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An interesting example is given by the Helmholtz resonator
P.D.Hislop, A.Martinez, Scattering resonances of Helmholtz resonator, Indiana Univ. Math.
J. 40 (1991), 767–788.
Consider the Laplace operator in bounded domain Ωin ∈ R

3 with the Neumann or
Dirichlet boundary condition. It is a self-adjoint operator with purely discrete spectrum.
The set of its eigenfunctions is complete in L2(Ω

in). Consider now a perturbed problem, in
which there is a small coupling window in the boundary connecting Ωin and
Ωex = R3 \ Ωin. This perturbation destroys the point spectrum of the initial operator.
Eigenvalues move to the complex plane and become resonances (quasi-eigenvalues). The
corresponding resonance states (formed from the eigenstates) satisfy the proper Helmholtz
equation and the boundary condition but do not belong to L2(R

3) (due to this reason they
are not eigenfunctions, the integral of its square diverges at infinity). But what about
completeness? The resonance states belong to L2(Ω) for any bounded Ω. Is there such
domain Ω that the resonance states are complete in L2(Ω)? We are interested in maximal
domain. I believe that such domain is the convex hull of the scatterer (Ωin with the
boundary window). But at present, this conjecture has not yet been proved.
The simplest example of such scattering system is given by quantum graphs.
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Several approaches:
Lax-Phillips scattering theory. P.D.Lax and R.S.Phillips. Scattering theory. Academic
Press, New York (1967)
Complex scaling J.Sjöstrand, M.Zworski. Complex scaling and the distribution of
scattering poles. J.Amer. Math. Soc. 4 (1991) 729-769.
Perturbation theory. S.Agmon. A perturbation theory of resonances. Comm. Pure Appl.
Math. 51 (1998) 1255-1309. M.Rouleux. Resonances for a semi-classical Schrödinger
operator near a non trapping energy level. Publ. RIMS, Kyoto Univ. 34 (1998) 487-523.
Functional model. S. V.Khrushchev, N.K.Nikol’skii, B.S.Pavlov. Unconditional bases of
exponentials and of reproducing kernels, Complex Analysis and Spectral Theory
(Leningrad, 1979/1980), Lecture Notes in Math., vol. 864, Springer-Verlag, BerlinЏNew
York, 214Џ-335 (1981).
Asymptotic method. R.R.Gadyl’shin, Existence and asymptotics of poles with small
imaginary part for the Helmholtz resonator, Russian Mathematical Surveys, 52 (1) (1997),
1–72.
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In the case of a non-homogeneous string and in the related case of a 1-D Schrödinger
equation, the completeness and the Riesz basis properties were a subject of intensive
studies in connection with the Regge problem. There are several approaches to the
formulation of the completeness problem.
One considers the family of root vectors of an operator that has resonances as its
eigenvalues. This operator is essentially the generator of the semigroup for the associated
wave equation:
M.G. Krein, A.A. Nudelman, On direct and inverse problems for frequencies of boundary
dissipation of inhomogeneous string, Dokl. Akad. Nauk SSSR, 247 (5) (1979), 1046–1049.
M.G. Krein, A.A. Nudelman, Some spectral properties of a nonhomogeneous string with a
dissipative boundary condition, J. Operator Theory 22 (1989), 369–395 (Russian).
The studies in this direction were continued by
S. Cox, E. Zuazua, The rate at which energy decays in a string damped at one end,
Indiana Univ. Math. J., 44 (2) (1995), 545–573.
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Another approach considers the completeness of resonant modes in suitable L2-spaces on
the intervals of the real line
M.A. Shubov, Asymptotics of resonances and eigenvalues for nonhomogeneous damped
string. Asymptotic Analysis, 13 (1) 1996, 31–78.
S.V. Hrushchev, The Regge problem for strings, unconditionally convergent eigenfunction
expansions, and unconditional bases of exponentials in L2(−T, T ). Journal of Operator
Theory, 14 (1) (1985), 67–85.
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We consider quantum graphs of the following structure. Let us start with a finite compact
metric graph Γ0 and choose some subset of vertices of Γ0, to be called external vertices,
and attach one or more copies of [0;∞), to be called leads, to each external vertex; the
point 0 in a lead is thus identified with the relevant external vertex. The thus extended
graph Γ is the subject of the investigation. we will call the edges of Γ0 as "edges"(or
internal edges, Eint and other (infinite) edges of Γ as the "leads"(Eext). Correspondingly,
let V be the set of all vertices of Γ, let V ext be the set of all external vertices, and let
V int = V \ V ext; the elements of V int will be called internal vertices.

Definition 0.1 A vertex is named "external"if it has semi-infinite lead attached and
"internal"in the opposite case.

Definition 0.2 An external vertex is named "balanced"if for this vertex the numbers of
attached leads equals to the number of attached edges. If it is not balanced, we call it
unbalanced.
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We consider one-dimensional free Schrödinger operator on each edge and lead (i.e. the

second derivative: H = − d2

dx2 ). The domain of H consists of continuous functions on Γ,
belonging to W 2

2 on each lead and edge satisfying the boundary conditions at boundary
vertices (we assume the Dirichlet condition), coupling conditions at other vertices (we
assume the Kirchhoff condition):

∑

e,v∈e

(−1)κ(e(v))
∂ψ

∂x
= 0, (1)

where κ(e(v)) = 0 for outgoing edge/lead e and κ(e(v)) = 1 for incoming edge e (we
assumed earlier that all leads are outgoing).
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The standard definition of resonance is as follows

Definition 0.3 We will say that k ∈ C, k 6= 0, is a resonance of H (or, by a slight abuse
of terminology, a resonance of Γ) if there exists a resonance eigenfunction (resonance
state) f, f ∈ L2

locΓ, which satisfies the equation

−d
2f

dx2
(x) = k2f(x), x ∈ Γ,

on each edge and lead of Γ, is continuous on Γ, satisfies the boundary conditions at
boundary vertices, coupling conditions at other vertices, and the radiation condition
f(x) = f(0)eikx on each lead.

We denote the set of resonances as Λ. Below we will give one more, equivalent, definition
of resonances in the framework of the Lax-Phillips scattering theory.
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We define the resonance counting function by

N(R) = ]{k : k ∈ Λ, |k| ≤ R}, R > 0,

with the convention that each resonance is counted with its algebraic multiplicity taken
into account. Note that the set R of resonances is invariant under the symmetry k → −k,
so this method of counting yields, roughly speaking, twice as many resonances as one
would obtain if one imposed an additional condition <(k) ≥ 0. In particular, in the absence
of leads, N(R) equals twice the number of eigenvalues λ 6= 0 of H (counting
multiplicities) with λ ≤ R2.
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There are works concerning to asymptotic of resonances in the complex plane.
E.B.Davies, A.Pushnitski. Non-Weyl resonance asymptotics for quantum graphs. Analysis
and PDE 4 (2011), 729Џ756.
E.B. Davies, P. Exner, J. Lipovsky: Non-Weyl asymptotics for quantum graphs with
general coupling conditions, J. Phys. A: Math. Theor. 43 (2010), 474013.
P. Exner, J. Lipovsky. Non-Weyl resonance asymptotics for quantum graphs in a magnetic
field. Phys. Lett. A375 (2011), 805-807.
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If there are no leads then H has pure point spectrum, there are no resonances, but we can
say that resonances are identified with eigenvalues of H, and it is known that for these
eigenvalues, one has Weyl’s law:

N(R) =
2

π
vol(Γ0)R+ o(R), asR→ ∞, (2)

where vol(Γ0)is the sum of the lengths of the edges of Γ0. We say that Γ (i.e. the
corresponding graph with leads) is a Weyl graph, if the asymptotics (2) takes place for
resonances of Γ.
The following theorem was proved by Davies, Pushnitski (2011).

Theorem 0.4 One has

N(R) =
2

π
WR+O(1), asR→ ∞, (3)

where the coefficient W satisfies 0 ≤W ≤ vol(Γ0). One has W = vol(Γ0) if and only if
every external vertex of Γ is unbalanced.
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Consider the Cauchy problem for the time-dependent Schrödinger equation on the graph Γ:

{

i~u′t = Hu,
u(x, 0) = u0(x), x ∈ Γ.

(4)

The standard Lax-Phillips approach is applied to the wave (acoustic) equation. There is a
close relation between the Schrödinger and wave cases.We will describe it briefly following
(Lax and Phillips, 1971). Consider the Cauchy problem for the wave equation

{

u′′tt = u′′xx,
u(x, 0) = u0(x), u

′
t(x, 0) = u1(x), x ∈ Γ.

(5)

Let E be the Hilbert space of two-component functions (u0, u1) on the graph with finite
energy

‖(u0, u1)‖2E = 2−1

∫

Γ

(|u′0|2 + |u1|2)dx.

The pair (u0, u1) is called the Cauchy data. Solving operator for problem (5), U(t),
U(t)(u0, u1) = (u(x, t), u′t(x, t)), is unitary in E .
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Unitary group U(t)|t∈R has two orthogonal (in E) subspaces, D− and D+, called,
correspondingly, incoming and outgoing subspaces.

Definition 0.5 The outgoing (incoming) subspace D+(D−) is a subspace of E having the
following properties:
(a) U(t)D+ ⊂ D+ for t > 0; U(t)D− ⊂ D− for t < 0,
(b) ∩t>0U(t)D+ = {0}; ∩t<0U(t)D− = {0}
(c) ∪t<0U(t)D+ = E , ∪t>0U(t)D− = E .

The incoming and outgoing subspaces are not unique. In our case we use the following
choice. For the graph Γ, the subspace D+ contains functions vanishing at Γ0 (e.g. on all
edges of finite length) and satisfying the radiation condition on all leads.
Let P± be the orthogonal projection of E onto the orthogonal complement of D±.
Consider the semigroup {Z(t)}|t≥0 of operators on E defined by

Z(t) = P+U(t)P−, t ≥ 0.
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Lax and Phillips proved the following theorem [?].

Theorem 0.6 The operators {Z(t)}|t≥0 annihilate D+ and D−, map the orthogonal
complement subspace K = E 	 (D− ⊕D+) into itself and form a strongly continuous
semigroup (i.e., Z(t1)Z(t2) = Z(t1 + t2) for t1, t2 ≥ 0) of contraction operators on K.
Furthermore, we have s-limt→∞ Z(t) = 0. The space E can be represented isometrically as
the Hilbert space of functions L2(R, N) for some auxiliary Hilbert space N in such a way
that U(t) goes to translation to the right by t units and D+ is mapped onto L2(R+, N).
This representation is unique up to an isomorphism of N .

Such a representation is called an outgoing translation representation. Analogously, one
can obtain an incoming translation representation, i.e., if D− is an incoming subspace with
respect to the group {U(t)}t∈R then there is a representation in which E is mapped
isometrically onto L2(R, N), U(t) goes to translation to the right by t units and D− is
mapped onto L2(R−, N).
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The Lax-Phillips scattering operator S̃ is defined as follows (it was proved that this
definition is equivalent to the standard one). Suppose W+ : E → L2(R, N) and
W− : E → L2(R, N) are the mappings of E onto the outgoing and incoming translation
representations, respectively. The map S̃ : L2(R, N) → L2(R, N) is defined by the formula

S̃ =W+(W−)
−1.

For most purposes it is more convenient to work with the Fourier transforms F of the
incoming and the outgoing translation representations, respectively, called the incoming
spectral representation and the outgoing spectral representation. In the incoming
(outgoing) spectral representation, D−(+) is represented by H2

+(−)(R, N), i.e., by the

space of boundary values on R of functions in the Hardy space H2(C+(−), N) of
vector-valued functions (with values in N) defined in the upper (lower) half-plane C

+(−).

S = FS̃F−1.

The operator S is realized as the operator of multiplication by the operator-valued function
S(·) : R → B(N), where B(N) is the space of all bounded linear operators on N . S(·) is
called the Lax-Phillips S-matrix.
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Theorem 0.7 (Lax and Phillips) (a) S(·) is the boundary value on R of an
operator-valued function S(·) : C+ → B(N) analytic in C

+,
(b) ‖S(z)‖ ≤ 1 for every z ∈ C

+,
(c) S(E), E ∈ R, is, pointwise, a unitary operator on N .

A conventional procedure allows one to construct the analytic continuation of S(·) from
the upper half-plane to the lower half-plane:

S(z) = (S∗(z))−1, =z < 0.

Thus, S(·) is a meromorphic operator-valued function on the whole complex plane. Let B
be the generator of the semigroup Z(t) : Z(t) = exp iBt, t > 0. In our case, the operator B
acts as the second derivative on the edges of Γ. The domain of the operator consists of
functions from the Sobolev space W 2

2 (Γ0) satisfying the coupling conditions at the graph
vertices and functions satisfying the radiation condition at leads. The the square roots of
eigenvalues of B are called resonances and the corresponding root vectors are the resonance
states. Note that this definition of resonance is in accordance with Definition 0.3.
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There is a relation between the eigenvalues of B and the poles of the S-matrix.

Theorem 0.8 If =k < 0, then k belongs to the point spectrum of B if and only if S∗(k)
has a non-trivial null space.

Remark 0.9 The theorem shows that a pole of the Lax-Phillips S-matrix at a point k in
the lower half-plane is associated with an eigenvalue k2 of the generator B of the
Lax-Phillips semigroup Z(t). In other words, resonance poles of the Lax-Phillips S-matrix
correspond to eigenvalues of the Lax-Phillips semigroup with well defined eigenvectors
belonging to the subspace K = E 	 (D− ⊕D+), which is called the resonance subspace.
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Theorem 0.10 There is a pair of isometric maps T± : E → L2(R, N) (the outgoing and
incoming spectral representations) having the following properties:

T±U(t) = eiktT±, T±D± = H2
±(N), T−D+ = SH2

+(N),

where H2
±(N) is the Hardy space of the upper (lower) half-plane, the matrix-function S is

an inner function in C+, and

K− = T−K = H2
+ 	 SH2

+, T−Z(t)|K = PK
−

eiktT−|K
−

.
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The relation between the acoustic and the Schrödinger scattering matrix is given in (Lax,
Phillips). Namely, it is necessary to consider the operator A2:

A2 =

(

− 1
~
H 0

0 − 1
~
H

)

.

The operator A,

A =

(

0 I
− 1

~
H 0

)

,

is the generator of U(t) for the acoustic problem:

d

dt

(

U(t)

(

u0
u1

))

= AU(t)

(

u0
u1

)

.

One can see that A2 acts as the Hamiltonian − 1
~
H on each component of the data of the

acoustic problem. The relation between the Schrödinger (SSchr) and the acoustic (S)
scattering matrices:

SSchr(z) = S(
√
z).
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The completeness of the system of the root vectors en(ν) in H2
+(N)	 SH2

+(N) is related
to the properties of the analytic operator-function S (characteristic function), more
precisely, to its factorization.
Sz.-Nagy, B., Foias, C., Bercovici, H., Kerchy, L.: Harmonic Analysis of Operators on
Hilbert Space, 2nd edition. Springer, Berlin (2010)
Nikol’skii, N.: Treatise on the shift operator: spectral function theory. Springer Science &
Business Media, Berlin (2012).
Khrushchev, S.V., Nikol’skii, N.K., Pavlov, B.S.: Unconditional bases of exponentials and
of reproducing kernels, Complex Analysis and Spectral Theory (Leningrad, 1979/1980).
Lecture Notes in Math. 864, 214–335 (1981)
Definition 4.1. Operator Z acting in the space X is called complete, if the family of its
root vectors is complete, i.e. if

∨(Ker(Z − λI)n = 0, λ ∈ σp(Z), n ≥ 1) = X.
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Definition 4.2. Blaschke-Potapov product (Potapov) is the following operator:

B(z) =
∏

n

(bλn
(z)Pn + (I − Pn)),

where λn, λn ∈ σp(C) is some ordering (with multiplicities) of the point spectrum of Z(t),
Pn is the corresponding orthogonal projectors in E, bλn

(z) is the Blaschke factor:

bλn
(z) =

|λn|
λn

λn − z

1− λnz
.

Each inner function S can be represented as S = BΘ where B is the Blaschke product and
Θ is singular inner function, i.e. inner function having no zeros in the unit circle (or upper
half-plane). As for scalar functions in the unit circle, there is simple criterion of absence of
the singular inner factor (for operator case there is no such criterion):

lim
r↑1

∫

|ζ|=1

log |ϕ(rζ)|dm(ζ) = 0. (6)
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Theorem 4.3. (Nikolskii) (Completeness criterion). Let S be an inner function,
H2

+(N)	 SH2
+(N), Z = PKU |K . The following statements are equivalent:

1. Operator Z is complete;
2. Operator Z∗ is complete;
3. S is a Blaschke product.
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The problem simplifies considerably for operators of C0 class (operator-functions having
scalar multiples).
Definition 4.4. C0 is a class of all non-unitary contractions Z (or dissipative operator for a
half-plane) such that for each operator of the class, there exists function ϕ,ϕ 6= 0,
annihilating the operator: ϕ(Z) = 0.
Lemma 4.5. Let Z ∈ C0. There exists inner function mZ such that mZ(Z) = 0 and

ϕ ∈ H∞, ϕ(Z) = 0 ⇒ ϕ/mZ ∈ H∞.

Remark 4.6. This function mZ is a minimal annihilator.
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Theorem 4.7. Let ϕ ∈ H∞. The following statements are equivalent:
1. ϕ(Z) = 0.
2. There exists bounded analytic function ω, ω(ζ) ∈ L(N), |ζ| < 1, (or =ζ < 0 for a
half-plane) such that

Sω = ωS = ϕI.

Remark 4.8. If dimN <∞ then the determinant d, d(ζ) = detS(ζ), |ζ| < 1, is an
annihilator for Z.
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For operators of C0 class the completeness criterion becomes simpler.
Theorem 4.9. (Nikolskii) (completeness criterion 1). Let Z ∈ C0. The following
statements are equivalent:
1. Operator Z is complete;
2. Operator Z∗ is complete;
3. mZ is a Blaschke product.
One can see that for such operator, the completeness problem reduces to factorization of
scalar function. Correspondingly, it is possible to use the criterion (6). As for the general
case of the factorization problem, there is no effective criterion of singular factor absence.
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There is a simple criterion for the absence of the singular inner factor in the case
dimN <∞ (in the general operator case there is no such simple criterion).

Theorem 0.11 (Nikolskii). Let dimN <∞. The following statements are equivalent:
1. S is a Blaschke-Potapov product;
2.

lim
r→1

∫

Cr

ln |detS(k)| 2i

(k + i)2
dk = 0, (7)

where Cr is the image of |ζ| = r under the inverse Cayley transform.

The integration curve can be parameterized as Cr = {R(r)eit + iC(r) | t ∈ [0, 2π)} where

C(r) =
1 + r2

1− r2
, R(r) =

2r

1− r2
. (8)

It should be noted that R → ∞ corresponds to r → 1.
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For brevity, we define
s(k) = |detS(k)| ,

and after throwing away constants which are irrelevant for convergence, we obtain the final
form of the criterion (7), which is convenient for us and will be used afterwards:

lim
r→1

2π
∫

0

R(r) ln(s(R(r)eit + iC(r)))

(R(r)eit + iC(r) + i)2
dt = 0. (9)
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Our main theorem is as follows.

Theorem 0.12 Main theorem. The system of resonance states is complete on L2(Γ0) if
and only if every external vertex of Γ is unbalanced.
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To prove the theorem we analyze the algebraic system giving us the scattering matrix.
To construct the scattering matrix for the graph Γ we solve a series of scattering problems
each of them corresponds to wave coming from one lead. In more details, the situation is
as follows. The general solution at each edge and lead (say, eq) has the form
βqe

−ikx + γqe
ikx. This is the solution of scattering problem for wave coming from j−th

lead if the solution on j−th lead has the form e−ikx + sjje
ikx and on p−th lead, p 6= j,

has the form spje
ikx. Coefficients spj are entries of the scattering matrix. As for the

solution at edges (βqje
−ikx + γqje

ikx), we are not interesting in the values of βqj , γqj . The
linear system for determination of spj , βqj , γqj is given by the Dirichlet condition at
boundary vertices, continuity at each non-boundary vertex, the Kirchhoff condition (10) at
each non-boundary vertex. We have separate system for each j, i.e. the number of systems
coincides with the number of semi-infinite leads of Γ.
We consider these systems in balanced and unbalanced cases.
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The second stage is estimation of the integral from the completeness criterion.
The integration curve is divided into several parts. The first part is that inside a strip
0 < y < δ. Here we take into account that at the real axis (y = 0) one has s(k) = 1.
The second part of the integral is related to the singularities, i.e., the roots of s(k)
(resonances). We estimate the integral in small neighborhoods of the singularities and at
the rest of the curve.
Thus, the procedure of estimation is as follows, e.g., for unbalanced case. Choose δ′1, δ1 to
separate the root (or roots) of s(k). If t0 − δ1 > 0 then consider (0, t0 − δ1] separately (for
the second semi-circle π ≤ t < 2π the consideration is analogous). For this part of the
curve with small t (i.e. small y), the estimate of the integral is O(1/

√
R). For the part of

the curve outside these intervals, the estimate of the integral is O(1/R). Consequently, the
full integral is estimated as O(1/

√
R), i.e., the integral tends to zero if R → ∞. In

accordance with the completeness criterion we have the completeness in this case.
The analogous procedure for the case when there is a balanced vertex gives us another
result, non-zero limit, due to the exponential factor.
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Consider the case of the Landau operator (one-dimensional Schrödinger operator with a
magnetic field: H = −( d

dx
+ iAj), Aj is the tangent component of the vector potential

corresponding to the magnetic field for edge ej . We assume the Kirchhoff condition at the
internal vertices:

∑

e,v∈e

(−1)κ(e(v))Dψ = 0, (10)

where κ(e(v)) = 0 for outgoing edge/lead e and κ(e(v)) = 1 for incoming edge e (we
assumed earlier that all leads are outgoing), D is the "magnetic derivative".
Exner and Lipovsky (P. Exner, J. Lipovsky. Non-Weyl resonance asymptotics for quantum
graphs in a magnetic field. Phys. Lett. A375 (2011), 805-807) proved that the magnetic
field does not change the situation with Weyl/non-Weyl asymptotics of resonances in the
case of general coupling condition. We proved that the same take place in respect to
completeness for the Kirchhoff coupling condition.
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Thank you for your attention!


