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5th level iteration of the Sierpsinski Gasket



The Sierpinski Gasket

Definition (Sierpinski Gasket)

Let p1, po and p3 be the vertices of an equilateral triangle in R? and
FiiR? =R F(x)=(x—-p)/2+p (i=1,2,3)
Then we call the unique non-empty compact /C C R? that satisfies
K = F(K) U F2(K) U F5(K)

the Sierpinski Gasket. Moreover, we call Vi := {p1, p2, p3} the
boundary of SG.

v

Let Wy, := {1,2,3}™. Then there is a natural cell structure on SG
given by

Wmn o> w— Fu(K):= Fy 0 Fy,0---0Fy, (K).

We call F,(K) an m-cell of K.



Approximating sequence of finite graphs for SG

We let Go := (Vo, Eg) be the complete graph and for m € N we
define a sequence of finite discrete graphs G, = (Vin, Em) by

Vi = U FW(V0)7 Em::{{xa}/}cvm}x’\“m)/}v
WGWm

where x ~p, y <= x # y and 3w € W,, such that x,y € F,(K).

<

Note that V), C V41 for each m € Ny and

V, = U V,, C K dense.

méeNy

Note also that SG is connected and

Fp(K) N Fur(K) C Fu(Vo) N Fur(Vo)  VYmeN,w £ w € W,



Energy forms on the approximating graphs

On each graph G, = (Vin, Em) we define an energy form by

enf) = (3)" 2100 = £

X~y
m

for f: V,, — C.

v

The constant (5/3)™ is chosen such that the minimisation problem
Em(0) = min{ Emy1(F) | f: Vimp1 — C,fly, =0}

has a unique solution for each o: V,, — C.



Energy form on SG

Let u: Vi, — C. As uly,, is any extension of u[,  and we have

gm—l(uer_l) < 5m(UTvm)

and hence the following limit exists in [0, co]:

Exolu) = mlinoo Em(uly,,)



Energy form on SG

Let u: Vi, — C. As uly,, is any extension of u[,  and we have

gm—l(uer_l) < 5m(vam)

and hence the following limit exists in [0, co]:

Theorem ([Ki01] Energy form on SG)

There exists an energy form (£,dom &) on SG related to the
sequence {(G,,,,cS'm)}meNo given by £ = £, with domain

dom& :={ue C(K)|E(v) := mli_r)nooé'm(u[vm) < o0}




Harmonic functions

The compatibility of the sequence {Em}men, implies:

Theorem ([Ki01] m-harmonic functions on SG)

For any boundary value ¢: V,;, — C there exists a unique function
h € dom & such that h\, = o and

Em(0) = E(h) =min{&E(u)|u € dom &, uly, =0}

The function h is called m-harmonic function with boundary values
0. In the special case where o = 1y,; for x € Vi, we denote the
corresponding m-harmonic function by 9 m.



Specifying the Hilbert spaces

Let 1 be the (homogeneous) self-similar (probability) measure on
SG, i.e. for all Borel sets A C K,
1

1(A) = 3 (n(FTH(A) + u(Fy N (A)) + w(F5 (A)).

Hence every m-cell has measure p(KC,,) = 1/3™.
Then (£,dom ) is a densely defined, closed quadratic form in

L,(XC, ) and we denote the corresponding non-negative and
self-adjoint operator by A.



On Gy = (Vim, Em) we define a probability measure by

_/1/1 du = 1/3mt x € Vo
e 2/3m+1 X € Vi \ Vo.

Then our Hilbert space structure is 77, = {5(Vm, ftm) with norm

1FIZ (Vi = D 1m0 ().

XEVm

It is easy to see that A,, > 0 acts as

Anfr) = =3 (2) " (F)-Fx 5"’2




Problem: We have energy forms &, in £5( Vi, tm) and an energy
form (€,dom &) in L,(KC, 1) and the spaces are all different. How
can we give any sense to the following expression?

I(Am+1)7 = (A+1)7H| =0



Generalised norm resolvent convergence

Let (Em, HL) resp. (€, 7#) be energy forms in the separable
Hilbert spaces .7, resp. 7.

Definition ([P12] Quasi-unitary equivalence)

Let §,, > 0. Then &, and & are called d,,-quasi-unitary equivalent
if there exist Jp,: 4, — 2, J,%q: dom &, — dom &€ and

Jt: dom & — dom &, such that ||Jnf|lz < (14 0m)||f|l» and

I = S dmfll ot < Omllflle, v = ImIpulle < Omllulle
Hinf = Imflloe < Omlflle, 1y — Inullz, < Omllulle

[E(Umf s u) = Em(F, Jpu)| < Smllf e, [lulle

where [[ul}2 = [[u]3, + £(u).




Generalised norm resolvent convergence

Let (Em, HL) resp. (€, 7#) be energy forms in the separable
Hilbert spaces .7, resp. 7.

Definition ([P12] Quasi-unitary equivalence)

Let 0, > 0. Then &, and &€ are called d,-quasi-unitary equivalent
if there exist Jy,: S — S, JL: dom &, — dom € and

Jt: dom & — dom &, such that ||Jnflle < (14 6m)||f|l» and

If = Jodmf ot < Omlfllen, Mo = ImIpullr < mllulle
Hinf = Imflloe < Omlflle, 1y — Inullz, < Omllulle

[E(Umf s u) = Em(F, Jpu)| < Smllf e, [lulle

where HuH% = HuH?%ﬂ + &(u).

Theorem
If Em and € are 0 m-quasi-unitary equivalent then

| A\

[ Jm(Am + 1) = (A+1)"1 | < 40

\




Consequences of quasi-unitary equivalence

Theorem ([P12])

Assume that £ and &, are dm-quasi-unitarily equivalent and that
U is an open subset such that OU is locally Lipschitz and
oUN (o(Am)Ua(A)) =10. Then

17(28)Jm = Imn(Am)l| < Cyom

for any holomorphic n: U — C, where the constants C, only
depend on n and U.

For example choose 1()\) = e~ then the theorem is about the
norm convergence of the approximating heat operators on
(Gm, ftm) to the one on the SG.



Consequences of quasi-unitary equivalence

If n =1, (0l No(A)=10), then the above theorem states the
convergence of the spectral projectors and we conclude:
Corollary ([P12])

Let \g(Ap,) resp. A(A) be the k-th eigenvalue of Ay, resp. A.
Then

[Ac(Am) = Ae(B)] < Cibm

for all m € N such that dim s, > k and where Cy only depends
on Ae(A).




Consequences of quasi-unitary equivalence

If n =1, (0l No(A)=10), then the above theorem states the
convergence of the spectral projectors and we conclude:

Corollary ([P12])

Let \g(Ap,) resp. A(A) be the k-th eigenvalue of Ay, resp. A.

Then
A(Bm) = M(A)] < COm

for all m € N such that dim s, > k and where Cy only depends
on Ae(A).

Since the spectrum of A is purely discrete we can approximate an
eigenfunction also in energy norm: For A € o(A) with normalised
eigenfunction ® there is a sequence (®,)m of normalised function
(linear combinations of eigenfunctions with eigenvalues close to A)
and Cy > 0 (only depending in \) such that

Hqu)m - ¢Hd0m8 < C)\(Sm-



Main results

In our setting on the SG, this means:
Q 0 = Uy(Vim, tm) Where fim(x) := [ by mdp and

en() = (5)" Y1700 -

X/;.'/y
Q@ 7 = L,(K, ) with energy form (€,dom &) defined by

E(u) == lim En(uly,)

m—00

for each v € {u € C(K)[E(u) == limm_so0 Em(uly,,) < o0}



Main results

Theorem ([PS18a])

Em and & are §p-quasi-unitarily equivalent with

1+v3)vV2 1
\/§ '5m/2'

5 =




Main results

Theorem ([PS18a])

Em and & are §p-quasi-unitarily equivalent with

s _ (1+V3V2 1
) = \/§ 5m/2°
Flavour of the proof: We define J := J,,: 5, — 5 by
1
JF =" f(X)xm then Ju(y)= m@,wm) w

x€EVm
and let J1: 2} — " and J1: Y — o)

S = Il and Jtu(y) = u(y).



Main results

Then we have

Z F() (Sn,my Yy, m) e

XEV



Main results

Then we have

Z F() (Sn,my Yy, m) e

XEV

and

PIE(y) =D )T Ym(y) = Z X) (Uxmy Yy m) e

x€Vn cVm



Main results

Then we have

Z F() (Sn,my Yy, m) e
XEV
and
PIE(y) =D )T Ym(y) = Z X) (Uxmy Yy m) e
x€Vn €EVm
Hence
1
fy) = JIF) = s > (s bym e (F(y) — £(x))

XEVm



Main results

And then we can estimate in norm:

I -9 = 3 o \Z (W by (F) = £)) |



Main results

And then we can estimate in norm:

1 2
If = I I 1%, = D M(y)‘ > (xms Yymh e (F(y) = f(X))‘
yeVm "MV eV

1 <wx,m7¢y,m>,%"2
<2l )

yEVm Fom XEVim

G - P

X~y
m




Main results

And then we can estimate in norm:

1 2
If = I I 1%, = D M(y)‘ > (xms Yymh e (F(y) = f(X))‘
yeVm "MV eV

2
<y 1 (Z <wX,IE75773y),nm’l>% )

yevm /"Lm(y) xeVin,

G - P

X~y
m

1 <wx,ma¢y,m>jf2 .
< swp s (3 ) i)

x€Vm

1

5m



Main results: Metric graph

A metric graph is a discrete graph G together with an edge length
function ¢: E — (0, 00).

M= [H Me/w,  where M. =[0,]
ecE

(i) A distance we choose the shortest path

(i) A measure v is given by the sum of the Lebesgue measures
on the edges

(iif) = L,(M,v) with norm

1ull? ) = Z/ ()2 dxe.

ecE

and energy form (Ey, dom Eyy), dom &y = HY(M)

Em() = W1 1,y = Z/ () P dx,

ecE



Main results: Metric graph

Let K be as before with self-similar measure p and approximating
sequence G, = (Vpn, Em). We choose

QO M,, = (Gm, L), with length function ¢,(e) =2—7"
@ with energy form (7,E0m,,, dom &)

B\ m
TmEm,(u) =3 <Z) HU/HEZ(M,V)

QO Jnf = cm Sonev,, F(X)0x,m where c2 = (1/3) - (2/3)™ and

Jx,mfvm =1y and Jx,mf/\//e harmonic

Theorem (Approx. by metric graphs,[PS18b])

The energy form € on SG and the rescaled energy form tm&Epy,, on
the associated metric graphs are d,-quasi-unitarily equivalent and

1

m ™~ 5m/2




Main results: Graph-like manifold

A graph-like manifold is a Riemannian manifold of dimension
d > 2 glued together from vertex neighbourhoods and edge
neighbourhoods, respecting the structure of the graph

Xm = U Xm,v U U Xm,e

ve Vm eEEm

vertex neighbourhoods edge neighbourhoods




Main results: Graph-like manifold

Q 7, = Ly(Xm,vm) with Riemannian measure v and norm

luly, = /X () dvm(x)

Q (Ex,, L), where L = Hl(Xm,Vm) and

Ex (1) / IV u(x) 2 dvm(x)

where V is the gradient and |.|x is the Riemannian metric.

Theorem (Approx. by graph-like manifolds)

The energy form € on SG and the rescaled energy form tEx,, on
the associated graph-like manifolds X, are é ,-quasi-unitarily
equivalent where

1

Om ~ 5m/3
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