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Motivation

Photonic Crystals
• typically manufactured using periodic crystalline structures
• allow propagation of EM waves only of well-defined
frequencies
• band-gap structure of the spectrum

Waveguides
• consider infinite periodic structure with line defect
• line defects can support guided modes which propagate along
the defect
• guided modes are confined near defect
• frequencies of guided modes focussed in band gaps
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Maxwell Equations

curl E = −∂B
∂t , curl H = ∂D

∂t , div D = 0, div B = 0.

Assumptions:
• D = εE , B = µH, with µ ≡ 1.
• ε = ε(x , y) ≥ c > 0 bounded and independent of z .
• E (~x , t) = eiωtE (~x) and H(~x , t) = eiωtH(~x).

Then

curl E = −iωH, 1
ε

curl H = iωE , div (εE ) = 0, div H = 0.

Next, apply curl :

curl curl E = ω2εE , div (εE ) = 0
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Reduction to Helmholtz Equation

curl curl E = ω2εE , div (εE ) = 0 (1)
Restrict to ε = ε(x , y) and to polarized waves E = (0, 0, u). Then

curl curl E = (0, 0,−∆u), and

0 = div (εE ) = ε(x , y)∂u
∂z implies u = u(x , y).

This reduces (1) to

−∆u = ω2εu or − 1
ε

∆u = ω2u on R2.

Thus we study the spectral problem for

Lu = −1
ε

∆u in L2
ε(R2),

where
‖u‖2ε =

∫
R2
ε|u|2.
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Periodic Problem & Floquet Transform I

Consider the spectral problem for the selfadjoint operator L0 acting
on L2

ε0(R2) given by

L0u = − 1
ε0(x , y)∆u with D(L0) = H2(R2),

where ε0(x , y) ≥ c > 0 is bounded and 1-periodic in both x and y .
Periodicity in the x -direction allows us to apply the Floquet
transform:

Ux : L2
ε0(R2)→ L2

ε0(Ω× [−π, π]),

where Ω := (0, 1)× R, given by

(Ux u)(x , y , kx ) := 1√
2π
∑
n∈Z

eikx nu(x − n, y)

for x ∈ [0, 1], y ∈ R, kx ∈ [−π, π]. Ux is an isometric isomorphism.
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Periodic Problem & Floquet Transform II
Floquet transform in the x -direction, gives a family of problems:

− 1
ε0

∆u = λu in Ω := (0, 1)× R

with quasiperiodic boundary conditions

u(1, y) = eikxu(0, y) and ∂u
∂x (1, y) = eikx ∂u

∂x (0, y) (2)

for kx ∈ B := [−π, π].
Let L0(kx ) be the operator acting in L2

ε0(Ω) given by

L0(kx )u = − 1
ε0(x , y)∆u

subject to the quasi-periodic boundary conditions (2). Then

L0 =

⊕∫
B

L0(kx ) dkx and σ(L0) =
⋃

kx∈B
σ(L0(kx )).

7 / 24



Periodic Problem on Strip
For each kx , due to periodicity in the y -direction, we can take
another Floquet transform

Uy : L2
ε0(Ω)→ L2

ε0([0, 1]2 × [−π, π]),
given by

(Uy u)(x , y , ky ) := 1√
2π
∑
n∈Z

eiky nu(x , y − n)

for x , y ∈ [0, 1], ky ∈ [−π, π], giving a family of operators
L0(kx , ky ) on L2

ε0([0, 1]2) subject to qp-bcs in both x and y .
For the spectrum, we have

σ(L0(kx )) =
⋃

ky∈B
σ(L0(kx , ky )) =

⋃
n

 ⋃
ky∈B

λn(kx , ky )

.
Thus the spectrum of the operator L0(kx ) consists of bands.
Any gap in the spectrum of L0 comes from gaps in the spectra of
all L0(kx , ky ).
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Waveguide
On L2

ε(R2) consider
• Lu = − 1

ε(x ,y) ∆u,
• ε(x , y) = ε0(x , y) + ε1(x , y) > c > 0 bounded,
• ε1 supported in W = R× (0, 1) and 1-periodic in x -direction.

Floquet transform in the x -direction gives family of problems

L(kx )u := − 1
ε0 + ε1

∆u (3)

in L2
ε(Ω) satisfying qp-boundary conditions (2) with kx ∈ B.

The spectrum of the waveguide problem is given by

σ(L) =
⋃

kx∈B
σ(L(kx )).

Aim
Fix kx and assume (λ0, λ1) is a spectral gap for L0(kx ). Investigate
σ(L(kx )) ∩ (λ0, λ1).
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Results I
• Spectral gaps in periodic structures:

• General theory: & Kuchment ’01, Joannopoulos & Johnson & Meade &
Winn ’08

• Existence: Figotin & Kuchment ’96, Hoang & Plum & Wieners ’09
(Helmholtz), Filonov ’03 (Maxwell)

• Ways of maximizing gap: Cox & Dobson ’99 (Helmholtz)
• For compact perturbations:

• Stability of essential spectrum, creation and estimates on number of gap
eigenvalues: Figotin & Klein ’96, ’98 (Maxwell)

• For line defects:
• Stability of essential spectrum on the strip, some criteria for existence of

eigenvalues: Ammari & Santosa ’04 (Helmholtz)
• Existence of eigenvalues and decay of eigenfunctions away from guide:

Kuchment & Ong ’04 (Helmholtz), Miao & Ma ’07, ’08, Kuchment &
Ong ’10 (Maxwell), Parzygnat & Lee & Avniel & Johnson ’10
(Schrödinger), Bonnet-BenDhia & Caloz & Mahé ’98

• Other geometric perturbations: Borisov & Exner & Gadyl’shin &
Krejčiřík ’01, Exner & Šeba & Tater & Vaněk ’96, Cardone & Nazarov
& Taskinen ’15, Melnichuk & Popov ’05, Popov & Trifanov &
Trifanova ’10 10 / 24



Results II

This talk
• Even small perturbations ε1 lead to eigenvalues being introduced in the

gap.
• Only finitely many eigenvalues are introduced, in particular, additional

eigenvalues cannot accumulate at the edges of spectral bands.
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Approach: Birman-Schwinger

Consider L(kx )u = λu, i.e.

−∆u = λ(ε0 + ε1)u on Ω = (0, 1)× R

where λ ∈ (λ0, λ1) and all functions satisfy qp-boundary conditions
in x .
Equivalently,

− 1
ε0

∆u − λu = λ
ε1
ε0

u.

λ is an eigenvalue in the gap iff

u = λ (L0(kx )− λ)−1
(
ε1
ε0

u
)
6= 0.

Approach: Study unperturbed strip resolvent (L0(kx )− λ)−1 acting
on functions supported in [0, 1]2.
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Bloch Functions

Consider
L0(kx )u = − 1

ε0
∆u = λu

in L2
ε0(Ω) with qp-boundary conditions in x .

The Floquet transform Uy gives problems on [0, 1]2, parametrised
by k ∈ B with qp-bcs in x and y . Let {λs(k)}s∈N and {ψs(k)}s∈N
be the eigenvalues and eigenfunctions,
i.e. L0(kx , k)ψs(k) = λs(k)ψs(k).

Lemma (see Kato)
These are analytic functions in k on B and for each s ∈ N they can
be continued analytically to a strip in the complex plane

{z ∈ C : Re z ∈ (−π − δ, π + δ), |Im z | < η}
containing the interval B.
Proposition
Let Σ = {(s, k) ∈ N× B : λs(k) = λ1}. Then |Σ| is finite.
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Resolvent Representation

The Bloch functions are complete: for any r ∈ L2
ε0(Ω) we have

r(~x) = 1√
2π
∑
s∈N

∫ π

−π
〈Uy r(·, k), ψs(·, k)〉ε0

ψs(~x , k) dk.

For any r ∈ L2
ε0((0, 1)2) let

Ps(k, r)(~x) := 〈Uy r(·, k), ψs(·, k)〉ε0
ψs(~x , k)

= 1√
2π
〈r(·), ψs(·, k)〉ε0

ψs(~x , k).

Then
(L0(kx )− λ)−1r = 1√

2π
∑
s∈N

∫ π

−π
(λs(k)− λ)−1Ps(k, r)dk

for λ outside the spectrum of L0(kx ) (hence for λ ∈ (λ0, λ1)) and
r ∈ L2

ε0((0, 1)2).
14 / 24



Generation of Spectrum
Assumptions:
• ε1 ≥ 0,
• there exists a ball D such that infD ε1 = α > 0.

Consider
u = λ (L0(kx )− λ)−1

(
ε1
ε0

u
)
.

Set v =
√

ε1
ε0
u. Then v is supported in [0, 1]2 and v satisfies

v = λ

√
ε1
ε0

(L0(kx )− λ)−1
√
ε1
ε0

v .

Define Aλ on L2
ε0((0, 1)2) by

Aλv := λ

√
ε1
ε0

(L0(kx )− λ)−1
√
ε1
ε0

v .

Aim: Find λ ∈ (λ0, λ1) such that 1 ∈ σp(Aλ).
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Properties of Aλ

Aλv = λ

√
ε1
ε0

(L0(kx )− λ)−1
√
ε1
ε0

v .

Lemma
For λ ∈ (λ0, λ1), Aλ : L2

ε0((0, 1)2)→ L2
ε0((0, 1)2) is symmetric and

compact.
Set

κmax (λ) = sup
‖u‖6=0

〈Aλu, u〉ε0

〈u, u〉ε0

.

Lemma
Let λ ∈ (λ0, λ1).

1 λ 7→ κmax (λ) is continuous.
2 λ 7→ κmax (λ) is monotonically increasing.
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Estimates for κmax(λ)

〈Aλu, u〉ε0
= λ

〈
ε0

(
− 1
ε0

∆− λ
)−1√ε1

ε0
u,
√
ε1
ε0

u
〉

L2(Ω)

= λ

2π

∫ π

−π

∑
s∈N

(λs(k)− λ)−1
∣∣∣∣∣
〈√

ε1
ε0

u, ψs(·, k)
〉
ε0

∣∣∣∣∣
2

dk.

Now for λ in (λ0, λ1), and s0 ∈ N such that λ1 is the lowest point
of the band function λs0(·),

〈Aλu, u〉ε0
≤ λ

2π

∫ π

−π

∑
s≥s0

(λs(k)− λ)−1
∣∣∣∣∣
〈√

ε1
ε0

u, ψs(·, k)
〉
ε0

∣∣∣∣∣
2

dk

≤ λ

2π(λ1 − λ)

∫ π

−π

∑
s≥s0

∣∣∣∣∣
〈√

ε1
ε0

u, ψs(·, k)
〉
ε0

∣∣∣∣∣
2

dk
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Upper Estimate for κmax(λ)

〈Aλu, u〉ε0
≤ λ

2π(λ1 − λ)

∫ π

−π

∑
s∈N

∣∣∣∣∣
〈√

ε1
ε0

u, ψs(·, k)
〉
ε0

∣∣∣∣∣
2

dk

≤ λ ‖ε1‖∞
(λ1 − λ) inf ε0

‖u‖2ε0
.

• If ‖ε1‖∞ < λ1−λ0
λ0

inf ε0, then κmax(λ′) < 1 for some
λ′ ∈ (λ0, λ1).
• Given a fixed λ in the gap, the perturbation needs to have a

certain size to make κmax(λ) ≥ 1 (a necessary condition for λ
being a gap eigenvalue) and the further λ is from λ1, the
larger this threshold perturbation has to be.
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Lower Estimate for κmax(λ)
Let λs0(k0) = λ1 > 0. There exist δ > 0 and a > 0 such that

| 〈ψs0(·, k0), ψs0(·, k)〉L2
ε0 (D) |

2 ≥ a for k ∈ (k0 − δ, k0 + δ).

Choose u =
√

ε0
ε1
ψs0(·, k0)χD. Then

〈Aλu, u〉ε0

‖u‖2ε0

= λ

2π ‖u‖2ε0

∫ π

−π

∑
s∈N

(λs(k)− λ)−1
∣∣∣∣∣
〈√

ε1
ε0

u, ψs(·, k)
〉
ε0

∣∣∣∣∣
2

dk

≥ aλ
2π ‖u‖2ε0

∫ k0+δ

k0−δ

dk
λs0(k)− λ − C .

Moreover, with λs0(k) ≤ λ1 + α(k − k0)2

∫ k0+δ

k0−δ

dk
λs0(k)− λ ≥ 2√

α(λ1 − λ)
arctan

(√
α

λ1 − λ
δ

)
→∞ as λ↗ λ1

So κmax(λ)→ +∞, as λ→ λ1.
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Result on Generation of Spectrum

Theorem
Assume that ε1 ≥ 0 and that

‖ε1‖∞ <
(λ1 − λ0) inf ε0

λ0
.

Then there exists an eigenvalue of the operator L(kx ) in the
spectral gap (λ0, λ1) of L0(kx ).

Proof
Choose ε1 as above. Then κmax(λ′) < 1 for some λ′ in the gap. By
the Intermediate Value Theorem, we find λ ∈ (λ′, λ1) with
κmax(λ) = 1, i.e. λ is an eigenvalue of L(kx ).
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Number of Eigenvalues
Let |Σ| = |{(s, k) : λs(k) = λ1}| = n.
Non-degeneracy assumption: λs(k̃) ≥ λ1 + α|k − k̃|2 for
(s, k) ∈ Σ, k̃ close to k
Theorem
Let ε1 ≥ 0 be sufficiently small. Then precisely n eigenvalues are
created in the gap.

Outline of proof
• The set M = {ψs(·, k) : (s, k) ∈ Σ} is linearly independent

over D.
• L =

{
u :
√

ε1
ε0
u ⊥ ψs(·, k) for all (s, k) ∈ Σ

}
has

codimension n.
• 〈Aλu, u〉ε0

≤ C ‖ε1‖∞ ‖u‖
2
ε0

for u ∈ L, λ ∈ (λ0, λ1). Hence
C‖ε1‖∞ < 1 implies κn+1(λ) < 1.
• 〈Aλu, u〉ε0

→∞ as λ↗ λ1 for u ∈ span
√

ε0
ε1
χDM. Hence

κn(λ)→∞ for λ→ λ1. 21 / 24



Further results

• All results have an analogue for negative perturbations ε1 ≤ 0,
where the spectrum appears from the lower end of the gap.
• One would expect the result on generation of spectrum also to
hold for large perturbations.

Theorem
For any perturbation ε1, the eigenvalues of L(kx ) cannot
accumulate at the band edges.

• Results carry over to 3D-Helmholtz equation for slab and line
defects (with some regularity assumptions on the band
functions).
• For TE-modes, the Maxwell equations reduce to divergence
form elliptic operators. We have similar results also for this
case, making use of Green’s operators.
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Spectrum of Waveguide

For the wave-guide problem in the plane described by L, the
spectrum arises as

σ(L) =
⋃

kx∈B
σ(L(kx )).

The eigenvalues depend continuously on the parameter kx , so
• the band spectrum consists of intervals,
• at most finitely many intervals can be introduced into any gap
of the spectrum of the unperturbed problem,
• the spectrum does not contain eigenvalues (Hoang-Radosz
’14), so light of these frequencies is transmitted through the
structure.
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Thank you
for your attention!
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