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Motivation

Photonic Crystals
® typically manufactured using periodic crystalline structures

® allow propagation of EM waves only of well-defined
frequencies

® band-gap structure of the spectrum
Waveguides
® consider infinite periodic structure with line defect

® |ine defects can support guided modes which propagate along
the defect

® guided modes are confined near defect

® frequencies of guided modes focussed in band gaps
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Maxwell Equations

curl E = —8—B, curl H = 8—[), div D=0, divB=0.
ot ot

Assumptions:
® D=cE, B=uH, withyu=1.
® ¢ =¢(x,y) > ¢ > 0 bounded and independent of z.
* E(X,t) = e“tE(X) and H(X,t) = e“tH(X).
Then
curl E = —iwH, gcurl H=iwE, div (¢E)=0, div H=0.

Next, apply curl :

curl curl E = w?cE, div (¢E) =0
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Reduction to Helmholtz Equation

curl curl £ = w?¢E, div (¢E) =0 (1)
Restrict to € = ¢(x, y) and to polarized waves E = (0,0, u). Then
curl curl £ =(0,0,—Au), and

0=div (¢E) = 5(X,y)gu implies v = u(x,y).
z

This reduces (1) to
—Au=uw?u or —-Au=w’u onR%
€

Thus we study the spectral problem for

1
Lu=—=Auin [2(R?),
5

2 2
2 = [ <luP.

where
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Periodic Problem & Floquet Transform |

Consider the spectral problem for the selfadjoint operator Ly acting
on L2 (R?) given by

Lou=— Au  with  D(Lg) = H*(R?),

eo(x,y)

where €g(x,y) > ¢ > 0 is bounded and 1-periodic in both x and y.
Periodicity in the x-direction allows us to apply the Floquet

transform:
Uy 1 L2, (R?) = L2 (Q x [-m,7]),

where Q := (0,1) x R, given by
(Ux u)(x, y, k) : Ze’k" (x —n,y)
nGZ
for x € [0,1],y € R, ky € [—m, 7. Uy is an isometric isomorphism.
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Periodic Problem & Floquet Transform I
Floquet transform in the x-direction, gives a family of problems:
—iAu:)\u in Q:=(0,1) xR
€0
with quasiperiodic boundary conditions
; ou . Ou
_ ikx vy — iky ¥
u(l,y)=e™u(0y) and S-(Ly)=e"5(0.y) (2)
for ky € B := [—m, 7.
Let Lo(kx) be the operator acting in LgO(Q) given by
I
eo(x,y)
subject to the quasi-periodic boundary conditions (2). Then

Au

Lo(ky)u =

k«€B

D
Loz/Lo(kX) dke and  o(Lo) = J o(Lo(kx))-
B
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Periodic Problem on Strip

For each ky, due to periodicity in the y-direction, we can take
another Floquet transform
Uy : L?O(Q) - Lgo([()? 1]2 X [_ﬂ—aﬂ_])v
given by
(Uy u)(x,y, ky) = Z " u(x,y — n)
neZ
for x,y € [0,1], k, € [—m, ], giving a family of operators
Lo(kx, ky) on L2, ([0,1]) subject to qp-bcs in both x and y.
For the spectrum, we have

U(LO(kX)): U (LO(ank U ( U An kak )

kyeB n \keB

Thus the spectrum of the operator Lo(ky) consists of bands.
Any gap in the spectrum of Ly comes from gaps in the spectra of
all Lo(kx, ky).
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Waveguide

On L2(IR?) consider
_ 1
° LU = —WAU,
® c(x,y) =eo(x,y) +e1(x,y) > ¢ > 0 bounded,
® =1 supported in W =R x (0,1) and 1-periodic in x-direction.
Floquet transform in the x-direction gives family of problems

1
L(kg)u:=— A 3
(lou = ———Au ()

in L2(Q) satisfying qp-boundary conditions (2) with k, € B.
The spectrum of the waveguide problem is given by
o(L) = |J o(L(k))-
keEB
Aim
Fix ks and assume (Ao, A1) is a spectral gap for Lo(kyx). Investigate
o(L(ks)) N (Ao, A1)-
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Results |

Spectral gaps in periodic structures:
® General theory: & Kuchment 01, Joannopoulos & Johnson & Meade &
Winn '08
® Existence: Figotin & Kuchment '96, Hoang & Plum & Wieners '09
(Helmholtz), Filonov '03 (Maxwell)
® Ways of maximizing gap: Cox & Dobson '99 (Helmholtz)
For compact perturbations:
® Stability of essential spectrum, creation and estimates on number of gap
eigenvalues: Figotin & Klein '96, '98 (Maxwell)
For line defects:
® Stability of essential spectrum on the strip, some criteria for existence of
eigenvalues: Ammari & Santosa '04 (Helmholtz)
® Existence of eigenvalues and decay of eigenfunctions away from guide:
Kuchment & Ong '04 (Helmholtz), Miao & Ma '07, '08, Kuchment &
Ong '10 (Maxwell), Parzygnat & Lee & Avniel & Johnson '10
(Schrédinger), Bonnet-BenDhia & Caloz & Mahé '98
Other geometric perturbations: Borisov & Exner & Gadyl'shin &

& Taskinen '15, Melnichuk & Popov '05, Popov & Trifanov &
Trifanova '10 10/24



Results 11

This talk

® Even small perturbations £; lead to eigenvalues being introduced in the

gap.
® Only finitely many eigenvalues are introduced, in particular, additional

eigenvalues cannot accumulate at the edges of spectral bands.
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Approach: Birman-Schwinger

Consider L(ky)u = Au, i.e.
—Au=MNeo+e1)u onQ=(0,1) xR

where A € (Ao, A1) and all functions satisfy gp-boundary conditions
in x.
Equivalently,

A is an eigenvalue in the gap iff
u=A(Lo(ke) — A) ! <€1u> £0.

Approach: Study unperturbed strip resolvent (Lo(kx) — A)~! acting
on functions supported in [0, 1]2.
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Bloch Functions

Consider

1
Lo(kg)u=——Au= Au
€0

in L2 () with gp-boundary conditions in x.

The Floquet transform U, gives problems on [0, 1]2, parametrised
by k € B with gp-bcs in x and y. Let {\s(k)}sen and {9s(k)}sen
be the eigenvalues and eigenfunctions,

e Lo(ky, K)is(K) = As(k)us(K).
Lemma (see Kato)

These are analytic functions in k on B and for each s € N they can

be continued analytically to a strip in the complex plane
{zeC:Reze(—m—4,m+9), |Imz| <n}

containing the interval B.

Proposition

Let ¥ = {(s, k) € Nx B : Xs(k) = A\1}. Then |X| is finite.
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Resolvent Representation

The Bloch functions are complete: for any r € L2 (Q) we have

r(x) = 7 Z/ ¥s(-5 k)., ¥s(X, k) dk.

seN

For any r € L2 ((0,1)?) let

Ps(k,r)(X) = (Uyr(- k), ¥s(-, k), ¥s(X. k)

1 S
_ m<r(-),¢s(-,k)>eo¢s(x,k)-
Then
(Lo(ke) — A)~1r = \/ESGZN/ A) 1P (k, r)dk

for A outside the spectrum of Lo(ky) (hence for A € (Mg, 1)) and
re L2((0,1)2).

14/24



Generation of Spectrum

Assumptions:

® e >0,
® there exists a ball D such that infpe; = a > 0.
Consider
v =\ (Lo(ky) — A)~ (%) .
€0

Set v = ,/i—éu. Then v is supported in [0,1]? and v satisfies

€1 -1 /€1
=M/ — (Lo(ks) = A —V.
V=X (Lolk) =) 2

Define Ay on L2 ((0,1)?) by

A=\ ? (Lo(ke) — A) !

0 €0

Aim: Find A € (Ao, A1) such that 1 € o,(Ay).

€1
—vV
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Properties of A,

€1 1
Avw = A/ — (Lolks) — A —v.
AV EO( o(kx) = A) ="

Lemma
For A € (Ao, A1), Ax = L2,((0,1)) — L2 ((0,1)?) is symmetric and
compact.
Set " >
u,u
Kmax(A\) = sup M Teo
lul20 (s U)o,

Lemma
Let X € ()\0,)\1).

O )\ — Kmax(A) is continuous.

® )\ — Kmax(A) is monotonically increasing.
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Estimates for xmax ()

_ ;/_ZZ(As(k)—)\)l <\/§“7¢5("k)>€0

seN
Now for A in (Ao, A1), and sp € N such that A; is the lowest point
of the band function A (),

2
dk.

2

<A>\U, U>€0 < % /:;(As(k) — )\)_1 <\/Zu,¢s(.’ k)>8 dk
>50 ) 2 0
a0 L 2 (e et) | o
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Upper Estimate for kpmax ()

2
dk

(Aru, u)e, 27 )\1 / Z

(Zuvicn),
Alleall oo

= ()\1 o )\)Inf€0 || ||80 :

IN

o If flexfloo < 25
N e ()\0, )\1)

® Given a fixed A in the gap, the perturbation needs to have a
certain size to make Kmax(A) > 1 (a necessary condition for A
being a gap eigenvalue) and the further A is from Ay, the
larger this threshold perturbation has to be.

" X=X infey then Kmax(\') < 1 for some
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Lower Estimate for max(A)
Let A\s,(ko) = A1 > 0. There exist 6 > 0 and a > 0 such that

[ (W0 ko), ¥ (- K)) 12 ) 2>a for ke (ko—6 ko+9).

Choose u = \/ggbsO(‘, ko)Xxp- Then

2

Axu, /
(Anu ;)80 _ / Z < ﬂu’ws(.jk)> dk
lullZ, 27rIIUH T seN €0 0
a\ /k0+5 dk c
2m |[ullZ, Jo-5 Aso(k) =A

Moreover, with A\g (k) < A1 + a(k — ko)?

ko+-0 dk 2 a
> arctan 5) —o00as A A
/ko—6 )\50(/() - Oz()\l — )\) ( A1 — A -

SO Fmax(A) = +00, as A — A1.
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Result on Generation of Spectrum

Theorem
Assume that €1 > 0 and that

()\1 — )\o) inf €0

<
el v

Then there exists an eigenvalue of the operator L(ky) in the
spectral gap (Mo, A1) of Lo(kx).

Proof

Choose €1 as above. Then Kmax(\') < 1 for some X in the gap. By
the Intermediate Value Theorem, we find A € (A, A1) with
Kmax(A) =1, i.e. Xis an eigenvalue of L(ky). O
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Number of Eigenvalues

Let %] = [{(s, k) : As(K) = Ma}| =
Non-degeneracy assumption: As(k) > A1 + alk — k|? for
(s,k) € X, k close to k

Theorem
Let e1 > 0 be sufficiently small. Then precisely n eigenvalues are
created in the gap.

Outline of proof

® The set M = {4s(-, k) : (s, k) € L} is linearly independent
over D.

o | = {u : \/%u L aps(-, k) for all (s, k) € Z} has
codimension n.

o (Au,u),, < Clletllo lull?, for u € L, A € (Ao, A1). Hence
Clle1]|oo < 1 implies Kptp1(A) < 1.

* (Ayu, ”>50 — 00 as A " Aq for u € span %SXDM- Hence

kn(A) = oo for A — Ap. 2124



Further results

e All results have an analogue for negative perturbations €1 < 0,
where the spectrum appears from the lower end of the gap.

® One would expect the result on generation of spectrum also to
hold for large perturbations.

Theorem
For any perturbation £1, the eigenvalues of L(ky) cannot
accumulate at the band edges.

® Results carry over to 3D-Helmholtz equation for slab and line
defects (with some regularity assumptions on the band
functions).

® For TE-modes, the Maxwell equations reduce to divergence
form elliptic operators. We have similar results also for this
case, making use of Green's operators.
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Spectrum of Waveguide

For the wave-guide problem in the plane described by L, the
spectrum arises as

k«€B

The eigenvalues depend continuously on the parameter ky, so
® the band spectrum consists of intervals,

® at most finitely many intervals can be introduced into any gap
of the spectrum of the unperturbed problem,

® the spectrum does not contain eigenvalues (Hoang-Radosz
'14), so light of these frequencies is transmitted through the
structure.
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Thank you
for your attention!



