Hot spots of quantum graphs

Jonathan Rohleder

Ongoing joint work with James Kennedy (Lisbon)

Graz, February 27, 2019

Conjecture (J. Rauch, 1974)

The hottest and coldest points within a perfectly insulated body should converge to the boundary of the body for large times.

Conjecture (J. Rauch, 1974)

The hottest and coldest points within a perfectly insulated body should converge to the boundary of the body for large times.

Let $\Omega \subset \mathbb{R}^d$ be a bounded domain with smooth boundary and consider the Neumann Laplacian

$$D(\Delta_{\Omega}^{N}) = \left\{ u \in H^{1}(\Omega) : \Delta u \in L^{2}(\Omega), \frac{\partial u}{\partial \nu} = 0 \text{ in } L^{2}(\partial \Omega) \right\}$$
$$\Delta_{\Omega}^{N} u = \Delta u$$

Conjecture (J. Rauch, 1974)

The hottest and coldest points within a perfectly insulated body should converge to the boundary of the body for large times.

Let $\Omega \subset \mathbb{R}^d$ be a bounded domain with smooth boundary and consider the Neumann Laplacian

$$D(\Delta_{\Omega}^{N}) = \left\{ u \in H^{1}(\Omega) : \Delta u \in L^{2}(\Omega), \frac{\partial u}{\partial \nu} = 0 \text{ in } L^{2}(\partial \Omega) \right\}$$
$$\Delta_{\Omega}^{N} u = \Delta u$$

For an initial condition u_0 the diffusion of heat in Ω described by

$$u(t,x) = e^{t\Delta_{\Omega}^{N}}u_0(x), \qquad x \in \Omega, \ t > 0.$$

Let $0=\mu_1\leq\mu_2\leq\dots$ eigenvalues, ψ_1,ψ_2,\dots eigenvectors of $-\Delta_\Omega^N$. Then

$$u(t,\cdot)=e^{t\Delta_{\Omega}^{N}}u_{0}=\sum_{k=1}^{\infty}\langle u_{0},\psi_{k}\rangle e^{-t\mu_{k}}\psi_{k}.$$

Let $0=\mu_1\leq\mu_2\leq\dots$ eigenvalues, ψ_1,ψ_2,\dots eigenvectors of $-\Delta_\Omega^N$. Then

$$u(t,\cdot)=e^{t\Delta_{\Omega}^{N}}u_{0}=\sum_{k=1}^{\infty}\langle u_{0},\psi_{k}\rangle e^{-t\mu_{k}}\psi_{k}.$$

The Hot Spots Conjecture

Let $\Omega \subset \mathbb{R}^d$ be a bounded, smooth domain and ψ_2 any eigenfunction associated with the second Neumann eigenvalue μ_2 . Then

$$\max_{x \in \overline{\Omega}} \psi_2(x), \quad \min_{x \in \overline{\Omega}} \psi_2(x)$$

are achieved (only) on $\partial\Omega$.

• ... is true for intervals! If $\Omega=(0,1)$ then $\psi_2(x)=\cos(\pi x)$ with maximum at 0 and minimum at 1.

• ... is true for intervals! If $\Omega = (0,1)$ then $\psi_2(x) = \cos(\pi x)$ with maximum at 0 and minimum at 1. Similar story for balls, rectangles, thin curved strips (Krejčiřík and Tušek 2019), ...

- ... is true for intervals! If $\Omega=(0,1)$ then $\psi_2(x)=\cos(\pi x)$ with maximum at 0 and minimum at 1. Similar story for balls, rectangles, thin curved strips (Krejčiřík and Tušek 2019), ...
- ullet ... is not true for all domains in \mathbb{R}^d . (Burdzy and Werner, Ann. of Math., 1999)

- ...is true for intervals! If $\Omega=(0,1)$ then $\psi_2(x)=\cos(\pi x)$ with maximum at 0 and minimum at 1. Similar story for balls, rectangles, thin curved strips (Krejčiřík and Tušek 2019), ...
- ullet ... is not true for all domains in \mathbb{R}^d . (Burdzy and Werner, Ann. of Math., 1999)
- ... is true for triangles. (Judge and Mondal, preprint 2018)

- ... is true for intervals! If $\Omega=(0,1)$ then $\psi_2(x)=\cos(\pi x)$ with maximum at 0 and minimum at 1. Similar story for balls, rectangles, thin curved strips (Krejčiřík and Tušek 2019), ...
- ullet . . . is not true for all domains in \mathbb{R}^d . (Burdzy and Werner, Ann. of Math., 1999)
- ... is true for triangles. (Judge and Mondal, preprint 2018)
- ... is open for general convex domains, even in two dimensions.

Now $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ connected, compact metric graph:

- V finite vertex set,
- \bullet $\ensuremath{\mathcal{E}}$ finite edge set, each edge is identified with a finite interval,
- multiple parallel edges and loops are allowed.

Now $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ connected, compact metric graph:

- V finite vertex set,
- ullet finite edge set, each edge is identified with a finite interval,
- multiple parallel edges and loops are allowed.

- $-\Delta = -\frac{d^2}{dx^2}$ on each edge,
- Functions in dom $(-\Delta)$ are continuous on $\mathcal G$ and satisfy the Kirchhoff condition at each vertex (flow in equals flow out)

Now $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ connected, compact metric graph:

- V finite vertex set,
- ullet finite edge set, each edge is identified with a finite interval,
- multiple parallel edges and loops are allowed.

- $-\Delta = -\frac{d^2}{dx^2}$ on each edge,
- Functions in $dom(-\Delta)$ are continuous on $\mathcal G$ and satisfy the Kirchhoff condition at each vertex (flow in equals flow out)
- Kirchhoff equals Neumann in a vertex of degree one,

Now $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ connected, compact metric graph:

- V finite vertex set,
- ullet finite edge set, each edge is identified with a finite interval,
- multiple parallel edges and loops are allowed.

- $-\Delta = -\frac{d^2}{dx^2}$ on each edge,
- Functions in $dom(-\Delta)$ are continuous on $\mathcal G$ and satisfy the Kirchhoff condition at each vertex (flow in equals flow out)
- Kirchhoff equals Neumann in a vertex of degree one,
- The operator Δ generates a C_0 -semigroup which determines diffusion on a "perfectly insulated" graph,

Now $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ connected, compact metric graph:

- V finite vertex set,
- ullet finite edge set, each edge is identified with a finite interval,
- multiple parallel edges and loops are allowed.

- $-\Delta = -\frac{d^2}{dx^2}$ on each edge,
- Functions in $dom(-\Delta)$ are continuous on $\mathcal G$ and satisfy the Kirchhoff condition at each vertex (flow in equals flow out)
- Kirchhoff equals Neumann in a vertex of degree one,
- The operator Δ generates a C_0 -semigroup which determines diffusion on a "perfectly insulated" graph,
- $\mu_1 = 0$ with eigenfunction constant,

Now $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ connected, compact metric graph:

- ullet ${\cal V}$ finite vertex set,
- ullet finite edge set, each edge is identified with a finite interval,
- multiple parallel edges and loops are allowed.

- $-\Delta = -\frac{d^2}{dx^2}$ on each edge,
- Functions in $dom(-\Delta)$ are continuous on $\mathcal G$ and satisfy the Kirchhoff condition at each vertex (flow in equals flow out)
- Kirchhoff equals Neumann in a vertex of degree one,
- The operator Δ generates a C_0 -semigroup which determines diffusion on a "perfectly insulated" graph,
- $\mu_1 = 0$ with eigenfunction constant,
- $\mu_2 > 0$ and its eigenfunction(s) ψ_2 change sign in \mathcal{G} .

Question

Where are the maximum and minimum of ψ_2 located, and how does this relate to the geometry of \mathcal{G} ?

Question

Where are the maximum and minimum of ψ_2 located, and how does this relate to the geometry of \mathcal{G} ?

Some definitions:

• $M := \{x \in \mathcal{G} : \exists \psi_2 \text{ achieving its global maximum on } \mathcal{G} \text{ at } x\},$

Question

Where are the maximum and minimum of ψ_2 located, and how does this relate to the geometry of \mathcal{G} ?

Some definitions:

- $M := \{x \in \mathcal{G} : \exists \psi_2 \text{ achieving its global maximum on } \mathcal{G} \text{ at } x\},$
- $M_{loc} := \{x \in \mathcal{G} : \exists \psi_2 \text{ achieving a (nonzero) local maximum on } \mathcal{G} \text{ at } x\} \supset M,$

Question

Where are the maximum and minimum of ψ_2 located, and how does this relate to the geometry of \mathcal{G} ?

Some definitions:

- $M := \{x \in \mathcal{G} : \exists \psi_2 \text{ achieving its global maximum on } \mathcal{G} \text{ at } x\},$
- $M_{loc} := \{x \in \mathcal{G} : \exists \psi_2 \text{ achieving a (nonzero) local maximum on } \mathcal{G} \text{ at } x\} \supset M,$

Question

Where are the maximum and minimum of ψ_2 located, and how does this relate to the geometry of \mathcal{G} ?

Some definitions:

- $M := \{x \in \mathcal{G} : \exists \psi_2 \text{ achieving its global maximum on } \mathcal{G} \text{ at } x\},$
- $M_{loc} := \{x \in \mathcal{G} : \exists \psi_2 \text{ achieving a (nonzero) local maximum on } \mathcal{G} \text{ at } x\} \supset M,$
- $\partial \mathcal{G} := \{ v \in \mathcal{V} : \deg v = 1 \}.$

Some (naive) questions:

• Do we have a "hot spots theorem" for quantum graphs: $M \subset \partial \mathcal{G}$? If so, this would suggest that $\partial \mathcal{G}$ is an (analytically) "good" notion of boundary

Question

Where are the maximum and minimum of ψ_2 located, and how does this relate to the geometry of \mathcal{G} ?

Some definitions:

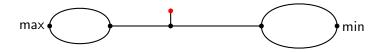
- $M := \{x \in \mathcal{G} : \exists \psi_2 \text{ achieving its global maximum on } \mathcal{G} \text{ at } x\},$
- $M_{loc} := \{x \in \mathcal{G} : \exists \psi_2 \text{ achieving a (nonzero) local maximum on } \mathcal{G} \text{ at } x\} \supset M$,
- $\partial \mathcal{G} := \{ v \in \mathcal{V} : \deg v = 1 \}.$

Some (naive) questions:

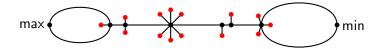
- Do we have a "hot spots theorem" for quantum graphs: $M \subset \partial \mathcal{G}$? If so, this would suggest that $\partial \mathcal{G}$ is an (analytically) "good" notion of boundary
- Does M realise the diameter of \mathcal{G} , i.e., can one find $x, y \in M$ s.t. $\operatorname{dist}(x, y) = \operatorname{diam} \mathcal{G}$? (Or at least $\operatorname{dist}(x, y) \approx \operatorname{diam} \mathcal{G}$?)

M need not have anything to do with $\partial \mathcal{G}$:

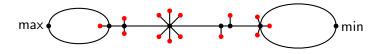
M need not have anything to do with $\partial \mathcal{G}$:

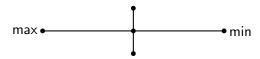


M need not have anything to do with $\partial \mathcal{G}$:

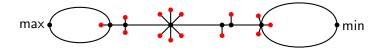


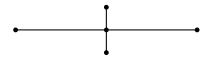
M need not have anything to do with $\partial \mathcal{G}$:



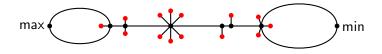


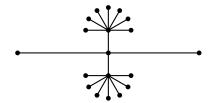
M need not have anything to do with $\partial \mathcal{G}$:



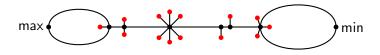


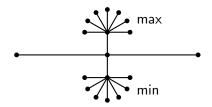
M need not have anything to do with $\partial \mathcal{G}$:





M need not have anything to do with $\partial \mathcal{G}$:





Now $\mathcal T$ tree, i.e., $\mathcal T$ has no cycles or loops. Recall:

- M set of global maxima (and minima),
- M_{loc} is the set of local maxima (and minima).

Now $\mathcal T$ tree, i.e., $\mathcal T$ has no cycles or loops. Recall:

- M set of global maxima (and minima),
- M_{loc} is the set of local maxima (and minima).

Theorem (Kennedy, R. 2018)

(1)
$$M \subset M_{loc} \subset \partial \mathcal{T}$$
;

Now $\mathcal T$ tree, i.e., $\mathcal T$ has no cycles or loops. Recall:

- M set of global maxima (and minima),
- M_{loc} is the set of local maxima (and minima).

Theorem (Kennedy, R. 2018)

- (1) $M \subset M_{loc} \subset \partial \mathcal{T}$;
- (2) if ψ_2 does not vanish identically on any edge, then $M_{loc} = \partial \mathcal{T}$;

Now $\mathcal T$ tree, i.e., $\mathcal T$ has no cycles or loops. Recall:

- M set of global maxima (and minima),
- M_{loc} is the set of local maxima (and minima).

Theorem (Kennedy, R. 2018)

- (1) $M \subset M_{loc} \subset \partial \mathcal{T}$;
- (2) if ψ_2 does not vanish identically on any edge, then $M_{loc} = \partial \mathcal{T}$;
- (3) #M = 2 generically

Now ${\mathcal T}$ tree, i.e., ${\mathcal T}$ has no cycles or loops. Recall:

- M set of global maxima (and minima),
- M_{loc} is the set of local maxima (and minima).

Theorem (Kennedy, R. 2018)

- (1) $M \subset M_{loc} \subset \partial \mathcal{T}$;
- (2) if ψ_2 does not vanish identically on any edge, then $M_{loc} = \partial \mathcal{T}$;
- (3) #M = 2 generically

("Generically": consider all possible edge lengths for a given graph topology. A property holds *generically* if the set of edge lengths for which it holds is of the second Baire category in $\mathbb{R}_+^{\#\mathcal{E}}$.)

Now $\mathcal T$ tree, i.e., $\mathcal T$ has no cycles or loops. Recall:

- M set of global maxima (and minima),
- M_{loc} is the set of local maxima (and minima).

Theorem (Kennedy, R. 2018)

- (1) $M \subset M_{loc} \subset \partial \mathcal{T}$;
- (2) if ψ_2 does not vanish identically on any edge, then $M_{loc} = \partial \mathcal{T}$;
- (3) #M = 2 generically

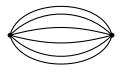
("Generically": consider all possible edge lengths for a given graph topology. A property holds *generically* if the set of edge lengths for which it holds is of the second Baire category in $\mathbb{R}_+^{\#\mathcal{E}}$.)

For the discrete Laplacian on trees: Fiedler 1975, Evans 2011, Levèvre 2013, Gernandt and Pade 2018

Return to considering a general (connected, compact) graph \mathcal{G} .

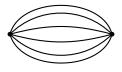
Return to considering a general (connected, compact) graph \mathcal{G} .

• $M = \mathcal{G}$ is possible (loops, equilateral pumpkin graphs, equilateral complete graphs)



Return to considering a general (connected, compact) graph \mathcal{G} .

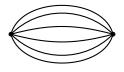
• $M = \mathcal{G}$ is possible (loops, equilateral pumpkin graphs, equilateral complete graphs)



ullet Conjecture: either $M=\mathcal{G}$ or M is finite, and the same is true of M_{loc}

Return to considering a general (connected, compact) graph \mathcal{G} .

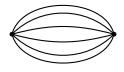
• $M = \mathcal{G}$ is possible (loops, equilateral pumpkin graphs, equilateral complete graphs)



- Conjecture: either $M = \mathcal{G}$ or M is finite, and the same is true of M_{loc}
- Observation: M and M_{loc} are finite whenever μ_2 is simple, and μ_2 is simple generically. In particular, $M = \mathcal{G}$ is "rare"

Return to considering a general (connected, compact) graph \mathcal{G} .

• $M = \mathcal{G}$ is possible (loops, equilateral pumpkin graphs, equilateral complete graphs)



- Conjecture: either $M = \mathcal{G}$ or M is finite, and the same is true of M_{loc}
- Observation: M and M_{loc} are finite whenever μ_2 is simple, and μ_2 is simple generically. In particular, $M = \mathcal{G}$ is "rare"
- Observation: $\partial \mathcal{G} \subset M_{loc}$ if ψ_2 does not vanish identically on any edge (and generically it doesn't)

 ${\cal G}$ connected, compact graph.

 $\mathcal G$ connected, compact graph.

Theorem (Kennedy, R. 2019): Position of "hot spots"

(1) $M \subset M_{loc} \subset \partial \mathcal{G} \cup \operatorname{core} \mathcal{G}$.

 ${\cal G}$ connected, compact graph.

Theorem (Kennedy, R. 2019): Position of "hot spots"

- (1) $M \subset M_{loc} \subset \partial \mathcal{G} \cup \operatorname{core} \mathcal{G}$.
- (2) Disconnecting all nonzero local maxima of a ψ_2 keeps \mathcal{G} connected.

 ${\cal G}$ connected, compact graph.

Theorem (Kennedy, R. 2019): Position of "hot spots"

- (1) $M \subset M_{loc} \subset \partial \mathcal{G} \cup \operatorname{core} \mathcal{G}$.
- (2) Disconnecting all nonzero local maxima of a ψ_2 keeps \mathcal{G} connected.

Theorem (Kennedy, R. 2019): Number of "hot spots"

Generically, #M = 2.

 ${\cal G}$ connected, compact graph.

Theorem (Kennedy, R. 2019): Position of "hot spots"

- (1) $M \subset M_{loc} \subset \partial \mathcal{G} \cup \operatorname{core} \mathcal{G}$.
- (2) Disconnecting all nonzero local maxima of a ψ_2 keeps \mathcal{G} connected.

Theorem (Kennedy, R. 2019): Number of "hot spots"

Generically, #M = 2.

Thus for most graphs there are two "distinguished" points where the heat (or cold) is asymptotically most concentrated.

Theorem (Kennedy, R. 2019): "Everything is possible"

Theorem (Kennedy, R. 2019): "Everything is possible"

Let \mathcal{G} finite, discrete graph.

(1) If $\#\partial \mathcal{G} \geq 1$ then \exists edge lengths with μ_2 simple and $\max \psi_2$ only on $\partial \mathcal{G}$.

Theorem (Kennedy, R. 2019): "Everything is possible"

- (1) If $\#\partial \mathcal{G} \geq 1$ then \exists edge lengths with μ_2 simple and $\max \psi_2$ only on $\partial \mathcal{G}$.
- (2) If $\#\partial \mathcal{G} \geq 2$ then \exists edge lengths with μ_2 simple and $M \subset \partial \mathcal{G}$.

Theorem (Kennedy, R. 2019): "Everything is possible"

- (1) If $\#\partial \mathcal{G} \geq 1$ then \exists edge lengths with μ_2 simple and $\max \psi_2$ only on $\partial \mathcal{G}$.
- (2) If $\#\partial \mathcal{G} \geq 2$ then \exists edge lengths with μ_2 simple and $M \subset \partial \mathcal{G}$.
- (3) If $\beta(\mathcal{G}) \geq 1$ then \exists edge lengths with μ_2 simple and $\max \psi_2$ only in core \mathcal{G} .

Theorem (Kennedy, R. 2019): "Everything is possible"

- (1) If $\#\partial \mathcal{G} \geq 1$ then \exists edge lengths with μ_2 simple and $\max \psi_2$ only on $\partial \mathcal{G}$.
- (2) If $\#\partial \mathcal{G} \geq 2$ then \exists edge lengths with μ_2 simple and $M \subset \partial \mathcal{G}$.
- (3) If $\beta(\mathcal{G}) \geq 1$ then \exists edge lengths with μ_2 simple and $\max \psi_2$ only in core \mathcal{G} .
- (4) If $\beta(\mathcal{G}) \geq 2$ then \exists edge lengths with μ_2 simple and $M \subset \operatorname{core} \mathcal{G}$.