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5th level iteration of the Sierpsinski Gasket



The Sierpinski Gasket

Definition (Sierpinski Gasket)

Let p1, p2 and p3 be the vertices of an equilateral triangle in R2 and

Fj : R2 → R2, Fj(x) = (x − pj)/2 + pj (j = 1, 2, 3).

Then we call the unique non-empty compact K ⊂ R2 that satisfies

K = F1(K) ∪ F2(K) ∪ F3(K)

the Sierpinski Gasket. Moreover, we call V0 := {p1, p2, p3} the
boundary of SG .

Let Wm := {1, 2, 3}m. Then there is a natural cell structure on SG
given by

Wm 3 w 7→ Fw (K) := Fw1 ◦ Fw2 ◦ · · · ◦ Fwm(K).

We call Fw (K) an m-cell of K.



Approximating sequence of finite graphs for SG

Definition

We let G0 := (V0,E0) be the complete graph and for m ∈ N we
define a sequence of finite discrete graphs Gm = (Vm,Em) by

Vm :=
⋃

w∈Wm

Fw (V0), Em :=
{
{x , y} ⊂ Vm

∣∣ x ∼m y
}
,

where x ∼m y ⇐⇒ x 6= y and ∃w ∈Wm such that x , y ∈ Fw (K ).

Note that Vm ⊂ Vm+1 for each m ∈ N0 and

V? :=
⋃

m∈N0

Vm ⊂ K dense.

Note also that SG is connected and

Fw (K) ∩ Fw ′(K) ⊂ Fw (V0) ∩ Fw ′(V0) ∀m ∈ N,w 6= w ′ ∈Wm.



Energy forms on the approximating graphs

Definition

On each graph Gm = (Vm,Em) we define an energy form by

Em(f ) =
(5

3

)m∑
x∼
m
y

∣∣f (x)− f (y)
∣∣2

for f : Vm → C.

The constant (5/3)m is chosen such that the minimisation problem

Em(%) = min
{
Em+1(f )

∣∣ f : Vm+1 → C, f �Vm
= %

}
has a unique solution for each % : Vm → C.



Energy form on SG

Let u : V? → C. As u�Vm
is any extension of u�Vm−1

and we have

Em−1(u�Vm−1
) ≤ Em(u�Vm

)

and hence the following limit exists in [0,∞]:

E∞(u) := lim
m→∞

Em(u�Vm
).

Theorem ([Ki01] Energy form on SG)

There exists an energy form (E , dom E) on SG related to the
sequence

{
(Gm, Em)

}
m∈N0

given by E = E∞ with domain

dom E :=
{
u ∈ C(K)

∣∣ E(u) := lim
m→∞

Em(u�Vm
) <∞

}
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Harmonic functions

The compatibility of the sequence {Em}m∈N0 implies:

Theorem ([Ki01] m-harmonic functions on SG)

For any boundary value % : Vm → C there exists a unique function
h ∈ dom E such that h�Vm

= % and

Em(%) = E(h) = min
{
E(u)

∣∣ u ∈ dom E , u�Vm
= %

}
.

The function h is called m-harmonic function with boundary values
%. In the special case where % = 1{x} for x ∈ Vm, we denote the
corresponding m-harmonic function by ψx ,m.



Specifying the Hilbert spaces

Let µ be the (homogeneous) self-similar (probability) measure on
SG, i.e. for all Borel sets A ⊂ K,

µ(A) =
1

3

(
µ(F−11 (A)) + µ(F−12 (A)) + µ(F−13 (A))

)
.

Hence every m-cell has measure µ(Kw ) = 1/3m.

Then (E , dom E) is a densely defined, closed quadratic form in
L2(K, µ) and we denote the corresponding non-negative and
self-adjoint operator by ∆.



On Gm = (Vm,Em) we define a probability measure by

µm(x) :=

∫
K
ψx ,m dµ =

{
1/3m+1 x ∈ V0

2/3m+1 x ∈ Vm \ V0.

Then our Hilbert space structure is Hm = `2(Vm, µm) with norm

‖f ‖2`2(Vm,µm)
=
∑
x∈Vm

µm(x)|f (x)|2.

It is easy to see that ∆m ≥ 0 acts as

∆mf (y) =
1

µm(y)

∑
x∼
m
y

(5

3

)m(
f (y)−f (x)

)
=

3

2
5m
∑
x∼
m
y

(
f (y)−f (x)

)
.



Problem: We have energy forms Em in `2(Vm, µm) and an energy
form (E , dom E) in L2(K, µ) and the spaces are all different. How
can we give any sense to the following expression?

‖(∆m + 1)−1 − (∆ + 1)−1‖ → 0



Generalised norm resolvent convergence

Let (Em,H 1
m) resp. (E ,H 1) be energy forms in the separable

Hilbert spaces Hm resp. H .

Definition ([P12] Quasi-unitary equivalence)

Let δm ≥ 0. Then Em and E are called δm-quasi-unitary equivalent
if there exist Jm : Hm →H , J1m : dom Em → dom E and
J ′1m : dom E → dom Em such that ‖Jmf ‖H ≤ (1 + δm)‖f ‖H and

‖f − J?mJmf ‖Hm ≤ δm‖f ‖Em ‖u − JmJ
?
mu‖H ≤ δm‖u‖E

‖Jmf − J1mf ‖H ≤ δm‖f ‖Em ‖J?mu − J ′1mu‖Hm ≤ δm‖u‖E
|E(Jmf , u)− Em(f , J ′1mu)| ≤ δm‖f ‖Em‖u‖E

where ‖u‖2E := ‖u‖2H + E(u).

Theorem

If Em and E are δm-quasi-unitary equivalent then

‖Jm(∆m + 1)−1 − (∆ + 1)−1Jm‖ ≤ 4δm.
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Consequences of quasi-unitary equivalence

Theorem ([P12])

Assume that E and Em are δm-quasi-unitarily equivalent and that
U is an open subset such that ∂U is locally Lipschitz and
∂U ∩ (σ(∆m) ∪ σ(∆)) = ∅. Then

‖η(∆)Jm − Jmη(∆m)‖ ≤ Cηδm

for any holomorphic η : U → C, where the constants Cη only
depend on η and U.

For example choose η(λ) = e−tλ then the theorem is about the
norm convergence of the approximating heat operators on
(Gm, µm) to the one on the SG.



Consequences of quasi-unitary equivalence

If η = 1I (∂I ∩ σ(∆) = ∅), then the above theorem states the
convergence of the spectral projectors and we conclude:

Corollary ([P12])

Let λk(∆m) resp. λk(∆) be the k-th eigenvalue of ∆m resp. ∆.
Then

|λk(∆m)− λk(∆)| ≤ Ckδm

for all m ∈ N such that dimHm ≥ k and where Ck only depends
on λk(∆).

Since the spectrum of ∆ is purely discrete we can approximate an
eigenfunction also in energy norm: For λ ∈ σ(∆) with normalised
eigenfunction Φ there is a sequence (Φm)m of normalised function
(linear combinations of eigenfunctions with eigenvalues close to ∆)
and Cλ > 0 (only depending in λ) such that

‖JmΦm − Φ‖dom E ≤ Cλδm.
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Main results

In our setting on the SG , this means:

1 Hm := `2(Vm, µm) where µm(x) :=
∫
ψx ,m dµ and

Em(f ) :=
(5

3

)m∑
x∼
m
y

∣∣f (x)− f (y)
∣∣2

2 H := L2(K, µ) with energy form (E , dom E) defined by

E(u) := lim
m→∞

Em(u�Vm
)

for each u ∈ { u ∈ C(K) | E(u) := limm→∞ Em(u�Vm
) <∞}



Main results

Theorem ([PS18a])

Em and E are δm-quasi-unitarily equivalent with

δm =
(1 +

√
3)
√

2√
3

· 1

5m/2
.

Flavour of the proof: We define J := Jm : Hm →H by

Jf =
∑
x∈Vm

f (x)ψx ,m then J?u(y) =
1

µm(y)
〈u, ψy ,m〉H

and let J1 : H 1
m →H 1 and J ′1 : H 1 →H 1

m

J1 = J�H 1
m

and J ′1u(y) = u(y).
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Main results

Then we have

f (y) =
1

µm(y)

∑
x∈Vm

f (y)〈ψx ,m, ψy ,m〉H

and

J?Jf (y) =
∑
x∈Vm

f (x)J?ψx ,m(y) =
1

µm(y)

∑
x∈Vm

f (x)〈ψx ,m, ψy ,m〉H

Hence

f (y)− J?Jf (y) =
1

µm(y)

∑
x∈Vm

〈ψx ,m, ψy ,m〉H
(
f (y)− f (x)

)
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Main results

And then we can estimate in norm:

‖f − J?Jf ‖2Hm
=
∑
y∈Vm

1

µm(y)

∣∣∣∑
x∈Vm

〈ψx ,m, ψy ,m〉H
(
f (y)− f (x)

)∣∣∣2
≤
∑
y∈Vm

1

µm(y)

(∑
x∈Vm

〈ψx ,m, ψy ,m〉H 2

(5/3)m

)
·
∑
x∼
m
y

(5

3

)m∣∣f (x)− f (y)
∣∣2

≤ sup
y∈Vm

1

µm(y)

(∑
x∈Vm

〈ψx ,m, ψy ,m〉H 2

(5/3)m

)
︸ ︷︷ ︸

∼
1

5m

·Em(f )
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Main results: Metric graph
A metric graph is a discrete graph G together with an edge length
function ` : E → (0,∞).

M =
⊎
e∈E

Me/ω, where Me = [0, `e ].

(i) A distance we choose the shortest path

(ii) A measure ν is given by the sum of the Lebesgue measures
on the edges

(iii) H = L2(M, ν) with norm

‖u‖2L2(M,ν) =
∑
e∈E

∫ `e

0
|ue(x)|2 dxe .

and energy form (EM , dom EM), dom EM = H1(M)

EM(u) = ‖u′‖2L2(M,ν) =
∑
e∈E

∫ `e

0
|u′e(xe)|2 dxe



Main results: Metric graph
Let K be as before with self-similar measure µ and approximating
sequence Gm = (Vm,Em). We choose

1 Mm = (Gm, `m), with length function `m(e) = 2−m

2 with energy form (τmEMm , dom EMm)

τmEMm(u) = 3 ·
(5

4

)m
‖u′‖2L2(M,ν)

3 Jmf = cm
∑

x∈Vm
f (x)ψ̃x ,m where c2m = (1/3) · (2/3)m and

ψ̃x ,m�Vm
= 1{x} and ψ̃x ,m�Me

harmonic

Theorem (Approx. by metric graphs,[PS18b])

The energy form E on SG and the rescaled energy form τmEMm on
the associated metric graphs are δm-quasi-unitarily equivalent and

δm ∼
1

5m/2



Main results: Graph-like manifold
A graph-like manifold is a Riemannian manifold of dimension
d ≥ 2 glued together from vertex neighbourhoods and edge
neighbourhoods, respecting the structure of the graph

Xm =
⋃

v∈Vm

Xm,v︸ ︷︷ ︸
vertex neighbourhoods

∪
⋃

e∈Em

Xm,e︸ ︷︷ ︸
edge neighbourhoods

Xm

X̌m,v

Xm,e
ψ̃m,v

Xm,v



Main results: Graph-like manifold

1 Hm := L2(Xm, νm) with Riemannian measure ν and norm

‖u‖2Hm
=

∫
Xm

|u(x)|2 dνm(x)

2 (EXm ,H
1
m), where H 1

m = H1(Xm, νm) and

EXm(u) = 3 ·
(5

4

)m∫
Xm

|∇u(x)|2x dνm(x)

where ∇ is the gradient and |.|x is the Riemannian metric.

Theorem (Approx. by graph-like manifolds)

The energy form E on SG and the rescaled energy form τmEXm on
the associated graph-like manifolds Xm are δm-quasi-unitarily
equivalent where

δm ∼
1

5m/3
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