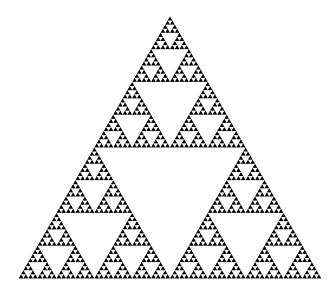
Approximation of Laplacians on the Sierpinski Gasket: norm-resolvent and spectral convergence

Jan Simmer joint work with Olaf Post

University of Trier

February 28, 2019



5th level iteration of the Sierpsinski Gasket

Definition (Sierpinski Gasket)

Let p_1, p_2 and p_3 be the vertices of an equilateral triangle in \mathbb{R}^2 and

$$F_j: \mathbb{R}^2 \to \mathbb{R}^2, \quad F_j(x) = (x - p_j)/2 + p_j \qquad (j = 1, 2, 3).$$

Then we call the unique non-empty compact $\mathcal{K} \subset \mathbb{R}^2$ that satisfies

$$\mathcal{K} = F_1(\mathcal{K}) \cup F_2(\mathcal{K}) \cup F_3(\mathcal{K})$$

the Sierpinski Gasket. Moreover, we call $V_0 := \{p_1, p_2, p_3\}$ the boundary of SG.

Let $W_m := \{1, 2, 3\}^m$. Then there is a natural cell structure on SG given by

$$W_m \ni w \mapsto F_w(\mathcal{K}) := F_{w_1} \circ F_{w_2} \circ \cdots \circ F_{w_m}(\mathcal{K}).$$

We call $F_w(\mathcal{K})$ an *m*-cell of \mathcal{K} .

Definition

We let $G_0 := (V_0, E_0)$ be the complete graph and for $m \in \mathbb{N}$ we define a sequence of finite discrete graphs $G_m = (V_m, E_m)$ by

$$V_m := \bigcup_{w \in W_m} F_w(V_0), \quad E_m := \big\{ \{x, y\} \subset V_m \, \big| \, x \sim_m y \big\},$$

where $x \sim_m y \iff x \neq y$ and $\exists w \in W_m$ such that $x, y \in F_w(K)$.

Note that $V_m \subset V_{m+1}$ for each $m \in \mathbb{N}_0$ and

$$V_\star := igcup_{m\in\mathbb{N}_0} V_m\subset\mathcal{K}$$
 dense.

Note also that SG is connected and

 $F_w(\mathcal{K}) \cap F_{w'}(\mathcal{K}) \subset F_w(V_0) \cap F_{w'}(V_0) \qquad \forall m \in \mathbb{N}, w \neq w' \in W_m.$

Definition

On each graph $G_m = (V_m, E_m)$ we define an energy form by

$$\mathcal{E}_m(f) = \left(\frac{5}{3}\right)^m \sum_{\substack{x \sim y \\ m}} |f(x) - f(y)|^2$$

for $f: V_m \to \mathbb{C}$.

The constant $(5/3)^m$ is chosen such that the minimisation problem

$$\mathcal{E}_m(\varrho) = \min\{\mathcal{E}_{m+1}(f) \mid f \colon V_{m+1} \to \mathbb{C}, f \upharpoonright_{V_m} = \varrho\}$$

has a unique solution for each $\varrho \colon V_m \to \mathbb{C}$.

Energy form on SG

Let $u \colon V_{\star} \to \mathbb{C}$. As $u \upharpoonright_{V_m}$ is any extension of $u \upharpoonright_{V_{m-1}}$ and we have

$$\mathcal{E}_{m-1}(u{\upharpoonright}_{V_{m-1}}) \leq \mathcal{E}_m(u{\upharpoonright}_{V_m})$$

and hence the following limit exists in $[0,\infty]$:

$$\mathcal{E}_{\infty}(u) := \lim_{m \to \infty} \mathcal{E}_m(u \upharpoonright_{V_m}).$$

Theorem ([Ki01] Energy form on ${ m SG}$)

There exists an energy form $(\mathcal{E}, \operatorname{dom} \mathcal{E})$ on SG related to the sequence $\{(G_m, \mathcal{E}_m)\}_{m \in \mathbb{N}_0}$ given by $\mathcal{E} = \mathcal{E}_{\infty}$ with domain

dom
$$\mathcal{E} := \left\{ u \in \mathsf{C}(\mathcal{K}) \, \big| \, \mathcal{E}(u) := \lim_{m \to \infty} \mathcal{E}_m(u \upharpoonright_{V_m}) < \infty \right\}$$

Energy form on SG

Let $u \colon V_{\star} \to \mathbb{C}$. As $u \upharpoonright_{V_m}$ is any extension of $u \upharpoonright_{V_{m-1}}$ and we have

$$\mathcal{E}_{m-1}(u{\upharpoonright}_{V_{m-1}}) \leq \mathcal{E}_m(u{\upharpoonright}_{V_m})$$

and hence the following limit exists in $[0,\infty]$:

$$\mathcal{E}_{\infty}(u) := \lim_{m \to \infty} \mathcal{E}_m(u \upharpoonright_{V_m}).$$

Theorem ([Ki01] Energy form on SG)

There exists an energy form $(\mathcal{E}, \text{dom } \mathcal{E})$ on SG related to the sequence $\{(G_m, \mathcal{E}_m)\}_{m \in \mathbb{N}_0}$ given by $\mathcal{E} = \mathcal{E}_{\infty}$ with domain

$$\operatorname{\mathsf{dom}} \mathcal{E} := \big\{ u \in \mathsf{C}(\mathcal{K}) \, \big| \, \mathcal{E}(u) := \lim_{m \to \infty} \mathcal{E}_m(u \upharpoonright_{V_m}) < \infty \big\}$$

The compatibility of the sequence $\{\mathcal{E}_m\}_{m\in\mathbb{N}_0}$ implies:

Theorem ([Ki01] *m*-harmonic functions on SG)

For any boundary value $\varrho \colon V_m \to \mathbb{C}$ there exists a unique function $h \in \operatorname{dom} \mathcal{E}$ such that $h \upharpoonright_{V_m} = \varrho$ and

$$\mathcal{E}_m(\varrho) = \mathcal{E}(h) = \min\{\mathcal{E}(u) \mid u \in \operatorname{dom} \mathcal{E}, u \upharpoonright_{V_m} = \varrho\}.$$

The function *h* is called *m*-harmonic function with boundary values ϱ . In the special case where $\varrho = \mathbb{1}_{\{x\}}$ for $x \in V_m$, we denote the corresponding *m*-harmonic function by $\psi_{x,m}$.

Let μ be the *(homogeneous) self-similar (probability) measure* on SG, i.e. for all Borel sets $A \subset \mathcal{K}$,

$$\mu(A) = \frac{1}{3} \big(\mu(F_1^{-1}(A)) + \mu(F_2^{-1}(A)) + \mu(F_3^{-1}(A)) \big).$$

Hence every *m*-cell has measure $\mu(\mathcal{K}_w) = 1/3^m$.

Then $(\mathcal{E}, \text{dom } \mathcal{E})$ is a densely defined, closed quadratic form in $L_2(\mathcal{K}, \mu)$ and we denote the corresponding non-negative and self-adjoint operator by Δ .

On $G_m = (V_m, E_m)$ we define a probability measure by

$$\mu_m(x) := \int_{\mathcal{K}} \psi_{x,m} \,\mathrm{d}\mu = \begin{cases} 1/3^{m+1} & x \in V_0 \\ 2/3^{m+1} & x \in V_m \setminus V_0. \end{cases}$$

Then our Hilbert space structure is $\mathscr{H}_m = \ell_2(V_m, \mu_m)$ with norm

$$\|f\|_{\ell_2(V_m,\mu_m)}^2 = \sum_{x \in V_m} \mu_m(x) |f(x)|^2.$$

It is easy to see that $\Delta_m \geq 0$ acts as

$$\Delta_m f(y) = \frac{1}{\mu_m(y)} \sum_{\substack{x \sim y \\ m \neq y}} \left(\frac{5}{3}\right)^m (f(y) - f(x)) = \frac{3}{2} 5^m \sum_{\substack{x \sim y \\ m \neq y}} (f(y) - f(x)).$$

Problem: We have energy forms \mathcal{E}_m in $\ell_2(V_m, \mu_m)$ and an energy form $(\mathcal{E}, \operatorname{dom} \mathcal{E})$ in $L_2(\mathcal{K}, \mu)$ and the spaces are all different. How can we give any sense to the following expression?

$$\|(\Delta_m+1)^{-1}-(\Delta+1)^{-1}\| \to 0$$

Generalised norm resolvent convergence

Let $(\mathcal{E}_m, \mathscr{H}_m^1)$ resp. $(\mathcal{E}, \mathscr{H}^1)$ be energy forms in the separable Hilbert spaces \mathscr{H}_m resp. \mathscr{H} .

Definition ([P12] Quasi-unitary equivalence)

Let $\delta_m \geq 0$. Then \mathcal{E}_m and \mathcal{E} are called δ_m -quasi-unitary equivalent if there exist $J_m \colon \mathscr{H}_m \to \mathscr{H}$, $J_m^1 \colon \operatorname{dom} \mathcal{E}_m \to \operatorname{dom} \mathcal{E}$ and $J_m'^1 \colon \operatorname{dom} \mathcal{E} \to \operatorname{dom} \mathcal{E}_m$ such that $\|J_m f\|_{\mathscr{H}} \leq (1 + \delta_m) \|f\|_{\mathscr{H}}$ and

$$\begin{split} \|f - J_m^{\star} J_m f\|_{\mathscr{H}_m} &\leq \delta_m \|f\|_{\mathscr{E}_m} \qquad \|u - J_m J_m^{\star} u\|_{\mathscr{H}} \leq \delta_m \|u\|_{\mathscr{E}} \\ \|J_m f - J_m^1 f\|_{\mathscr{H}} &\leq \delta_m \|f\|_{\mathscr{E}_m} \qquad \|J_m^{\star} u - J_m^{\prime 1} u\|_{\mathscr{H}_m} \leq \delta_m \|u\|_{\mathscr{E}} \\ &|\mathcal{E}(J_m f, u) - \mathcal{E}_m(f, J_m^{\prime 1} u)| \leq \delta_m \|f\|_{\mathscr{E}_m} \|u\|_{\mathscr{E}} \end{split}$$

where $\|u\|_{\mathcal{E}}^2 := \|u\|_{\mathscr{H}}^2 + \mathcal{E}(u).$

Theorem

If \mathcal{E}_m and \mathcal{E} are δ_m -quasi-unitary equivalent then

 $||J_m(\Delta_m+1)^{-1}-(\Delta+1)^{-1}J_m|| \le 4\delta_m.$

Generalised norm resolvent convergence

Let $(\mathcal{E}_m, \mathscr{H}_m^1)$ resp. $(\mathcal{E}, \mathscr{H}^1)$ be energy forms in the separable Hilbert spaces \mathscr{H}_m resp. \mathscr{H} .

Definition ([P12] Quasi-unitary equivalence)

Let $\delta_m \geq 0$. Then \mathcal{E}_m and \mathcal{E} are called δ_m -quasi-unitary equivalent if there exist $J_m \colon \mathscr{H}_m \to \mathscr{H}$, $J_m^1 \colon \operatorname{dom} \mathcal{E}_m \to \operatorname{dom} \mathcal{E}$ and $J_m'^1 \colon \operatorname{dom} \mathcal{E} \to \operatorname{dom} \mathcal{E}_m$ such that $\|J_m f\|_{\mathscr{H}} \leq (1 + \delta_m) \|f\|_{\mathscr{H}}$ and

$$\begin{split} \|f - J_m^{\star} J_m f\|_{\mathscr{H}_m} &\leq \delta_m \|f\|_{\mathscr{E}_m} \qquad \|u - J_m J_m^{\star} u\|_{\mathscr{H}} \leq \delta_m \|u\|_{\mathscr{E}} \\ \|J_m f - J_m^1 f\|_{\mathscr{H}} &\leq \delta_m \|f\|_{\mathscr{E}_m} \qquad \|J_m^{\star} u - J_m^{\prime 1} u\|_{\mathscr{H}_m} \leq \delta_m \|u\|_{\mathscr{E}} \\ &|\mathcal{E}(J_m f, u) - \mathcal{E}_m(f, J_m^{\prime 1} u)| \leq \delta_m \|f\|_{\mathscr{E}_m} \|u\|_{\mathscr{E}} \end{split}$$

where $\|u\|_{\mathcal{E}}^2 := \|u\|_{\mathscr{H}}^2 + \mathcal{E}(u)$.

Theorem

If \mathcal{E}_m and \mathcal{E} are δ_m -quasi-unitary equivalent then

 $\|J_m(\Delta_m+1)^{-1}-(\Delta+1)^{-1}J_m\| \leq 4\delta_m.$

Theorem ([P12])

Assume that \mathcal{E} and \mathcal{E}_m are δ_m -quasi-unitarily equivalent and that U is an open subset such that ∂U is locally Lipschitz and $\partial U \cap (\sigma(\Delta_m) \cup \sigma(\Delta)) = \emptyset$. Then

$$\|\eta(\Delta)J_m - J_m\eta(\Delta_m)\| \leq C_\eta\delta_m$$

for any holomorphic $\eta: U \to \mathbb{C}$, where the constants C_{η} only depend on η and U.

For example choose $\eta(\lambda) = e^{-t\lambda}$ then the theorem is about the norm convergence of the approximating heat operators on (G_m, μ_m) to the one on the SG.

Consequences of quasi-unitary equivalence

If $\eta = \mathbb{1}_I \ (\partial I \cap \sigma(\Delta) = \emptyset)$, then the above theorem states the convergence of the spectral projectors and we conclude:

Corollary ([P12])

Let $\lambda_k(\Delta_m)$ resp. $\lambda_k(\Delta)$ be the k-th eigenvalue of Δ_m resp. Δ . Then

$$|\lambda_k(\Delta_m) - \lambda_k(\Delta)| \leq C_k \delta_m$$

for all $m \in \mathbb{N}$ such that $\dim \mathscr{H}_m \ge k$ and where C_k only depends on $\lambda_k(\Delta)$.

Since the spectrum of Δ is purely discrete we can approximate an eigenfunction also in energy norm: For $\lambda \in \sigma(\Delta)$ with normalised eigenfunction Φ there is a sequence $(\Phi_m)_m$ of normalised function (linear combinations of eigenfunctions with eigenvalues close to Δ) and $C_{\lambda} > 0$ (only depending in λ) such that

$$\|J_m\Phi_m-\Phi\|_{\operatorname{dom}\mathcal{E}}\leq C_\lambda\delta_m.$$

Consequences of quasi-unitary equivalence

If $\eta = \mathbb{1}_I \ (\partial I \cap \sigma(\Delta) = \emptyset)$, then the above theorem states the convergence of the spectral projectors and we conclude:

Corollary ([P12])

Let $\lambda_k(\Delta_m)$ resp. $\lambda_k(\Delta)$ be the k-th eigenvalue of Δ_m resp. Δ . Then

$$|\lambda_k(\Delta_m) - \lambda_k(\Delta)| \leq C_k \delta_m$$

for all $m \in \mathbb{N}$ such that $\dim \mathscr{H}_m \ge k$ and where C_k only depends on $\lambda_k(\Delta)$.

Since the spectrum of Δ is purely discrete we can approximate an eigenfunction also in energy norm: For $\lambda \in \sigma(\Delta)$ with normalised eigenfunction Φ there is a sequence $(\Phi_m)_m$ of normalised function (linear combinations of eigenfunctions with eigenvalues close to Δ) and $C_{\lambda} > 0$ (only depending in λ) such that

$$\|J_m\Phi_m-\Phi\|_{\operatorname{dom}\mathcal{E}}\leq C_\lambda\delta_m.$$

In our setting on the SG, this means:

$$\ \, {\mathscr H}_m:=\ell_2(V_m,\mu_m) \hbox{ where } \mu_m(x):=\int \psi_{x,m}\,\mathrm{d}\mu \hbox{ and }$$

$$\mathcal{E}_m(f) := \left(\frac{5}{3}\right)^m \sum_{\substack{x \sim y \\ m}} \left|f(x) - f(y)\right|^2$$

 ${\it @} \ {\mathscr H}:={\sf L}_2({\mathcal K},\mu) \text{ with energy form } ({\mathcal E},{\sf dom}\,{\mathcal E}) \text{ defined by }$

$$\mathcal{E}(u) := \lim_{m \to \infty} \mathcal{E}_m(u \restriction_{V_m})$$

for each $u \in \{ u \in \mathsf{C}(\mathcal{K}) \, | \, \mathcal{E}(u) := \lim_{m \to \infty} \mathcal{E}_m(u \upharpoonright_{V_m}) < \infty \}$

Theorem ([PS18a])

 \mathcal{E}_m and \mathcal{E} are δ_m -quasi-unitarily equivalent with

$$\delta_m = \frac{(1+\sqrt{3})\sqrt{2}}{\sqrt{3}} \cdot \frac{1}{5^{m/2}}.$$

Flavour of the proof: We define $J := J_m \colon \mathscr{H}_m \to \mathscr{H}$ by

$$Jf = \sum_{x \in V_m} f(x)\psi_{x,m} \quad \text{then} \quad J^*u(y) = \frac{1}{\mu_m(y)} \langle u, \psi_{y,m} \rangle_{\mathscr{H}}$$

and let $J^1 \colon \mathscr{H}^1_m \to \mathscr{H}^1$ and $J'^1 \colon \mathscr{H}^1 \to \mathscr{H}^1_m$

 $J^1=J{{}^{\uparrow}_{\mathscr{H}^1_m}}$ and $J'^1u(y)=u(y).$

Theorem ([PS18a])

 \mathcal{E}_m and \mathcal{E} are δ_m -quasi-unitarily equivalent with

$$\delta_m = \frac{(1+\sqrt{3})\sqrt{2}}{\sqrt{3}} \cdot \frac{1}{5^{m/2}}.$$

Flavour of the proof: We define $J := J_m \colon \mathscr{H}_m \to \mathscr{H}$ by

$$Jf = \sum_{x \in V_m} f(x)\psi_{x,m}$$
 then $J^{\star}u(y) = \frac{1}{\mu_m(y)}\langle u, \psi_{y,m} \rangle_{\mathscr{H}}$

and let $J^1 \colon \mathscr{H}^1_m \to \mathscr{H}^1$ and $J'^1 \colon \mathscr{H}^1 \to \mathscr{H}^1_m$

 $J^1 = J \upharpoonright_{\mathscr{H}^1_m}$ and $J'^1 u(y) = u(y).$

Then we have

$$f(\mathbf{y}) = \frac{1}{\mu_m(\mathbf{y})} \sum_{\mathbf{x} \in V_m} f(\mathbf{y}) \langle \psi_{\mathbf{x},m}, \psi_{\mathbf{y},m} \rangle_{\mathscr{H}}$$

and

$$J^{*}Jf(y) = \sum_{x \in V_{m}} f(x)J^{*}\psi_{x,m}(y) = \frac{1}{\mu_{m}(y)} \sum_{x \in V_{m}} f(x)\langle\psi_{x,m},\psi_{y,m}\rangle_{\mathscr{H}}$$

Hence

$$f(y) - J^* \mathcal{J} f(y) = \frac{1}{\mu_m(y)} \sum_{x \in V_m} \langle \psi_{x,m}, \psi_{y,m} \rangle_{\mathscr{H}} (f(y) - f(x))$$

Then we have

$$f(y) = \frac{1}{\mu_m(y)} \sum_{x \in V_m} f(y) \langle \psi_{x,m}, \psi_{y,m} \rangle_{\mathscr{H}}$$

 $\quad \text{and} \quad$

$$J^{\star}Jf(y) = \sum_{x \in V_m} f(x)J^{\star}\psi_{x,m}(y) = \frac{1}{\mu_m(y)}\sum_{x \in V_m} f(x)\langle\psi_{x,m},\psi_{y,m}\rangle_{\mathscr{H}}$$

Hence

$$f(y) - J^* J f(y) = \frac{1}{\mu_m(y)} \sum_{x \in V_m} \langle \psi_{x,m}, \psi_{y,m} \rangle_{\mathscr{H}} (f(y) - f(x))$$

Then we have

$$f(y) = \frac{1}{\mu_m(y)} \sum_{x \in V_m} f(y) \langle \psi_{x,m}, \psi_{y,m} \rangle_{\mathscr{H}}$$

 and

$$J^{\star}Jf(y) = \sum_{x \in V_m} f(x)J^{\star}\psi_{x,m}(y) = \frac{1}{\mu_m(y)}\sum_{x \in V_m} f(x)\langle\psi_{x,m},\psi_{y,m}\rangle_{\mathscr{H}}$$

Hence

$$f(y) - J^{\star}Jf(y) = \frac{1}{\mu_m(y)} \sum_{x \in V_m} \langle \psi_{x,m}, \psi_{y,m} \rangle_{\mathscr{H}} (f(y) - f(x))$$

And then we can estimate in norm:

$$\|f - J^{\star}Jf\|_{\mathscr{H}_{m}}^{2} = \sum_{y \in V_{m}} \frac{1}{\mu_{m}(y)} \Big| \sum_{x \in V_{m}} \langle \psi_{x,m}, \psi_{y,m} \rangle_{\mathscr{H}} (f(y) - f(x)) \Big|^{2}$$

$$\leq \sum_{y \in V_{m}} \frac{1}{\mu_{m}(y)} \Big(\sum_{x \in V_{m}} \frac{\langle \psi_{x,m}, \psi_{y,m} \rangle_{\mathscr{H}}^{2}}{(5/3)^{m}} \Big)$$

$$\cdot \sum_{x \sim y} \Big(\frac{5}{3} \Big)^{m} |f(x) - f(y)|^{2}$$

$$\leq \underbrace{\sup_{y \in V_{m}} \frac{1}{\mu_{m}(y)} \Big(\sum_{x \in V_{m}} \frac{\langle \psi_{x,m}, \psi_{y,m} \rangle_{\mathscr{H}}^{2}}{(5/3)^{m}} \Big) \cdot \mathcal{E}_{m}(f)}_{\sim \frac{1}{5^{m}}}$$

And then we can estimate in norm:

$$\|f - J^{\star}Jf\|_{\mathscr{H}_{m}}^{2} = \sum_{y \in V_{m}} \frac{1}{\mu_{m}(y)} \Big| \sum_{x \in V_{m}} \langle \psi_{x,m}, \psi_{y,m} \rangle_{\mathscr{H}} (f(y) - f(x)) \Big|^{2}$$

$$\leq \sum_{y \in V_{m}} \frac{1}{\mu_{m}(y)} \Big(\sum_{x \in V_{m}} \frac{\langle \psi_{x,m}, \psi_{y,m} \rangle_{\mathscr{H}}^{2}}{(5/3)^{m}} \Big)$$

$$\cdot \sum_{x \sim y} \Big(\frac{5}{3} \Big)^{m} |f(x) - f(y)|^{2}$$

$$\leq \underbrace{\sup_{y \in V_{m}} \frac{1}{\mu_{m}(y)} \Big(\sum_{x \in V_{m}} \frac{\langle \psi_{x,m}, \psi_{y,m} \rangle_{\mathscr{H}}^{2}}{(5/3)^{m}} \Big) \cdot \mathcal{E}_{m}(f)}_{\sim \frac{1}{\overline{r_{m}}}}$$

And then we can estimate in norm:

$$\begin{split} \|f - J^* Jf\|_{\mathscr{H}_m}^2 &= \sum_{y \in V_m} \frac{1}{\mu_m(y)} \Big| \sum_{x \in V_m} \langle \psi_{x,m}, \psi_{y,m} \rangle_{\mathscr{H}} (f(y) - f(x)) \Big|^2 \\ &\leq \sum_{y \in V_m} \frac{1}{\mu_m(y)} \Big(\sum_{x \in V_m} \frac{\langle \psi_{x,m}, \psi_{y,m} \rangle_{\mathscr{H}}^2}{(5/3)^m} \Big) \\ &\quad \cdot \sum_{x \sim y} \Big(\frac{5}{3} \Big)^m |f(x) - f(y)|^2 \\ &\leq \underbrace{\sup_{y \in V_m} \frac{1}{\mu_m(y)} \Big(\sum_{x \in V_m} \frac{\langle \psi_{x,m}, \psi_{y,m} \rangle_{\mathscr{H}}^2}{(5/3)^m} \Big) \cdot \mathcal{E}_m(f)}_{\sim \frac{1}{5^m}} \end{split}$$

Main results: Metric graph

A metric graph is a discrete graph G together with an edge length function $\ell \colon E \to (0,\infty)$.

$$M = \bigoplus_{e \in E} M_e / \omega$$
, where $M_e = [0, \ell_e]$.

- (i) A distance we choose the shortest path
- (ii) A measure ν is given by the sum of the Lebesgue measures on the edges

(iii) $\mathscr{H} = L_2(M, \nu)$ with norm

$$\|u\|_{L_2(M,\nu)}^2 = \sum_{e \in E} \int_0^{\ell_e} |u_e(x)|^2 \, \mathrm{d}x_e.$$

and energy form $(\mathcal{E}_M, \operatorname{dom} \mathcal{E}_M)$, $\operatorname{dom} \mathcal{E}_M = \operatorname{H}^1(M)$

$$\mathcal{E}_{M}(u) = \|u'\|_{L_{2}(M,\nu)}^{2} = \sum_{e \in E} \int_{0}^{\ell_{e}} |u'_{e}(x_{e})|^{2} dx_{e}$$

Main results: Metric graph

Let \mathcal{K} be as before with self-similar measure μ and approximating sequence $G_m = (V_m, E_m)$. We choose

• $M_m = (G_m, \ell_m)$, with length function $\ell_m(e) = 2^{-m}$

② with energy form $(\tau_m \mathcal{E}_{M_m}, \operatorname{dom} \mathcal{E}_{M_m})$

$$\tau_m \mathcal{E}_{M_m}(u) = 3 \cdot \left(\frac{5}{4}\right)^m \|u'\|_{\mathsf{L}_2(M,\nu)}^2$$

•
$$J_m f = c_m \sum_{x \in V_m} f(x) \widetilde{\psi}_{x,m}$$
 where $c_m^2 = (1/3) \cdot (2/3)^m$ and
 $\widetilde{\psi}_{x,m} \upharpoonright_{V_m} = \mathbb{1}_{\{x\}}$ and $\widetilde{\psi}_{x,m} \upharpoonright_{M_e}$ harmonic

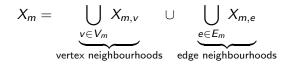
Theorem (Approx. by metric graphs, [PS18b])

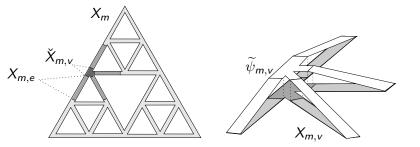
The energy form \mathcal{E} on SG and the rescaled energy form $\tau_m \mathcal{E}_{M_m}$ on the associated metric graphs are δ_m -quasi-unitarily equivalent and

$$\delta_m \sim \frac{1}{5^{m/2}}$$

Main results: Graph-like manifold

A graph-like manifold is a Riemannian manifold of dimension $d \ge 2$ glued together from vertex neighbourhoods and edge neighbourhoods, respecting the structure of the graph





Main results: Graph-like manifold

9 $\mathscr{H}_m := L_2(X_m, \nu_m)$ with Riemannian measure ν and norm

$$\|u\|_{\mathscr{H}_m}^2 = \int_{X_m} |u(x)|^2 \,\mathrm{d}\nu_m(x)$$

 $(\mathcal{E}_{X_m}, \mathscr{H}_m^1), \text{ where } \mathscr{H}_m^1 = \mathsf{H}^1(X_m, \nu_m) \text{ and }$

$$\mathcal{E}_{X_m}(u) = 3 \cdot \left(\frac{5}{4}\right)^m \int_{X_m} |\nabla u(x)|_x^2 \, \mathrm{d}\nu_m(x)$$

where ∇ is the gradient and $|.|_{x}$ is the Riemannian metric.

Theorem (Approx. by graph-like manifolds)

The energy form \mathcal{E} on SG and the rescaled energy form $\tau_m \mathcal{E}_{X_m}$ on the associated graph-like manifolds X_m are δ_m -quasi-unitarily equivalent where

$$\delta_m \sim \frac{1}{5^{m/3}}$$

[Ki01] J. Kigami, Analysis on fractals, Cambridge Tracts in Mathematics, vol. 143, Cambridge University Press, Cambridge, 2001.

[P12] O. Post, Spectral analysis on graph-like spaces, Lecture Notes in Mathematics, vol. 2039, Springer, Heidelberg, 2012.

 O. Post and J. Simmer, Approximation of fractals by discrete graphs: norm resolvent and spectral convergence, Integral Equations Operator Theory 90 (2018), 90:68.

_____, Approximation of fractals by manifolds and other graph-like spaces, arXiv:1802.02998 (2018).