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Local Energy for the Free Wave Equation

Let u be the solution in R? of the free wave equation

2u—Au=0
(uaatu)|t=0 = (an U1)-

We have conservation of the energy :

2 2 2 2
IVu(@)llzz + 10:u(®)]z2 = [Vuolzz + luallz -

If uo and u; are compactly supported and x € C5°(R%):

@ d > 3 odd: propagation at speed 1 (Huygens' principle)
Ix(z)Vu(t, z)| + |Ix(z)deu(t, z)|* = 0 for t large enough.
@ d even: propagation at speed < 1

Ix(@)Vu(t, 2)|* + [x(@)dcu(t, 2)|* < ¢ (IVuolze + [u]:)-
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Generalizations for perturbations of the model case

@ Wave equation in an exterior domain or for a Laplace-Beltrami operator
(given by the refraction index)

@ Uniform decay for the local energy under the non-trapping condition on
the classical flow (assumption for high frequencies).

—~t
(@) Valt, D) + [x(@)dult o) S {} IVl + Jur22) -

(Lax-Morawetz-Philipps '63, Ralston '69, Morawetz-Ralston-Strauss '77,
Bony-Hifner '10, Bouclet '11, Bouclet-Burq '19)

@ Without non-trapping: Logarithmic decay with loss of regularity (Burq
'98):

Ix(@)Vu(t, )| + [x(@)deu(t, 2)|* S W2+ 6) 7 (JuolFess + Jurl) -

@ Various intermediate settings . ..
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Stabilization in a bounded domain

On Q < R? bounded, we consider the damped wave equation

0?u — Au+ adiu =0 on Q,
+ Dirichlet or Neumann at the boundary,
+ initial conditions.

@ a(z) = 0 is the absorption index

o The global energy decays: for t; <

E(ts) — E(k) — f f ) [Pl ) o d < 0.

@ Uniform decay under the Geometric Control Condition.

We can also consider damping at the boundary:

Zu—Au=0 onQ,
Oyu + adiu =0  on 09,
+ initial conditions.

See Rauch-Taylor '74, Bardos-Lebeau-Rauch '92, Lebeau '96,...
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Damped wave equation on unbounded domains

For the damped wave equation in an unbounded domain, the expected
necessary and sufficient condition for uniform decay of the local energy is:

Each bounded classical trajectory goes through the damping region.

@ Aloui-Khenissi '02, Khenissi '03: damped wave equation in an exterior
domain (compactly supported absorption index).

o Bouclet-R. '14, R. '16: asymptotically free damped wave equation.

w~> We recover the same rates of decay as for the undamped case under the
non-trapping condition.
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Damped wave equation with strong damping

@ For the damped wave equation in an unbounded domain, the expected
necessary and sufficient condition for uniform decay of the local energy is:

Each bounded classical trajectory goes through the damping region.
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Damped wave equation with strong damping

o For the damped wave equation in an unbounded domain, the expected
necessary and sufficient condition for uniform decay of the local energy is:

Each bounded classical trajectory goes through the damping region.

@ Absorption index effective at infinity (for instance a(z) — 1 as |z| — )
Model case:

Zu—Au+du=0
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Damped wave equation with strong damping

o For the damped wave equation in an unbounded domain, the expected
necessary and sufficient condition for uniform decay of the local energy is:

Each bounded classical trajectory goes through the damping region.

@ Absorption index effective at infinity (for instance a(z) — 1 as |z| — )
Model case:

Zu—Au+du=0

w~> The local energy decays like ¢t~ %2,
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Damped wave equation with strong damping

o For the damped wave equation in an unbounded domain, the expected
necessary and sufficient condition for uniform decay of the local energy is:

Each bounded classical trajectory goes through the damping region.

@ Absorption index effective at infinity (for instance a(z) — 1 as |z| — )
Model case:

O%u— Au+ diu =0
w~> The local energy decays like ¢t~ %2,
This can be slower than for the undamped wave.
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Damped wave equation with strong damping

o For the damped wave equation in an unbounded domain, the expected
necessary and sufficient condition for uniform decay of the local energy is:

Each bounded classical trajectory goes through the damping region.

@ Absorption index effective at infinity (for instance a(z) — 1 as |z| — )
Model case:

Zu—Au+du=0

w~> The local energy decays like ¢t~ %2,

This can be slower than for the undamped wave. For low frequencies, the
solution of the damped wave equation behaves like a solution of the heat
equation

—Av + 0v = 0.

Matsumura '76 (decay estimates)

Orive-Pozato-Zuazua '01 (periodic medium, constant damping)
Marcati-Nishihara '03, Nishihara '03, Hosono-Ogawa '04, Narazaki '04
(diffusive phenomenon)

Ikehata '02, Aloui-Ibrahim-Khenissi '15 (exterior domains)

+ time dependant damping + semi-linear equation + abstract results + ...
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Wave equation with strong damping in various settings

@ On a wave guide © = R? x w with dissipation at the boundary:

0fu—Au=0 onRy xQ,
Oyt + adiu =0 on Ry x 0Q.
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Wave equation with strong damping in various settings

@ On a wave guide © = R? x w with dissipation at the boundary:

0fu—Au=0 onRy xQ,
Oyt + adiu =0 on Ry x 0Q.

@ On a wave guide with dissipation at infinity (with M. Malloug, Sousse):

0%u—Au+adiu=0 onR, xQ,
dvu =0 on Ry x 09,

where a(z,y) — 1 as |z| — 0.
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Wave equation with strong damping in various settings

@ On a wave guide Q = R? x w with dissipation at the boundary:

0fu—Au=0 onRy xQ,
Oyu + adiu =0 on Ry x 09Q.

@ On a wave guide with dissipation at infinity (with M. Malloug, Sousse):

0%u—Au+adiu=0 onR, xQ,
dvu =0 on Ry x 09,

where a(z,y) — 1 as |z| — 0.

© On an asymptotically periodic medium (with R. Joly, Grenoble)
Otu + Pu+ a(z)d;u = 0 on Ry x RY,
where

P =—divG(z)V, G(z)= Gper.(2)+G=0(z), a(x) = aper.(z)+a-0o(z)
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The wave equation on a dissipative wave guide

We consider a wave guide = R? x w, where w ¢ R” is bounded, open,
connected and smooth. On 2 we consider the wave equation with dissipation
at the boundary:

0Zu—Au=0 on Ry x Q,
Oyt + adiu =0 on Ry x 09,
(u, Oru)|,_g = (uo,u1) on Q.
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The wave equation on a dissipative wave guide

We consider a wave guide = R? x w, where w ¢ R” is bounded, open,
connected and smooth. On 2 we consider the wave equation with dissipation
at the boundary:

0Zu—Au=0 on Ry x Q,
Oyt + adiu =0 on Ry x 09,
(u, Oru)|,_g = (uo,u1) on Q.

The energy is non-increasing (here the absorption index a is a positive
constant):

d
a(Hvu(t)niz 4 ||6tu(t)H§2) =— J a|osu(t)? dt <O0.
oQ
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The wave equation on a dissipative wave guide

We consider a wave guide = R? x w, where w ¢ R” is bounded, open,
connected and smooth. On 2 we consider the wave equation with dissipation
at the boundary:

0Zu—Au=0 on Ry x Q,

Oyt + adiu =0 on Ry x 09,

(u, Oru)|,_g = (uo,u1) on Q.

The energy is non-increasing (here the absorption index a is a positive
constant):

d
G (Iu®: + 100l ) = =2 _alow(l® de <o,
o0

Theorem (Local Energy Decay)

Let 6 > 4 + 1. Then there exists C' > 0 such that for uo € H"°(Q) and
u € L*°(Q) we have for all t > 0

2 2

@)= vu@)

(@) ()

+
L2(Q) L2(Q)

2

+ H(:c)5 Uy

—d—2 5 2
<c(t) W“V“w@ m@)

N
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Diffusive asymptotics

We consider the solution v for the following heat equation on R%:

akdiv — Ayv =0 on Ry x R?,
v],_o = vo(uo,u1) on R%

where

We set v(t;z,y) = v(t; z) (z € RY, y € w).
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Diffusive asymptotics

We consider the solution v for the following heat equation on R%:
akdv — Agzv =0 on Ry x RY,
v],_o = vo(uo,u1) on R%

where

_ e
=

We set v(t;z,y) = v(t; z) (z € RY, y € w).

Theorem (Comparison with the Heat Equation)

Let 6 > % + 1. Then there exists C' > 0 such that for up € H°(Q) and
u € L2’5(Q) we have for all t = 0

+ @ o=

L2(Q)
2

@)= 9w~ o))

L2(9)

gcar*AG@ﬁv%

+ H (x>5 w1

2
L2<n>) '
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The Spectral point of view

@ By the general dissipative theory (maximal dissipative operators,
Hille-Yosida theorem, contractions semi-groups, etc.), we can check that
our wave equation has a solution defined for all positive times.
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The Spectral point of view

@ By the general dissipative theory (maximal dissipative operators,
Hille-Yosida theorem, contractions semi-groups, etc.), we can check that
our wave equation has a solution defined for all positive times.

o After a Fourier transform, the problem reduces to proving uniform
estimates for the derivatives of the “resolvent”
2y —1
R.(z) = (H,” -7 ) , TER.
We have denoted by H, the operator —A with domain

D(Ho) = {ue H*(Q) : dyu = iau on 0Q}.
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The Spectral point of view

@ By the general dissipative theory (maximal dissipative operators,
Hille-Yosida theorem, contractions semi-groups, etc.), we can check that
our wave equation has a solution defined for all positive times.

o After a Fourier transform, the problem reduces to proving uniform
estimates for the derivatives of the “resolvent”

R.(z) = (H,” — 7‘2)_1, TeR.
We have denoted by H, the operator —A with domain

D(Ho) ={ue H?*(Q) : d,u = iau on on}.

@ Qu : how do we compute the derivative of R,(7) with respect to 7 ?
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The Spectral point of view

@ By the general dissipative theory (maximal dissipative operators,
Hille-Yosida theorem, contractions semi-groups, etc.), we can check that
our wave equation has a solution defined for all positive times.

o After a Fourier transform, the problem reduces to proving uniform
estimates for the derivatives of the “resolvent”

R.(z) = (H,” — 7‘2)_1, TeR.
We have denoted by H, the operator —A with domain

D(Ho) ={ue H?*(Q) : d,u = iau on on}.

@ Qu : how do we compute the derivative of R,(7) with respect to 7 ?

@ The main difficulties in the analysis come from low frequencies (7 ~ 0)
and high frequencies (|7| — o0).
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The waveguide structure of the operator

We can write H, = —A; + T. where:

e —A, is the usual Laplacian on R?. It is selfadjoint, its spectrum is R .
o T, is defined as H, but on w instead of €2:

To = —Au,, D(Ta)={ue H (W) : dyu = iau on dw}.

It has compact resolvent. Its spectrum is given by a sequence of
eigenvalues (A, («)).

The spectrum of H, is
O'(Ha) = O'(Ta) +R+

@ For a > 0 this gives a sequence of half-lines under the real axis.

v For 7 > 0 the operator (H,, — 72) is boundedly invertible.
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The waveguide structure of the operator

We can write H, = —A; + T. where:

e —A, is the usual Laplacian on R?. It is selfadjoint, its spectrum is R .
o T, is defined as H, but on w instead of €2:

To = —Au,, D(Ta)={ue H (W) : dyu = iau on dw}.

It has compact resolvent. Its spectrum is given by a sequence of
eigenvalues (A, («)).

The spectrum of H, is
O'(Ha) = O'(Ta) +R+

@ For a > 0 this gives a sequence of half-lines under the real axis.

v For 7 > 0 the operator (H,, — 72) is boundedly invertible.

But for 7 = 0 the operator Hy is not invertible, and for 7 — +00...
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Transverse eigenvalues

For high frequencies we first have to understand the behavior of T\, as 7 — 0.

10 20 30 40 50 €0 70 0 90 100
e * * * % * * *
-2 4 0 -0.5
<
-4 +
< -1 o *
64 D *
+ 4 + ot + O % *
-89 + -154 *
+
© *
-104 ° fe]
-24 *
-124
-144 O -2.5 *
- 16 *
3]
-184 < *
< *

For 7 » 1, the first eigenvalues of T, are close to the real axis (close to
Dirichlet eigenvalues). In particular

dist(7%, Sp(Har)) — 0.

T—00

Local energy decay in a dissipative wave guide



Contribution of low frequencies

@ The first eigenvalue of Ty is 0, it is a simple eigenvalue and ¢ (0) is
constant on w.
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Contribution of low frequencies

@ The first eigenvalue of Ty is 0, it is a simple eigenvalue and ¢ (0) is
constant on w.

@ We have
d)\()(oz)

20— ik
da  la=0
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Contribution of low frequencies

@ The first eigenvalue of Ty is 0, it is a simple eigenvalue and ¢ (0) is
constant on w.

@ We have
d)\()(oz)

da

= —1K.

a=0

@ For 7 small, we have

-1

(Hor — 7%) (—A; -T2+ /\o(ar))_1 (-, 00(at)) po(at) + rest

(—As - iam’)_le + rest,

where

P,u(z) = |U1|f u(z, )
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Contribution of low frequencies

@ The first eigenvalue of Ty is 0, it is a simple eigenvalue and ¢ (0) is
constant on w.

@ We have
d)\()(oz)

da

= —1K.

a=0

@ For 7 small, we have

(Har — 7-2)_1 (= Az — 72+ o(ar)) " (-, po(ar)) po(ar) + rest

(—As - iam’)_le + rest,

where

P,u(z) = |U1|f u(z, )

° ( — Ay — ianT)_l is the resolvent corresponding to the heat equation
ak0iv — Azv =0,

and the rest will give a contribution of size O(¢t~%~*) for the local energy.
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Contribution of large transverse frequencies

In dimension 1 we can check by explicit computation that
Re(\p) ~ 72 = Im(\) S -7

This is in fact a general result (proved by semiclassical analysis on w):

Proposition

There exist 1o = 1, v > 0 and ¢ = 0 such that for T > 10 and ¢ € C which
satisfy
|Re(¢ — 7'2)| <~7r° and Im(¢) = —v7

the resolvent (T., — ¢)~" is well defined and we have

c

H(TGT - C)_lﬂg@z(w» <

= .

If we restrict the frequency in the z-directions, we get the following estimate:

Proposition

Let 7o and «y be as above. If x is supported in | — ~y,~y[ then there exists ¢ = 0
such that for T > 19 we have
2 Cc
“X(_AE/T )R“(T)HL(Lz(Q)) <

= .
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Contribution of high longitudinal frequencies

Proposition

Let 79 be as above. Let § > % Then there exists ¢ = 0 such that for 7 = 19
we have

H<$>_6 (1= X)(=As/7%) Ra(7) (Z>_6HL(L2<Q)) s ;

o We use an escape function as can be done in the Euclidean space.
o We use pseudo-differential operators only in the z-directions.

@ On the Euclidean space, see Robert-Tamura '87.
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Contribution of high longitudinal frequencies

Proposition

Let 79 be as above. Let § > % Then there exists ¢ = 0 such that for 7 = 19
we have

H<$>_6 (1= 2)(=As/7%) Ra(7) (95)_6”5@2(0)) S ;

o We use an escape function as can be done in the Euclidean space.
o We use pseudo-differential operators only in the z-directions.

@ On the Euclidean space, see Robert-Tamura '87.

Theorem (High frequency estimates)

Let 6 > % Then there exists ¢ = 0 such that for T > 19 we have

H<$>_5 Ra(7) <w>_6HL(L2(Q)) S

R

Then we need estimates for the derivatives of this resolvent. . .
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Separation of the spectrum

For z small, only the contribution of Ag(a7) should play a role.
If H, is selfadjoint we can write

(Ho = O)7'u = Y (=As + Xa(n) = Q) un(2) ® ¢n (@)

neN

where Topn(a) = An(a@)pn(a), u(z,y) = 2 un(2) ® pn(c; y). Then
[(Ha = O ul2 0y = 2 1(=A0 + Aa(n) = O (@) 72 e

neN
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Separation of the spectrum

For z small, only the contribution of Ag(a7) should play a role.
If H, is selfadjoint we can write

(Ho = O)7'u = Y (=As + Xa(n) = Q) un(2) ® ¢n (@)

neN
where Topn(a) = An(a@)pn(a), u(z,y) = 2 un(2) ® pn(c; y). Then
12 _ 2
H(Ha - C) 1“HL2(Q) = Z H(_Az + Aa(n) - O 1u"(x)HL2(]Rd)
neN
@ We consider G of the form
G ={CeC : Re(() < Ry, [Im(¢)| < Ra}.
and the projection

__ L _ A 2
Pg = o ag(Ta o) do € L(L(w)).
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Separation of the spectrum

For z small, only the contribution of Ag(a7) should play a role.
If H, is selfadjoint we can write

(Ho = O)7'u = Y (=As + Xa(n) = Q) un(2) ® ¢n (@)

neN
where T (@) = An(@)@n (@), u(z,y) = X un(2) ® n(a; y). Then
12 _ 2
H(Ha - C) 1“HL2(Q) = Z H(_Az + Aa(n) - O 1u"(x)HL2(]Rd)
neN
@ We consider G of the form
G ={CeC : Re(() < Ry, [Im(¢)| < Ra}.
and the projection
1 —1 2
Pg = —— To — L .
6= gy ), (Ta= o) do e L)
o Since H,, —A; and T, commute we have

(Ta_U)_l(_Aw_C+‘7)_1 = (Ha_o_l(_Aw_C+‘7)_1+(Ha_o_1(Ta_U)_1-
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Separation of the spectrum

For z small, only the contribution of Ag(a7) should play a role.
If H, is selfadjoint we can write

(Ho = O)7'u = Y (=As + Xa(n) = Q) un(2) ® ¢n (@)

neN

where Topn(a) = An(a@)pn(a), u(z,y) = 2 un(2) ® pn(c; y). Then
[(Ha = O ul2 0y = 2 1(=A0 + Aa(n) = O (@) 72 e

neN
@ We consider G of the form
G ={CeC : Re(¢) < R, |Im(¢)| < Ra}.
and the projection
P = _i (Ta=o)do e £(w).

o Since H,, —A, and T, commute we have

(Ta=0) " (=As=(+0) " = (Ha=¢) T (=2 =(+0) " +(Ha—() "' (Ta—0) "
o After integration over o € 0G we get

(Ha = €)™ = (Ha = €)' Pg + Bal(0),
where B, is holomorphic in G.
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Contribution of large transverse frequencies

We recall the resolvent identity
Ro(7)(Tar —0) ' = (Tar —0) (=As—72+0) ' —Ra(7)(-As — 72 +0) L.
We compose with x(—A/7%) and integrate over o on the boundary of

g, = {C eC: |Re(() — 7'2| < 772, Im(¢)| < 77‘}.

Since G; N o(Tar) = & the contribution of the left-hand side vanishes. The
last term gives R,(7)x(—A./7%). Let E be the spectral measure associated to
—A;. We have

R(T) = Lg (Tor — a)_lx(—Az/TQ)( S 0)71 do

_ LQT(TM — o)t (Em _(“T/;)U dE(E)) do

S NERS ([, E==2 o) ane)

0 _E-—T2+ao

'y'r2 (T _ —1
_ -/ 2 aT U) =
= L x(E/77) (Lg: = da> dE(E)

Grz=={C€Gr : [Re(¢) —T° +E| < y7}.

where
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