packing \((C_v)_{v \in V}\) representing the planar graph \(G\) to obtain a test function \(f\) in the vector-valued variational formulation.

- Let \(p_v = p(C_v)\) and \(r_v = r(C_v)\) for \(v \in V\).
- We consider \(f \in l^2_m(V; \mathbb{C}^3)\) given by \(f(v) = p_v\) for \(v \in V\).

Then

\[
\|f\|_{l^2_m(V; \mathbb{C}^3)}^2 = \sum_{v \in V} m(v) |p_v|^2.
\]
Proof of the Lemma

Idea

Use a circle-packing \((C_v)_{v \in V}\) representing the planar graph \(G\) to obtain a test function \(f\) in the vector-valued variational formulation.

- Let \(p_v = p(C_v)\) and \(r_v = r(C_v)\) for \(v \in V\).
- We consider \(f \in l^2_m(V; \mathbb{C}^3)\) given by \(f(v) = p_v\) for \(v \in V\).

Then
\[
\|f\|_{l^2_m(V; \mathbb{C}^3)}^2 = \sum_{v \in V} m(v) |p_v|^2 = m(V).
\]
Proof of the Lemma

Moreover

\[q(f) = \sum_{e = \{u, v\} \in E} \mu(e) |p_u - p_v|^2 \]

(2)
Proof of the Lemma

Moreover

\[q(f) = \sum_{e=\{u,v\} \in E} \mu(e) |p_u - p_v|^2 \]

\[\leq 2 \sum_{e=\{u,v\} \in E} \mu(e) (r_u^2 + r_v^2) \]

(2)
Proof of the Lemma

Moreover

\[q(f) = \sum_{e=\{u,v\} \in E} \mu(e) |p_u - p_v|^2 \]

\[\leq 2 \sum_{e=\{u,v\} \in E} \mu(e) (r_u^2 + r_v^2) \]

\[= 2 \sum_{v \in V} d^\mu_v r_v^2 \] (2)
Proof of the Lemma

Moreover

\[q(f) = \sum_{e=\{u,v\} \in E} \mu(e) |p_u - p_v|^2 \]

\[\leq 2 \sum_{e=\{u,v\} \in E} \mu(e) (r_u^2 + r_v^2) \]

\[= 2 \sum_{v \in V} d_v^\mu r_v^2 \]

\[\leq 2 d_{\text{max}}^\mu \sum_{v \in V} r_v^2. \]
Proof of the Lemma

Moreover

\[q(f) = \sum_{e=\{u,v\} \in E} \mu(e) |p_u - p_v|^2 \]
\[\leq 2 \sum_{e=\{u,v\} \in E} \mu(e) (r_u^2 + r_v^2) \]
\[= 2 \sum_{v \in V} d^\mu_v r_v^2 \]
\[\leq 2 d^\mu_{\text{max}} \sum_{v \in V} r_v^2. \]
\[\leq 8 d^\mu_{\text{max}} \]
Proof of the Lemma

Using these two estimates we obtain

\[
\frac{q(f)}{\|f\|_{L^2(V;\mathbb{C}^3)}} \leq 8 \frac{d_{\text{max}}}{m(V)}.
\]
Proof of the Lemma

Using these two estimates we obtain

\[\frac{q(f)}{\|f\|_{L^2(V;\mathbb{C}^3)}} \leq 8 \frac{d_{\text{max}}}{m(V)}. \]

By assumption

\[\sum_{v \in V} m(v)f(v) = \sum_{v \in V} m(v)p_v = 0. \]
Proof of the Lemma

Using these two estimates we obtain

\[\frac{q(f)}{\|f\|_{L^2(V;\mathbb{C}^3)}} \leq 8 \frac{d_{\text{max}}}{m(V)}. \]

By assumption

\[\sum_{v \in V} m(v) f(v) = \sum_{v \in V} m(v) p_v = 0. \]

Therefore the min-max principle yields

\[\lambda_1(\mathcal{L}) \leq 8 \frac{d_{\text{max}}}{m(V)}. \]
Uniqueness of circle packings

Question

How do we find a circle-packing, such that the orthogonality condition above is fulfilled?

Theorem (Koebe '36, Andreev '70, Thurston '78)

If \(G \) is maximal planar, then the circle packing representation in \(S^2 \) is unique up to conformal maps and reflections in \(S^2 \).

Canonical Approach

Find a conformal map \(S^2 \to S^2 \) that maps a given circle packing to a circle packing that satisfies the orthogonality condition.
Uniqueness of circle packings

Question
How do we find a circle-packing, such that the orthogonality condition above is fulfilled?

Theorem (Koebe '36, Andreev '70, Thurston '78)
If G is maximal planar, then the circle packing representation in S^2 is unique up to conformal maps and reflections in S^2.
Question

How do we find a circle-packing, such that the orthogonality condition above is fulfilled?

Theorem (Koebe ’36, Andreev ’70, Thurston ’78)

If G is maximal planar, then the circle packing representation in S^2 is unique up to conformal maps and reflections in S^2.

Canonical Approach

Find a conformal map $S^2 \rightarrow S^2$ that maps a given circle packing to a circle packing that satisfies the orthogonality condition.
Theorem (P. ’19)

Let G be planar and $(C_v)_{v \in V}$ be a circle packing for G in S^2. Assume that

$$m(V) > 2(m(u) + m(v))$$

for all $\{u, v\} \in E$.

Theorem (P. ’19)

Let G be planar and $(C_v)_{v \in V}$ be a circle packing for G in S^2. Assume that

$$m(V) > 2(m(u) + m(v)) \text{ for all } \{u, v\} \in E,$$

then there exists a conformal map $f : S^2 \to S^2$, such that

$$\sum_{v \in V} m(v)p(f(C_v)) = 0.$$
Idea of the proof

- After rescaling we may assume $m(V) = 1$.

Marvin Plümer (University of Hagen)
Planar quantum graphs
February 28, 2019 23 / 29
Idea of the proof

- After rescaling we may assume $m(V) = 1$.
- Consider a certain family of conformal maps $f_\alpha : S^2 \to S^2$ for $\alpha \in \mathbb{R}^3$, $|\alpha| < 1$, that moves the circles along the sphere in a convenient way.
Idea of the proof

- After rescaling we may assume $m(V) = 1$.
- Consider a certain family of conformal maps $f_\alpha : S^2 \to S^2$ for $\alpha \in \mathbb{R}^3, |\alpha| < 1$, that moves the circles along the sphere in a convenient way.
- Define the map Φ given by

$$\Phi(\alpha) = \sum_{v \in V} m(v) p(f_\alpha(C_v)).$$
Idea of the proof

- After rescaling we may assume $m(V) = 1$.
- Consider a certain family of conformal maps $f_\alpha : S^2 \to S^2$ for $\alpha \in \mathbb{R}^3, |\alpha| < 1$, that moves the circles along the sphere in a convenient way.
- Define the map Φ given by
 \[
 \Phi(\alpha) = \sum_{v \in V} m(v) p (f_\alpha(C_v)).
 \]
- Using a fixpoint argument one may show that Φ must be 0 for some α under the assumption on the vertex weight m.
Corollary

Let G be planar and assume that

$$m(V) > 2(m(v) + m(u)) \text{ for all } \{u, v\} \in E,$$

then we obtain the estimate

$$\lambda_1(L) \leq 8 \frac{d_{\text{max}}^\mu}{m(V)}.$$
Corollary

Let G be planar and assume that

$$L > d_u^l + d_v^l \text{ for all } \{u, v\} \in E,$$

then we obtain the estimate

$$\lambda_1(-\Delta) \leq 24 \frac{d_{\text{max}}^l}{L},$$

where $\mu(e) = \frac{1}{l_e}$.

An eigenvalue bound for planar quantum graphs
How to drop the condition $L > d_v^l + d_u^l$?

- Consider an arbitrary metric graph $\mathcal{G} = (G, l_G)$ over some combinatorial, connected and finite graph $G = (V(G), E(G))$, that is not necessarily simple.
How to drop the condition $L > d^l_v + d^l_u$?

- Consider an arbitrary metric graph $\mathcal{G} = (G, l_G)$ over some combinatorial, connected and finite graph $G = (V(G), E(G))$, that is not necessarily simple.

- Let $\mathcal{G}' = (G', l')$ be the subdivision graph obtained after dividing each edge into four edges of equal length. We shall write

$$V(G') = V_{\text{new}} \cup V_{\text{old}}.$$
How to drop the condition \(L > d_v^l + d_u^l \)?

- Consider an arbitrary metric graph \(\mathcal{G} = (G, l_G) \) over some combinatorial, connected and finite graph \(G = (V(G), E(G)) \), that is not necessarily simple.

- Let \(\mathcal{G}' = (G', l') \) be the subdivision graph obtained after dividing each edge into four edges of equal length. We shall write

\[
V(G') = V_{\text{new}} \cup V_{\text{old}}.
\]
How to drop the condition $L > d_v^l + d_u^l$?

- Consider an arbitrary metric graph $G = (G, l_G)$ over some combinatorial, connected and finite graph $G = (V(G), E(G))$, that is not necessarily simple.

- Let $G' = (G', l')$ be the subdivision graph obtained after dividing each edge into four edges of equal length. We shall write

$$V(G') = V_{\text{new}} \cup V_{\text{old}}.$$
How to drop the condition $L > d_v^l + d_u^l$?

- Consider an arbitrary metric graph $\mathcal{G} = (G, l_G)$ over some combinatorial, connected and finite graph $G = (V(G), E(G))$, that is not necessarily simple.

- Let $\mathcal{G}' = (G', l')$ be the subdivision graph obtained after dividing each edge into four edges of equal length. We shall write

\[V(G') = V_{\text{new}} \cup V_{\text{old}}. \]
How to drop the condition $L > d^l_v + d^l_u$?

- Consider an arbitrary metric graph $\mathcal{G} = (G, l_G)$ over some combinatorial, connected and finite graph $G = (V(G), E(G))$, that is not necessarily simple.

- Let $\mathcal{G}' = (G', l')$ be the subdivision graph obtained after dividing each edge into four edges of equal length. We shall write

 $$V(G') = V_{\text{new}} \cup V_{\text{old}}.$$

- Note

 $$L' = L, \quad \lambda_1(-\Delta_{\mathcal{G}'}) = \lambda_1(-\Delta_{\mathcal{G}}).$$
How to drop the condition $L > d_v^l + d_u^l$?

We have

$$d_v'' = \begin{cases} \end{cases}$$

Figure: Subdivision of K_4
How to drop the condition $L > d_v^l + d_u^l$?

We have

$$d_v'' = \begin{cases}
\frac{d_v^l}{4}, & v \in V_{\text{old}}, \\
\end{cases}$$

Figure: Subdivision of K_4
How to drop the condition $L > d_v^l + d_u^l$?

We have

$$d_v'' = \begin{cases}
\frac{d_v^l}{4}, & v \in V_{\text{old}}, \\
\frac{l_e}{2}, & v \in V_{\text{new}} \text{ and } v \text{ is on } e.
\end{cases}$$

Figure: Subdivision of K_4
How to drop the condition $L > d_v^l + d_u^l$?

We have

$$d_v^{l''} = \begin{cases}
\frac{d_v^l}{4}, & v \in V_{\text{old}}, \\
\frac{l_e}{2}, & v \in V_{\text{new}} \text{ and } v \text{ is on } e.
\end{cases}$$

and thus

$$d_v^{l''} + d_u^{l''} < L$$

holds for $u, v \in V(G')$ with $u \sim v$.
How to drop the condition $L > d_v^l + d_u^l$?

We have

$$d_v'' = \begin{cases} d_v^l, & v \in V_{\text{old}}, \\ \frac{l_e}{2}, & v \in V_{\text{new}} \text{ and } v \text{ is on } e. \end{cases}$$

and thus

$$d_v'' + d_u'' < L$$

holds for $u, v \in V(G')$ with $u \sim v$, so by our last corollary

$$\lambda_1(-\Delta) \leq 24 \frac{d_{\text{max}}^u}{L}.$$
How to drop the condition $L > d_v^l + d_u^l$?

We have

$$d_v^{l'} = \begin{cases}
\frac{d_v^l}{4}, & v \in V_{\text{old}}, \\
\frac{l_e}{2}, & v \in V_{\text{new}} \text{ and } v \text{ is on } e.
\end{cases}$$

and thus

$$d_v^{l'} + d_u^{l'} < L$$

holds for $u, v \in V(G')$ with $u \sim v$, so by our last corollary

$$\lambda_1(-\Delta) \leq 24 \frac{d_{\max}^{l''}}{L} \leq 192 \frac{d_{\max}^{l'}}{L}.$$
Theorem (P.’19)

If \(G = (G, l) \) *is a planar, finite, compact and connected metric graph, then we have the spectral bound*

\[
\lambda_1(-\Delta) \leq 192 \frac{d_{\text{max}}}{L}.
\]

Remark

The planarity assumption cannot be dropped! (Example: Complete equilateral graphs of constant length \(l \equiv 1 \).)

To Do

Generalize our results to higher order eigenvalues and graphs of higher genus.
Summary

Theorem (P.’19)

If $G = (G, l)$ is a planar, finite, compact and connected metric graph, then we have the spectral bound

$$\lambda_1(-\Delta) \leq 192 \frac{d^\mu}{L} \max.$$

Remark

The planarity assumption cannot be dropped! (Example: Complete equilateral graphs of constant length $l \equiv 1$.)
Theorem (P.’19)

If $G = (G, l)$ is a planar, finite, compact and connected metric graph, then we have the spectral bound

$$\lambda_1(-\Delta) \leq 192 \frac{d^\mu}{L} \max \mu.$$

Remark

The planarity assumption cannot be dropped! (Example: Complete equilateral graphs of constant length $l \equiv 1$.)

To Do

Generalize our results to higher order eigenvalues and graphs of higher genus.
Thank you for your attention!