Local energy decay for the wave equation in a dissipative wave guide

Julien Royer

Institut de Mathématiques de Toulouse - France

Differential Operators on Graphs and Waveguides

TU Graz

February 25, 2018

Local Energy for the Free Wave Equation

Let u be the solution in \mathbb{R}^d of the free wave equation

$$\begin{cases} \partial_t^2 u - \Delta u = 0 \\ (u, \partial_t u)|_{t=0} = (u_0, u_1). \end{cases}$$

We have conservation of the energy:

$$\|\nabla u(t)\|_{L^{2}}^{2} + \|\partial_{t}u(t)\|_{L^{2}}^{2} = \|\nabla u_{0}\|_{L^{2}}^{2} + \|u_{1}\|_{L^{2}}^{2}.$$

If u_0 and u_1 are compactly supported and $\chi \in C_0^{\infty}(\mathbb{R}^d)$:

• $d \ge 3$ odd: propagation at speed 1 (Huygens' principle)

$$\|\chi(x)\nabla u(t,x)\|^2 + \|\chi(x)\partial_t u(t,x)\|^2 = 0$$
 for t large enough.

• d even: propagation at speed ≤ 1

$$\|\chi(x)\nabla u(t,x)\|^2 + \|\chi(x)\partial_t u(t,x)\|^2 \lesssim t^{-2d} (\|\nabla u_0\|_{L^2}^2 + \|u_1\|_{L^2}^2).$$

Generalizations for perturbations of the model case

- Wave equation in an exterior domain or for a Laplace-Beltrami operator (given by the refraction index)
- Uniform decay for the local energy under the non-trapping condition on the classical flow (assumption for high frequencies).

$$\|\chi(x)\nabla u(t,x)\|^2 + \|\chi(x)\partial_t u(t,x)\|^2 \lesssim \left\{\frac{e^{-\gamma t}}{t^{-2d}}\right\} \left(\|\nabla u_0\|_{L^2}^2 + \|u_1\|_{L^2}^2\right).$$

(Lax-Morawetz-Philipps '63, Ralston '69, Morawetz-Ralston-Strauss '77, Bony-Häfner '10, Bouclet '11, Bouclet-Burg '19)

Without non-trapping: Logarithmic decay with loss of regularity (Burq '98):

$$\|\chi(x)\nabla u(t,x)\|^2 + \|\chi(x)\partial_t u(t,x)\|^2 \lesssim \ln(2+t)^{-2k} \left(\|u_0\|_{H^{k+1}}^2 + \|u_1\|_{H^k}^2\right).$$

• Various intermediate settings . . .

Stabilization in a bounded domain

On $\Omega \subset \mathbb{R}^d$ bounded, we consider the damped wave equation

$$\begin{cases} \partial_t^2 u - \Delta u + a \partial_t u = 0 & \text{on } \Omega, \\ + \text{ Dirichlet or Neumann at the boundary}, \\ + \text{ initial conditions}. \end{cases}$$

- $a(x) \ge 0$ is the absorption index
- The global energy decays: for $t_1 \leqslant t_2$

$$E(t_2) - E(t_1) = -\int_{t_1}^{t_2} \int_{\Omega} a(x) \left| \partial_t u(s, x) \right|^2 dx ds \leqslant 0.$$

Uniform decay under the Geometric Control Condition.

We can also consider damping at the boundary:

$$\begin{cases} \partial_t^2 u - \Delta u = 0 & \text{on } \Omega, \\ \partial_{\nu} u + a \partial_t u = 0 & \text{on } \partial \Omega, \\ + & \text{initial conditions.} \end{cases}$$

See Rauch-Taylor '74, Bardos-Lebeau-Rauch '92, Lebeau '96,...

Damped wave equation on unbounded domains

For the damped wave equation in an unbounded domain, the expected necessary and sufficient condition for uniform decay of the local energy is:

Each bounded classical trajectory goes through the damping region.

- Aloui-Khenissi '02, Khenissi '03: damped wave equation in an exterior domain (compactly supported absorption index).
- Bouclet-R. '14, R. '16: asymptotically free damped wave equation.

www We recover the same rates of decay as for the undamped case under the non-trapping condition.

 For the damped wave equation in an unbounded domain, the expected necessary and sufficient condition for uniform decay of the local energy is:

Each bounded classical trajectory goes through the damping region.

• Absorption index effective at infinity (for instance $a(x) \to 1$ as $|x| \to \infty$) Model case:

$$\partial_t^2 u - \Delta u + \partial_t u = 0$$

 \longrightarrow The local energy decays like t^{-d-2} .

This can be slower than for the undamped wave. For low frequencies, the solution of the damped wave equation behaves like a solution of the heat equation

$$-\Delta v + \partial_t v = 0.$$

- Matsumura '76 (decay estimates
- Orive-Pozato-Zuazua '01 (periodic medium, constant damping)
- Marcati-Nishihara '03, Nishihara '03, Hosono-Ogawa '04, Narazaki '04 (diffusive phenomenon)
- Ikehata '02, Aloui-Ibrahim-Khenissi '15 (exterior domains
- + time dependant damping + semi-linear equation + abstract results + ...

 For the damped wave equation in an unbounded domain, the expected necessary and sufficient condition for uniform decay of the local energy is:

Each bounded classical trajectory goes through the damping region.

• Absorption index effective at infinity (for instance $a(x) \to 1$ as $|x| \to \infty$) Model case:

$$\partial_t^2 u - \Delta u + \partial_t u = 0$$

 \longrightarrow The local energy decays like t^{-d-2} .

This can be slower than for the undamped wave. For low frequencies, the solution of the damped wave equation behaves like a solution of the heat equation

$$-\Delta v + \partial_t v = 0.$$

- Matsumura '76 (decay estimates
- Orive-Pozato-Zuazua '01 (periodic medium, constant damping)
- Marcati-Nishihara '03, Nishihara '03, Hosono-Ogawa '04, Narazaki '04 (diffusive phenomenon)
- Ikehata '02, Aloui-Ibrahim-Khenissi '15 (exterior domains)
- + time dependant damping + semi-linear equation + abstract results + . .

 For the damped wave equation in an unbounded domain, the expected necessary and sufficient condition for uniform decay of the local energy is:

Each bounded classical trajectory goes through the damping region.

• Absorption index effective at infinity (for instance $a(x) \to 1$ as $|x| \to \infty$) Model case:

$$\partial_t^2 u - \Delta u + \partial_t u = 0$$

 \longrightarrow The local energy decays like t^{-d-2} .

I his can be slower than for the undamped wave. For low frequencies, the solution of the damped wave equation behaves like a solution of the heat equation

$$-\Delta v + \partial_t v = 0.$$

- Matsumura '76 (decay estimates)
- Orive-Pozato-Zuazua '01 (periodic medium, constant damping)
- Marcati-Nishihara '03, Nishihara '03, Hosono-Ogawa '04, Narazaki '04 (diffusive phenomenon)
- Ikehata '02, Aloui-Ibrahim-Khenissi '15 (exterior domains
- + time dependant damping + semi-linear equation + abstract results + . .

 For the damped wave equation in an unbounded domain, the expected necessary and sufficient condition for uniform decay of the local energy is:

Each bounded classical trajectory goes through the damping region.

• Absorption index effective at infinity (for instance $a(x) \to 1$ as $|x| \to \infty$) Model case:

$$\partial_t^2 u - \Delta u + \partial_t u = 0$$

 \longrightarrow The local energy decays like t^{-d-2} .

This can be slower than for the undamped wave. For low frequencies, the solution of the damped wave equation behaves like a solution of the heat equation

$$-\Delta v + \partial_t v = 0$$

- Matsumura '76 (decay estimates)
- Orive-Pozato-Zuazua '01 (periodic medium, constant damping)
- Marcati-Nishihara '03, Nishihara '03, Hosono-Ogawa '04, Narazaki '04 (diffusive phenomenon)
- Ikehata '02, Aloui-Ibrahim-Khenissi '15 (exterior domains
- + time dependant damping + semi-linear equation + abstract results + . .

 For the damped wave equation in an unbounded domain, the expected necessary and sufficient condition for uniform decay of the local energy is:

Each bounded classical trajectory goes through the damping region.

• Absorption index effective at infinity (for instance $a(x) \to 1$ as $|x| \to \infty$) Model case:

$$\partial_t^2 u - \Delta u + \partial_t u = 0$$

 \longrightarrow The local energy decays like t^{-d-2} .

This can be slower than for the undamped wave. For low frequencies, the solution of the damped wave equation behaves like a solution of the heat equation

$$-\Delta v + \partial_t v = 0.$$

- Matsumura '76 (decay estimates)
- Orive-Pozato-Zuazua '01 (periodic medium, constant damping)
- Marcati-Nishihara '03, Nishihara '03, Hosono-Ogawa '04, Narazaki '04 (diffusive phenomenon)
- Ikehata '02, Aloui-Ibrahim-Khenissi '15 (exterior domains)
- ullet + time dependant damping + semi-linear equation + abstract results + . . .

Wave equation with strong damping in various settings

① On a wave guide $\Omega = \mathbb{R}^d \times \omega$ with dissipation at the boundary:

$$\begin{cases} \partial_t^2 u - \Delta u = 0 & \text{on } \mathbb{R}_+ \times \Omega, \\ \partial_\nu u + a \partial_t u = 0 & \text{on } \mathbb{R}_+ \times \partial \Omega. \end{cases}$$

On a wave guide with dissipation at infinity (with M. Malloug, Sousse):

$$\begin{cases} \partial_t^2 u - \Delta u + a \partial_t u = 0 & \text{on } \mathbb{R}_+ \times \Omega, \\ \partial_\nu u = 0 & \text{on } \mathbb{R}_+ \times \partial \Omega, \end{cases}$$

where $a(x,y) \to 1$ as $|x| \to \infty$.

On an asymptotically periodic medium (with R. Joly, Grenoble)

$$\partial_t^2 u + Pu + a(x)\partial_t u = 0 \text{ on } \mathbb{R}_+ \times \mathbb{R}^d$$

$$P = -\operatorname{div} G(x) \nabla, \quad G(x) = G_{\text{per}}(x) + G_{\to 0}(x), \quad a(x) = a_{\text{per}}(x) + a_{\to 0}(x)$$

Wave equation with strong damping in various settings

① On a wave guide $\Omega = \mathbb{R}^d \times \omega$ with dissipation at the boundary:

$$\begin{cases} \partial_t^2 u - \Delta u = 0 & \text{on } \mathbb{R}_+ \times \Omega, \\ \partial_\nu u + a \partial_t u = 0 & \text{on } \mathbb{R}_+ \times \partial \Omega. \end{cases}$$

On a wave guide with dissipation at infinity (with M. Malloug, Sousse):

$$\begin{cases} \partial_t^2 u - \Delta u + \mathbf{a} \partial_t \mathbf{u} = 0 & \text{on } \mathbb{R}_+ \times \Omega, \\ \partial_\nu u = 0 & \text{on } \mathbb{R}_+ \times \partial \Omega, \end{cases}$$

where $a(x, y) \to 1$ as $|x| \to \infty$.

On an asymptotically periodic medium (with R. Joly, Grenoble)

$$\partial_t^2 u + Pu + a(x)\partial_t u = 0 \text{ on } \mathbb{R}_+ \times \mathbb{R}^d,$$

$$P = -\operatorname{div} G(x)\nabla, \quad G(x) = G_{\text{per.}}(x) + G_{\to 0}(x), \quad a(x) = a_{\text{per.}}(x) + a_{\to 0}(x)$$

Wave equation with strong damping in various settings

① On a wave guide $\Omega = \mathbb{R}^d \times \omega$ with dissipation at the boundary:

$$\begin{cases} \partial_t^2 u - \Delta u = 0 & \text{on } \mathbb{R}_+ \times \Omega, \\ \partial_\nu u + a \partial_t u = 0 & \text{on } \mathbb{R}_+ \times \partial \Omega. \end{cases}$$

On a wave guide with dissipation at infinity (with M. Malloug, Sousse):

$$\begin{cases} \partial_t^2 u - \Delta u + \mathbf{a} \partial_t u = 0 & \text{on } \mathbb{R}_+ \times \Omega, \\ \partial_\nu u = 0 & \text{on } \mathbb{R}_+ \times \partial \Omega, \end{cases}$$

where $a(x, y) \to 1$ as $|x| \to \infty$.

On an asymptotically periodic medium (with R. Joly, Grenoble)

$$\partial_t^2 u + Pu + a(x)\partial_t u = 0 \text{ on } \mathbb{R}_+ \times \mathbb{R}^d,$$

$$P = -\operatorname{div} G(x)\nabla, \quad G(x) = G_{\operatorname{per.}}(x) + G_{\to 0}(x), \quad a(x) = a_{\operatorname{per.}}(x) + a_{\to 0}(x)$$

The wave equation on a dissipative wave guide

We consider a wave guide $\Omega=\mathbb{R}^d\times\omega$, where $\omega\subset\mathbb{R}^n$ is bounded, open, connected and smooth. On Ω we consider the wave equation with dissipation at the boundary:

$$\begin{cases} \partial_t^2 u - \Delta u = 0 & \text{on } \mathbb{R}_+ \times \Omega, \\ \partial_\nu u + a \partial_t u = 0 & \text{on } \mathbb{R}_+ \times \partial \Omega, \\ \left(u, \partial_t u \right) |_{t=0} = (u_0, u_1) & \text{on } \Omega. \end{cases}$$

The energy is non-increasing (here the absorption index a is a positive constant):

$$\frac{d}{dt}\Big(\left\|\nabla u(t)\right\|_{L^{2}}^{2}+\left\|\partial_{t}u(t)\right\|_{L^{2}}^{2}\Big)=-2\int_{\partial\Omega}a\left|\partial_{t}u(t)\right|^{2}\;dt\leqslant0.$$

Theorem (Local Energy Decay)

$$\begin{split} \left\| \langle x \rangle^{-\delta} \, \nabla u(t) \right\|_{L^2(\Omega)}^2 + \left\| \langle x \rangle^{-\delta} \, \partial_t u(t) \right\|_{L^2(\Omega)}^2 \\ & \leq C \langle t \rangle^{-d-2} \left(\left\| \langle x \rangle^{\delta} \, \nabla u_0 \right\|_{L^2(\Omega)}^2 + \left\| \langle x \rangle^{\delta} \, u_1 \right\|_{L^2(\Omega)}^2 \right). \end{split}$$

The wave equation on a dissipative wave guide

We consider a wave guide $\Omega=\mathbb{R}^d\times\omega$, where $\omega\subset\mathbb{R}^n$ is bounded, open, connected and smooth. On Ω we consider the wave equation with dissipation at the boundary:

$$\begin{cases} \partial_t^2 u - \Delta u = 0 & \text{on } \mathbb{R}_+ \times \Omega, \\ \partial_\nu u + a \partial_t u = 0 & \text{on } \mathbb{R}_+ \times \partial \Omega, \\ \left(u, \partial_t u \right) \big|_{t=0} = (u_0, u_1) & \text{on } \Omega. \end{cases}$$

The energy is non-increasing (here the absorption index a is a positive constant):

$$\frac{d}{dt}\Big(\left\|\nabla u(t)\right\|_{L^2}^2 + \left\|\partial_t u(t)\right\|_{L^2}^2\Big) = -2\int_{\partial\Omega} a \left|\partial_t u(t)\right|^2 dt \leqslant 0.$$

Theorem (Local Energy Decay)

$$\begin{aligned} \left\| \langle x \rangle^{-\delta} \, \nabla u(t) \right\|_{L^{2}(\Omega)}^{2} + \left\| \langle x \rangle^{-\delta} \, \partial_{t} u(t) \right\|_{L^{2}(\Omega)}^{2} \\ &\leq C \langle t \rangle^{-d-2} \left(\left\| \langle x \rangle^{\delta} \, \nabla u_{0} \right\|_{L^{2}(\Omega)}^{2} + \left\| \langle x \rangle^{\delta} \, u_{1} \right\|_{L^{2}(\Omega)}^{2} \right). \end{aligned}$$

The wave equation on a dissipative wave guide

We consider a wave guide $\Omega=\mathbb{R}^d\times\omega$, where $\omega\subset\mathbb{R}^n$ is bounded, open, connected and smooth. On Ω we consider the wave equation with dissipation at the boundary:

$$\begin{cases} \partial_t^2 u - \Delta u = 0 & \text{on } \mathbb{R}_+ \times \Omega, \\ \partial_\nu u + a \partial_t u = 0 & \text{on } \mathbb{R}_+ \times \partial \Omega, \\ \left(u, \partial_t u \right) \big|_{t=0} = (u_0, u_1) & \text{on } \Omega. \end{cases}$$

The energy is non-increasing (here the absorption index a is a positive constant):

$$\frac{d}{dt} \Big(\|\nabla u(t)\|_{L^2}^2 + \|\partial_t u(t)\|_{L^2}^2 \Big) = -2 \int_{\partial\Omega} a |\partial_t u(t)|^2 dt \leqslant 0.$$

Theorem (Local Energy Decay)

$$\left\| \langle x \rangle^{-\delta} \nabla u(t) \right\|_{L^{2}(\Omega)}^{2} + \left\| \langle x \rangle^{-\delta} \partial_{t} u(t) \right\|_{L^{2}(\Omega)}^{2}$$

$$\leq C \langle t \rangle^{-d-2} \left(\left\| \langle x \rangle^{\delta} \nabla u_{0} \right\|_{L^{2}(\Omega)}^{2} + \left\| \langle x \rangle^{\delta} u_{1} \right\|_{L^{2}(\Omega)}^{2} \right).$$

Diffusive asymptotics

We consider the solution v for the following heat equation on \mathbb{R}^d :

$$\begin{cases} a\kappa\partial_t v - \Delta_x v = 0 & \text{on } \mathbb{R}_+ \times \mathbb{R}^d, \\ v|_{t=0} = v_0(u_0, u_1) & \text{on } \mathbb{R}^d, \end{cases}$$

where

$$\kappa = \frac{|\partial \omega|}{|\omega|}.$$

We set v(t; x, y) = v(t; x) $(x \in \mathbb{R}^d, y \in \omega)$.

Theorem (Comparison with the Heat Equation)

$$\begin{split} \left\| \langle x \rangle^{-\delta} \, \nabla (u - v)(t) \right\|_{L^2(\Omega)}^2 + \left\| \langle x \rangle^{-\delta} \, \partial_t (u - v)(t) \right\|_{L^2(\Omega)}^2 \\ &\leqslant C \langle t \rangle^{-d-4} \left(\left\| \langle x \rangle^{\delta} \, \nabla u_0 \right\|_{L^2(\Omega)}^2 + \left\| \langle x \rangle^{\delta} \, u_1 \right\|_{L^2(\Omega)}^2 \right). \end{split}$$

Diffusive asymptotics

We consider the solution v for the following heat equation on \mathbb{R}^d :

$$\begin{cases} a\kappa\partial_t v - \Delta_x v = 0 & \text{ on } \mathbb{R}_+ \times \mathbb{R}^d, \\ v|_{t=0} = v_0(u_0, u_1) & \text{ on } \mathbb{R}^d, \end{cases}$$

where

$$\kappa = \frac{|\partial \omega|}{|\omega|}.$$

We set v(t; x, y) = v(t; x) $(x \in \mathbb{R}^d, y \in \omega)$.

Theorem (Comparison with the Heat Equation)

$$\begin{aligned} \left\| \langle x \rangle^{-\delta} \nabla (u - v)(t) \right\|_{L^{2}(\Omega)}^{2} + \left\| \langle x \rangle^{-\delta} \partial_{t} (u - v)(t) \right\|_{L^{2}(\Omega)}^{2} \\ & \leq C \langle t \rangle^{-d - 4} \left(\left\| \langle x \rangle^{\delta} \nabla u_{0} \right\|_{L^{2}(\Omega)}^{2} + \left\| \langle x \rangle^{\delta} u_{1} \right\|_{L^{2}(\Omega)}^{2} \right). \end{aligned}$$

- By the general dissipative theory (maximal dissipative operators, Hille-Yosida theorem, contractions semi-groups, etc.), we can check that our wave equation has a solution defined for all positive times.
 - After a Fourier transform, the problem reduces to proving uniform estimates for the derivatives of the "resolvent"

$$R_a(z) = (H_{a\tau} - \tau^2)^{-1}, \quad \tau \in \mathbb{R}.$$

$$\mathcal{D}(H_{\alpha}) = \left\{ u \in H^{2}(\Omega) : \partial_{\nu} u = i\alpha u \text{ on } \partial\Omega \right\}.$$

- ullet Qu : how do we compute the derivative of $R_a(au)$ with respect to au ?
- The main difficulties in the analysis come from low frequencies ($\tau \simeq 0$) and high frequencies ($|\tau| \to \infty$).

- By the general dissipative theory (maximal dissipative operators, Hille-Yosida theorem, contractions semi-groups, etc.), we can check that our wave equation has a solution defined for all positive times.
- After a Fourier transform, the problem reduces to proving uniform estimates for the derivatives of the "resolvent"

$$R_a(z) = (H_{a\tau} - \tau^2)^{-1}, \quad \tau \in \mathbb{R}.$$

$$\mathcal{D}(H_{\alpha}) = \left\{ u \in H^{2}(\Omega) : \partial_{\nu} u = i\alpha u \text{ on } \partial\Omega \right\}.$$

- ullet Qu : how do we compute the derivative of $R_a(au)$ with respect to au ?
- The main difficulties in the analysis come from low frequencies $(\tau \simeq 0)$ and high frequencies $(|\tau| \to \infty)$.

- By the general dissipative theory (maximal dissipative operators, Hille-Yosida theorem, contractions semi-groups, etc.), we can check that our wave equation has a solution defined for all positive times.
- After a Fourier transform, the problem reduces to proving uniform estimates for the derivatives of the "resolvent"

$$R_a(z) = (H_{a\tau} - \tau^2)^{-1}, \quad \tau \in \mathbb{R}.$$

$$\mathcal{D}(H_{\alpha}) = \left\{ u \in H^{2}(\Omega) : \partial_{\nu} u = i\alpha u \text{ on } \partial\Omega \right\}.$$

- Qu : how do we compute the derivative of $R_a(\tau)$ with respect to τ ?
- The main difficulties in the analysis come from low frequencies $(\tau \simeq 0)$ and high frequencies $(|\tau| \to \infty)$.

- By the general dissipative theory (maximal dissipative operators, Hille-Yosida theorem, contractions semi-groups, etc.), we can check that our wave equation has a solution defined for all positive times.
- After a Fourier transform, the problem reduces to proving uniform estimates for the derivatives of the "resolvent"

$$R_a(z) = (H_{a\tau} - \tau^2)^{-1}, \quad \tau \in \mathbb{R}.$$

$$\mathcal{D}(H_{\alpha}) = \left\{ u \in H^{2}(\Omega) : \partial_{\nu} u = i\alpha u \text{ on } \partial\Omega \right\}.$$

- Qu : how do we compute the derivative of $R_a(\tau)$ with respect to τ ?
- The main difficulties in the analysis come from low frequencies ($\tau \simeq 0$) and high frequencies ($|\tau| \to \infty$).

The waveguide structure of the operator

We can write $H_{\alpha} = -\Delta_x + T_{\alpha}$ where:

- ullet $-\Delta_x$ is the usual Laplacian on \mathbb{R}^d . It is selfadjoint, its spectrum is \mathbb{R}_+ .
- T_{α} is defined as H_{α} but on ω instead of Ω :

$$T_{\alpha} = -\Delta_{\omega}, \quad \mathcal{D}(T_{\alpha}) = \left\{ u \in H^{2}(\omega) : \partial_{\nu} u = i\alpha u \text{ on } \partial\omega \right\}.$$

It has compact resolvent. Its spectrum is given by a sequence of eigenvalues $(\lambda_n(\alpha))$.

The spectrum of H_{α} is

$$\sigma(H_{\alpha}) = \sigma(T_{\alpha}) + \mathbb{R}_{+}.$$

- ullet For lpha>0 this gives a sequence of half-lines under the real axis.
- \longrightarrow For $\tau > 0$ the operator $(H_{a\tau} \tau^2)$ is boundedly invertible.

But for $\tau = 0$ the operator H_0 is not invertible, and for $\tau \to +\infty$...

The waveguide structure of the operator

We can write $H_{\alpha} = -\Delta_x + T_{\alpha}$ where:

- ullet $-\Delta_x$ is the usual Laplacian on \mathbb{R}^d . It is selfadjoint, its spectrum is \mathbb{R}_+ .
- T_{α} is defined as H_{α} but on ω instead of Ω :

$$T_{\alpha} = -\Delta_{\omega}, \quad \mathcal{D}(T_{\alpha}) = \left\{ u \in H^{2}(\omega) : \partial_{\nu} u = i\alpha u \text{ on } \partial_{\omega} \right\}.$$

It has compact resolvent. Its spectrum is given by a sequence of eigenvalues $(\lambda_n(\alpha))$.

The spectrum of H_{α} is

$$\sigma(H_{\alpha}) = \sigma(T_{\alpha}) + \mathbb{R}_{+}.$$

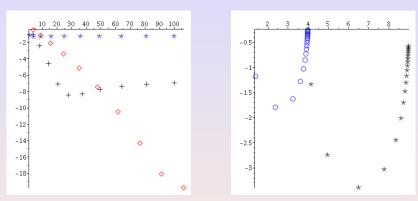
ullet For lpha>0 this gives a sequence of half-lines under the real axis.

 \longrightarrow For $\tau > 0$ the operator $(H_{a\tau} - \tau^2)$ is boundedly invertible.

But for $\tau = 0$ the operator H_0 is not invertible, and for $\tau \to +\infty$...

Transverse eigenvalues

For high frequencies we first have to understand the behavior of $T_{a\tau}$ as $\tau \to \infty$.



For $\tau\gg 1$, the first eigenvalues of $T_{a\tau}$ are close to the real axis (close to Dirichlet eigenvalues). In particular

$$\operatorname{dist}(\tau^2,\operatorname{Sp}(H_{a\tau})) \xrightarrow[\tau \to \infty]{} 0.$$

- The first eigenvalue of T_0 is 0, it is a simple eigenvalue and $\varphi_0(0)$ is constant on ω .
- We have

$$\left. \frac{d\lambda_0(\alpha)}{d\alpha} \right|_{\alpha=0} = -i\kappa.$$

ullet For au small, we have

$$(H_{a\tau} - \tau^2)^{-1} = (-\Delta_x - \tau^2 + \lambda_0(a\tau))^{-1} \langle \cdot, \varphi_0(a\tau) \rangle \varphi_0(a\tau) + \text{rest}$$
$$= (-\Delta_x - ia\kappa\tau)^{-1} P_\omega + \text{rest},$$

where

$$P_{\omega}u(x) = \frac{1}{|\omega|} \int_{\omega} u(x,\cdot)$$

ullet $\left(-\Delta_x-ia\kappa au
ight)^{-1}$ is the resolvent corresponding to the heat equation

$$a\kappa\partial_t v - \Delta_x v = 0,$$

and the rest will give a contribution of size $O(t^{-d-4})$ for the local energy

- The first eigenvalue of T_0 is 0, it is a simple eigenvalue and $\varphi_0(0)$ is constant on ω .
- We have

$$\left. \frac{d\lambda_0(\alpha)}{d\alpha} \right|_{\alpha=0} = -i\kappa.$$

ullet For au small, we have

$$(H_{a\tau} - \tau^2)^{-1} = (-\Delta_x - \tau^2 + \lambda_0(a\tau))^{-1} \langle \cdot, \varphi_0(a\tau) \rangle \varphi_0(a\tau) + \text{rest}$$
$$= (-\Delta_x - ia\kappa\tau)^{-1} P_\omega + \text{rest},$$

where

$$P_{\omega}u(x) = \frac{1}{|\omega|} \int_{\omega} u(x,\cdot)$$

ullet $ig(-\Delta_x-ia\kappa auig)^{-1}$ is the resolvent corresponding to the heat equation

$$a\kappa\partial_{t}v - \Delta_{x}v = 0.$$

and the rest will give a contribution of size $O(t^{-d-4})$ for the local energy

- The first eigenvalue of T_0 is 0, it is a simple eigenvalue and $\varphi_0(0)$ is constant on ω .
- We have

$$\left. \frac{d\lambda_0(\alpha)}{d\alpha} \right|_{\alpha=0} = -i\kappa.$$

 \bullet For au small, we have

$$(H_{a\tau} - \tau^2)^{-1} = (-\Delta_x - \tau^2 + \lambda_0(a\tau))^{-1} \langle \cdot, \varphi_0(a\tau) \rangle \varphi_0(a\tau) + \text{rest}$$
$$= (-\Delta_x - ia\kappa\tau)^{-1} P_\omega + \text{rest},$$

where

$$P_{\omega}u(x) = \frac{1}{|\omega|} \int_{\omega} u(x,\cdot)$$

ullet $ig(-\Delta_x-ia\kappa auig)^{-1}$ is the resolvent corresponding to the heat equation

$$a\kappa\partial_t v - \Delta_x v = 0.$$

and the rest will give a contribution of size $O(t^{-d-4})$ for the local energy

- The first eigenvalue of T_0 is 0, it is a simple eigenvalue and $\varphi_0(0)$ is constant on ω .
- We have

$$\frac{d\lambda_0(\alpha)}{d\alpha}\Big|_{\alpha=0} = -i\kappa.$$

 \bullet For au small, we have

$$\begin{split} \left(H_{a\tau} - \tau^2\right)^{-1} &= \left(-\Delta_x - \tau^2 + \lambda_0(a\tau)\right)^{-1} \left\langle \cdot, \varphi_0(a\tau) \right\rangle \varphi_0(a\tau) + \text{rest} \\ &= \left(-\Delta_x - ia\kappa\tau\right)^{-1} P_\omega + \text{rest}, \end{split}$$

where

$$P_{\omega}u(x) = \frac{1}{|\omega|} \int_{\omega} u(x,\cdot)$$

 $\bullet (-\Delta_x - ia\kappa au)^{-1}$ is the resolvent corresponding to the heat equation

$$a\kappa\partial_t v - \Delta_x v = 0.$$

and the rest will give a contribution of size $O(t^{-d-4})$ for the local energy.

Contribution of large transverse frequencies

In dimension 1 we can check by explicit computation that

$$\operatorname{Re}(\lambda_k) \sim \tau^2 \quad \Rightarrow \quad \operatorname{Im}(\lambda_k) \lesssim -\tau.$$

This is in fact a general result (proved by semiclassical analysis on ω):

Proposition

There exist $\tau_0\geqslant 1$, $\gamma>0$ and $c\geqslant 0$ such that for $\tau\geqslant \tau_0$ and $\zeta\in\mathbb{C}$ which satisfy

$$\left| \operatorname{Re}(\zeta - \tau^2) \right| \leqslant \gamma \tau^2 \quad \text{and} \quad \operatorname{Im}(\zeta) \geqslant -\gamma \tau$$

the resolvent $(T_{a\tau} - \zeta)^{-1}$ is well defined and we have

$$\left\| \left(T_{a\tau} - \zeta \right)^{-1} \right\|_{\mathcal{L}(L^2(\omega))} \leqslant \frac{c}{\tau}.$$

If we restrict the frequency in the x-directions, we get the following estimate:

Proposition

Let τ_0 and γ be as above. If χ is supported in $]-\gamma,\gamma[$ then there exists $c\geqslant 0$ such that for $\tau\geqslant \tau_0$ we have

$$\|\chi(-\Delta_x/\tau^2)R_a(\tau)\|_{\mathcal{L}(L^2(\Omega))} \leqslant \frac{c}{\tau}.$$

Contribution of high longitudinal frequencies

Proposition

Let τ_0 be as above. Let $\delta > \frac{1}{2}$. Then there exists $c \geqslant 0$ such that for $\tau \geqslant \tau_0$ we have

$$\left\| \langle x \rangle^{-\delta} (1 - \chi) (-\Delta_x / \tau^2) R_a(\tau) \langle x \rangle^{-\delta} \right\|_{\mathcal{L}(L^2(\Omega))} \leqslant \frac{c}{\tau}.$$

- We use an escape function as can be done in the Euclidean space.
- We use pseudo-differential operators only in the x-directions.
- On the Euclidean space, see Robert-Tamura '87.

Theorem (High frequency estimates)

Let $\delta > \frac{1}{2}$. Then there exists $c \geqslant 0$ such that for $\tau \geqslant \tau_0$ we have

$$\left\| \langle x \rangle^{-\delta} R_a(\tau) \langle x \rangle^{-\delta} \right\|_{\mathcal{L}(L^2(\Omega))} \leqslant \frac{c}{\tau}$$

Then we need estimates for the derivatives of this resolvent...

Contribution of high longitudinal frequencies

Proposition

Let au_0 be as above. Let $\delta>\frac{1}{2}$. Then there exists $c\geqslant 0$ such that for $\tau\geqslant au_0$ we have

$$\left\| \langle x \rangle^{-\delta} (1 - \chi) (-\Delta_x / \tau^2) R_a(\tau) \langle x \rangle^{-\delta} \right\|_{\mathcal{L}(L^2(\Omega))} \leqslant \frac{c}{\tau}.$$

- We use an escape function as can be done in the Euclidean space.
- We use pseudo-differential operators only in the x-directions.
- On the Euclidean space, see Robert-Tamura '87.

Theorem (High frequency estimates)

Let $\delta > \frac{1}{2}$. Then there exists $c \geqslant 0$ such that for $\tau \geqslant \tau_0$ we have

$$\left\|\left\langle x\right\rangle^{-\delta} R_a(\tau) \left\langle x\right\rangle^{-\delta}\right\|_{\mathcal{L}(L^2(\Omega))} \leqslant \frac{c}{\tau}.$$

Then we need estimates for the derivatives of this resolvent...

For z small, only the contribution of $\lambda_0(a\tau)$ should play a role. If H_{α} is selfadjoint we can write

$$(H_{\alpha} - \zeta)^{-1} u = \sum_{n \in \mathbb{N}} (-\Delta_x + \lambda_{\alpha}(n) - \zeta)^{-1} u_n(x) \otimes \varphi_n(\alpha)$$

where $T_{\alpha}\varphi_n(\alpha) = \lambda_n(\alpha)\varphi_n(\alpha)$, $u(x,y) = \sum u_n(x) \otimes \varphi_n(\alpha;y)$. Then

$$\|(H_{\alpha} - \zeta)^{-1}u\|_{L^{2}(\Omega)}^{2} = \sum_{n \in \mathbb{N}} \|(-\Delta_{x} + \lambda_{\alpha}(n) - \zeta)^{-1}u_{n}(x)\|_{L^{2}(\mathbb{R}^{d})}^{2}$$

$$\mathcal{G} = \{ \zeta \in \mathbb{C} : \operatorname{Re}(\zeta) < R_1, |\operatorname{Im}(\zeta)| < R_2 \}.$$

$$P_{\mathcal{G}} = -\frac{1}{2i\pi} \int_{\partial \mathcal{G}} (T_{\alpha} - \sigma)^{-1} d\sigma \in \mathcal{L}(L^{2}(\omega))$$

$$(T_{\alpha} - \sigma)^{-1} (-\Delta_x - \zeta + \sigma)^{-1} = (H_{\alpha} - \zeta)^{-1} (-\Delta_x - \zeta + \sigma)^{-1} + (H_{\alpha} - \zeta)^{-1} (T_{\alpha} - \sigma)^{-1}$$

$$(H_{\alpha} - \zeta)^{-1} = (H_{\alpha} - \zeta)^{-1} P_{\mathcal{G}} + \mathcal{B}_{\alpha}(\zeta),$$

For z small, only the contribution of $\lambda_0(a\tau)$ should play a role. If H_α is selfadjoint we can write

$$(H_{\alpha} - \zeta)^{-1} u = \sum_{n \in \mathbb{N}} (-\Delta_x + \lambda_{\alpha}(n) - \zeta)^{-1} u_n(x) \otimes \varphi_n(\alpha)$$

where $T_{\alpha}\varphi_n(\alpha)=\lambda_n(\alpha)\varphi_n(\alpha)$, $u(x,y)=\sum u_n(x)\otimes\varphi_n(\alpha;y)$. Then

$$\|(H_{\alpha} - \zeta)^{-1}u\|_{L^{2}(\Omega)}^{2} = \sum_{n \in \mathbb{N}} \|(-\Delta_{x} + \lambda_{\alpha}(n) - \zeta)^{-1}u_{n}(x)\|_{L^{2}(\mathbb{R}^{d})}^{2}$$

ullet We consider ${\cal G}$ of the form

$$\mathcal{G} = \{ \zeta \in \mathbb{C} : \operatorname{Re}(\zeta) < R_1, |\operatorname{Im}(\zeta)| < R_2 \}.$$

and the projection

$$P_{\mathcal{G}} = -\frac{1}{2i\pi} \int_{\partial \mathcal{G}} (T_{\alpha} - \sigma)^{-1} d\sigma \in \mathcal{L}(L^{2}(\omega)).$$

• Since H_{α} , $-\Delta_x$ and T_{α} commute we have

$$(T_{\alpha} - \sigma)^{-1} (-\Delta_x - \zeta + \sigma)^{-1} = (H_{\alpha} - \zeta)^{-1} (-\Delta_x - \zeta + \sigma)^{-1} + (H_{\alpha} - \zeta)^{-1} (T_{\alpha} - \sigma)^{-1}$$

• After integration over $\sigma \in \partial \mathcal{G}$ we get

$$(H_{\alpha} - \zeta)^{-1} = (H_{\alpha} - \zeta)^{-1} P_{\mathcal{G}} + \mathcal{B}_{\alpha}(\zeta),$$

where \mathcal{B}_{α} is holomorphic in \mathcal{G} .

For z small, only the contribution of $\lambda_0(a\tau)$ should play a role. If H_α is selfadjoint we can write

$$(H_{\alpha} - \zeta)^{-1} u = \sum_{n \in \mathbb{N}} (-\Delta_x + \lambda_{\alpha}(n) - \zeta)^{-1} u_n(x) \otimes \varphi_n(\alpha)$$

where $T_{\alpha}\varphi_n(\alpha)=\lambda_n(\alpha)\varphi_n(\alpha)$, $u(x,y)=\sum u_n(x)\otimes\varphi_n(\alpha;y)$. Then

$$\|(H_{\alpha} - \zeta)^{-1}u\|_{L^{2}(\Omega)}^{2} = \sum_{n \in \mathbb{N}} \|(-\Delta_{x} + \lambda_{\alpha}(n) - \zeta)^{-1}u_{n}(x)\|_{L^{2}(\mathbb{R}^{d})}^{2}$$

ullet We consider ${\cal G}$ of the form

$$\mathcal{G} = \{ \zeta \in \mathbb{C} : \operatorname{Re}(\zeta) < R_1, |\operatorname{Im}(\zeta)| < R_2 \}.$$

and the projection

$$P_{\mathcal{G}} = -\frac{1}{2i\pi} \int_{\partial \mathcal{G}} (T_{\alpha} - \sigma)^{-1} d\sigma \in \mathcal{L}(L^{2}(\omega)).$$

• Since H_{α} , $-\Delta_x$ and T_{α} commute we have

$$(T_{\alpha} - \sigma)^{-1} (-\Delta_x - \zeta + \sigma)^{-1} = (H_{\alpha} - \zeta)^{-1} (-\Delta_x - \zeta + \sigma)^{-1} + (H_{\alpha} - \zeta)^{-1} (T_{\alpha} - \sigma)^{-1}.$$

• After integration over $\sigma \in \partial \mathcal{G}$ we get

$$(H_{\alpha} - \zeta)^{-1} = (H_{\alpha} - \zeta)^{-1} P_{\mathcal{G}} + \mathcal{B}_{\alpha}(\zeta),$$

where \mathcal{B}_{α} is holomorphic in \mathcal{G} .

For z small, only the contribution of $\lambda_0(a\tau)$ should play a role. If H_α is selfadjoint we can write

$$(H_{\alpha} - \zeta)^{-1} u = \sum_{n \in \mathbb{N}} (-\Delta_x + \lambda_{\alpha}(n) - \zeta)^{-1} u_n(x) \otimes \varphi_n(\alpha)$$

where $T_{\alpha}\varphi_n(\alpha)=\lambda_n(\alpha)\varphi_n(\alpha)$, $u(x,y)=\sum u_n(x)\otimes\varphi_n(\alpha;y)$. Then

$$\|(H_{\alpha} - \zeta)^{-1}u\|_{L^{2}(\Omega)}^{2} = \sum_{n \in \mathbb{N}} \|(-\Delta_{x} + \lambda_{\alpha}(n) - \zeta)^{-1}u_{n}(x)\|_{L^{2}(\mathbb{R}^{d})}^{2}$$

• We consider \mathcal{G} of the form

$$\mathcal{G} = \{ \zeta \in \mathbb{C} : \operatorname{Re}(\zeta) < R_1, |\operatorname{Im}(\zeta)| < R_2 \}.$$

and the projection

$$P_{\mathcal{G}} = -\frac{1}{2i\pi} \int_{\partial \mathcal{G}} (T_{\alpha} - \sigma)^{-1} d\sigma \in \mathcal{L}(L^{2}(\omega)).$$

• Since H_{α} , $-\Delta_x$ and T_{α} commute we have

$$(T_{\alpha} - \sigma)^{-1} (-\Delta_x - \zeta + \sigma)^{-1} = (H_{\alpha} - \zeta)^{-1} (-\Delta_x - \zeta + \sigma)^{-1} + (H_{\alpha} - \zeta)^{-1} (T_{\alpha} - \sigma)^{-1}.$$

• After integration over $\sigma \in \partial \mathcal{G}$ we get

$$(H_{\alpha} - \zeta)^{-1} = (H_{\alpha} - \zeta)^{-1} P_{\mathcal{G}} + \mathcal{B}_{\alpha}(\zeta),$$

where \mathcal{B}_{α} is holomorphic in \mathcal{G} .

Contribution of large transverse frequencies

We recall the resolvent identity

$$R_a(\tau)(T_{a\tau} - \sigma)^{-1} = (T_{a\tau} - \sigma)^{-1}(-\Delta_x - \tau^2 + \sigma)^{-1} - R_a(\tau)(-\Delta_x - \tau^2 + \sigma)^{-1}.$$

We compose with $\chi(-\Delta/\tau^2)$ and integrate over σ on the boundary of

$$\mathcal{G}_{\tau} = \left\{ \zeta \in \mathbb{C} : \left| \operatorname{Re}(\zeta) - \tau^2 \right| \leq \gamma \tau^2, \left| \operatorname{Im}(\zeta) \right| \leq \gamma \tau \right\}.$$

Since $\mathcal{G}_{\tau} \cap \sigma(T_{a\tau}) = \emptyset$ the contribution of the left-hand side vanishes. The last term gives $R_a(\tau)\chi(-\Delta_x/\tau^2)$. Let E be the spectral measure associated to $-\Delta_x$. We have

$$\mathcal{R}(\tau) = \int_{\partial \mathcal{G}_{\tau}} (T_{a\tau} - \sigma)^{-1} \chi(-\Delta_x/\tau^2) \left(-\Delta_x - \tau^2 + \sigma\right)^{-1} d\sigma$$

$$= \int_{\partial \mathcal{G}_{\tau}} (T_{a\tau} - \sigma)^{-1} \left(\int_0^{+\infty} \frac{\chi(\Xi/\tau^2)}{\Xi - \tau^2 + \sigma} dE(\Xi)\right) d\sigma$$

$$= \int_0^{\gamma \tau^2} \chi(\Xi/\tau^2) \left(\int_{\partial \mathcal{G}_{\tau}} \frac{(T_{a\tau} - \sigma)^{-1}}{\Xi - \tau^2 + \sigma} d\sigma\right) dE(\Xi)$$

$$= \int_0^{\gamma \tau^2} \chi(\Xi/\tau^2) \left(\int_{\partial \mathcal{G}_{\tau,\Xi}} \frac{(T_{a\tau} - \sigma)^{-1}}{\Xi - \tau^2 + \sigma} d\sigma\right) dE(\Xi)$$

$$\mathcal{G}_{\tau \Xi} = \{ \zeta \in \mathcal{G}_{\tau} : | \operatorname{Re}(\zeta) - \tau^2 + \Xi | \leq \gamma \tau \}.$$