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Periodic graphs

Let G = (V,E) ⊂ R2 be a connected infinite graph, V is the set
of its vertices and E is the set of its unoriented edges.

Let Γ ⊂ R2 be a lattice with a basis a1, a2, i.e.,

Γ =
{

a ∈ R2 : a = n1a1 + n2a2, n1, n2 ∈ Z
}
,

Ω =
{

x ∈ R2 : x = t1a1 + t2a2, t1, t2 ∈ [0, 1)
}

be the fundamental cell of the lattice Γ.
We consider locally finite Γ-periodic graphs G , i.e., graphs

satisfying the following conditions:
1) G = G + a for any a ∈ Γ;
2) the fundamental graph G∗ = G/Γ is finite.
The vectors a1, a2 are called the periods of G .
G∗ = (V∗,E∗) is a graph on the 2-dimensional torus R2/Γ and

has the vertex set V∗ = V/Γ and the set E∗ = E/Γ of unoriented
edges.



Examples of periodic graphs and fundamental graphs
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Bridges are edges of G connecting the vertices from Ω (black
points) with the vertices outside Ω (white points).



Schrödinger operators on periodic graphs
Let `2(V) be the Hilbert space of all square summable functions

f : V→ C, equipped with the norm

‖f ‖2
`2(V) =

∑
v∈V
|f (v)|2 <∞. (1)

We consider the discrete Schrödinger operator H0 on f ∈ `2(V):

H0 = ∆ + W ,

where ∆ is the discrete combinatorial Laplace operator given by(
∆f
)
(v) =

∑
(v ,u)∈E

(
f (v)− f (u)

)
, f ∈ `2(V), v ∈ V. (2)

The potential W is real-valued and Γ-periodic, i.e.,

(Wf )(v) = W (v)f (v), W (v + a) = W (v), ∀ (v , a) ∈ V× Γ.

H0 is self-adjoint and bounded.
We consider H0 as an unperturbed operator.



The spectrum of the unperturbed operator H0

The spectrum σ(H0) of the Schrödinger operator H0 = ∆ + W
with a periodic potential W on periodic graphs is a union of ν
bands σn = σn(H0):

σ(H0) =
ν⋃

n=1
σn(H0) = σac(H0) ∪ σfb(H0),

where ν = #V∗ is the number of vertices of the fundamental
graph G∗ = (V∗,E∗).

The absolutely continuous spectrum σac(H0) consists of
non-degenerate bands σn(H0);
σfb(H0) is the set of all flat bands (eigenvalues of infinite

multiplicity).

σ1 σ2t
gap gap

σ3 σ4 . . . σν−2 σνσν−1t



Schrödinger operators with guided potentials
We consider a family of guided Schrödinger operators Ht , t > 0,

on the periodic graph G = (V,E) given by

Ht = H0 + tQ,
(
Qf
)
(v) = Q(v)f (v), f ∈ `2(V), (3)

where H0 = ∆ + W is the unperturbed Schrödinger operator with a
periodic potential W , and Q > 0 is a guided potential defined by

1) suppQ ⊂ S = R× [0, 1) (w.r.t. the periods a1, a2 of G );
2) Q(v + a1) = Q(v) for all v ∈ V.
The guided potential Q is periodic in the direction a1 and finitely

supported in the direction a2.
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Figure: The strip S = R× [0, 1) is shaded. The black vertices are the support
of the guided potential Q.



Spectrum of the guided Schrödinger operator

The spectrum of the guided Schrödinger operator Ht = H0 + tQ
on periodic graphs has the form

σ(Ht) = σ(H0) ∪ σg (Ht), σg (Ht) =
⋃
m

σgm(Ht),

where σ(H0) is the spectrum of the unperturbed Schrödinger
operator H0,
σg (Ht) is the additional guided spectrum which is a union of a

finite number of the guided bands σgm ≡ σgm(Ht).
σg (Ht) may partly lie above the spectrum of H0, on the

spectrum of H0 and in the gaps of H0:

σ(H0)

σg (Ht)

σ1 σ2 . . . σνσν−1

σg1 σg2 σg3



Korotyaev, E.; Saburova, N. Schrödinger operators with guided
potentials on periodic graphs, Proc. Amer. Math. Soc., 145
(2017), no. 11, 4869–4883.

σ(H0)

σg (Ht)

σ1 σ2 . . . σνσν−1

σg1 σg2 σg3

In that paper we considered the guided spectrum σg (Ht) above
the spectrum of H0:

I we estimated the position of the guided bands and their
length in terms of geometric parameters of the graph;

I we determined the asymptotics of the guided bands for large
guided potentials;

I we showed that the possible number of the guided bands,
their length and position can be rather arbitrary for some
specific potentials.

But there are no results about the guided spectrum σg (Ht) in
gaps of H0.



Auxiliary operators on finite graphs
Let G−∗ be the graph obtained from the fundamental graph

G∗ = (V∗,E∗) by deleting all bridges.
Let Vb ⊂ V∗ be a set of vertices of G∗ such that each bridge of

G∗ is incident to at least one vertex from Vb. The set Vb is not
uniquely defined.
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For each t > 0 we consider two operators:

• H−t = ∆− + W + tQ is the Schrödinger operator on G−∗ ,
where ∆− is the Laplacian on G−∗ ;
• H+

t is the Schrödinger operator Ht = ∆ + W + tQ on G∗ with
the Dirichlet boundary conditions f �Vb

= 0.



Localization of spectral bands of H0

• H−t = ∆− + W + tQ is the Schrödinger operator on G−∗ ;
• H+

t is the Schrödinger operator Ht = ∆ + W + tQ on
G∗ = (V∗,E∗) with the Dirichlet boundary conditions f �Vb

= 0.

The eigenvalues of H−t and H+
t :

µ−1 (t) 6 . . . 6 µ−ν (t), ν = #V∗,

µ+
1 (t) 6 . . . 6 µ+

ν−r (t), r = #Vb, r > 1.

It is known that

σk(H0) ⊂
[
µ−k , µ

+
k

]
, µ±k = µ±k (0), k = 1, . . . , ν − r .

Fabila-Carrasco, J.S.; Lledó, F.; Post, O. Spectral gaps and
discrete magnetic Laplacians, Linear Algebra Appl., 547
(2018), no. 15, 183–216.

We assume that

µ+
k < µ−k+1 for some k = 1, . . . , ν − r ,

i.e., the interval Ik = (µ+
k , µ

−
k+1) 6= ∅ is a gap (not necessarily

maximal) of H0.



Main results
Ik = (µ+

k , µ
−
k+1) 6= ∅ for some k = 1, . . . , ν − r (4)

is a spectral gap of the unperturbed Schrödinger operator H0.

Theorem 1. Let the gap condition (4) be fulfilled, λ ∈ Ik , and
V∗ ⊂ suppQ. Then there exist exactly k guided band branches

σgk, j(t) ≡ σgk, j(Ht), j = 1, . . . , k ,

of the operator family Ht = H0 + tQ, t > 0, crossing the level λ.
Moreover, in the gap Ik each of these branches satisfies

σgk, j(t) ⊂
[
µ−j (t), µ+

j (t)
]
, j = 1, . . . , k ,

where µ±j (t) are eigenvalues of the operators H±t .
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Main results
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2 (t) µ−2 (t) µ+
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Figure: Dependence of the guided bands σg
k, j(Ht) of Ht = H0 + tQ on

t > 0 (the guided band branches σg
k, j(t) ≡ σg

k, j(Ht)) in gaps of H0.



Main results

Ik = (µ+
k , µ

−
k+1) 6= ∅ for some k = 1, . . . , ν − r , (5)

is a spectral gap of the unperturbed Schrödinger operator H0;
ν = #V∗, r = #Vb.

We denote by p the number of vertices in suppQ�V∗\Vb
:

p = # suppQ�V∗\Vb
, 0 6 p 6 ν − r . (6)

Theorem 2. Let the gap condition (5) be fulfilled, p be defined in
(6). Then the gap Ik contains at most s = min{k , p} guided band
branches σgm(t) ≡ σgm(Ht) of the operator family Ht = H0 + tQ,
t > 0.

Remarks. 1) If suppQ�V∗⊂ Vb (i.e., p = 0),
G∗ = (V∗,E∗)

Vb = {v1}

s
sh

bridge bridge

v2

v1then there are no guided band branches of Ht ,
t > 0, in Ik , i.e., Ik is a gap of Ht for each t > 0.

2) The spectrum of Ht , of course,
does not depend on the choice of the set Vb. But
the interval Ik , in general, depends on this choice.



Example (the hexagonal lattice)
First we consider the unperturbed Schrödinger operator

H0 = ∆ + W with a periodic potential W on the hexagonal lattice
G . Without loss of generality we may assume that

W (v1) = w , W (v2) = −w , w > 0. (7)
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The spectrum of H0 on G has the form

σ(H0) = σ1 ∪ σ2 = [λ−1 , λ
+
1 ] ∪ [λ−2 , λ

+
2 ],

λ−1 = 3−
√

9 + w 2 , λ+
1 = 3− w ,

λ−2 = 3 + w , λ+
2 = 3 +

√
9 + w 2 .



Example (the hexagonal lattice)
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The operators H±0 have the form

H−0 =

(
1 + w −1
−1 1− w

)
, H+

0 = (3− w).

The eigenvalues µ−1 , µ−2 of H−0 and µ+
1 of H+

0 are given by

µ−j = 1 + (−1)j
√

1 + w 2 , j = 1, 2, µ+
1 = 3− w .

If w > 3/4, then µ+
1 < µ−2 and the interval I1 = (µ+

1 , µ
−
2 ) 6= ∅ is a

gap in the spectrum of the unperturbed operator H0.



Example (the hexagonal lattice)
We consider the perturbed Schrödinger operators Ht = H0 + tQ,

t > 0, on the hexagonal lattice G with the guided potential Q
satisfying the conditions

suppQ ⊂ R× [0, 1), Q(v + a1) = Q(v), ∀ v ∈ V.

Case 1. suppQ�Ω= {v1, v2}
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Example (the hexagonal lattice)
We consider the perturbed Schrödinger

G∗

Vb = {v1}
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v1operators Ht = H0 + tQ, t > 0,
on the hexagonal lattice G with
the guided potential Q satisfying the conditions

suppQ ⊂ R×[0, 1), Q(v +a1) = Q(v), ∀ v ∈ V.

Case 2. suppQ�Ω= {v1} = Vb
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Example (the hexagonal lattice)
We consider the perturbed Schrödinger operators Ht = H0 + tQ,

t > 0, on the hexagonal lattice G with the guided potential Q
satisfying the conditions

suppQ ⊂ R× [0, 1), Q(v + a1) = Q(v), ∀ v ∈ V.

Case 3. suppQ�Ω= {v2}
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Thank you for attention!


