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Introduction Ty,

»  Polyharmonic function of order n on a Euclidean domain D :
f:D— C suchthat A"f=0.

» Studied since 19th century, active topic.
Books: [Aronszajn, Creese and Lipkin, 1983],
[Gazzola, Grunau and Sweers, 2010]

» [Almansi, 1899]: if D c R? = C is starlike w.r.to origin, then

n-—1
f(z) =) 12* h(z) with h, harmonic.
r=0
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Introduction Ty
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» IfD={zx+iyeC:|z|<1}and
Pze =P ep cean)
’ & - 22 '

is the Poisson kernel, then Alamansi’s representation can be

rewritten as

n—1
f(z) = g L 1z P(z,£)dv(e),

where vyg,...,v,—1 are analytic functionals (= certain
distributions) on dD [Helgason, 1974];
Borel measures in the classical case h, > 0.

» Discrete analogues ?
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Transition operators on trees Ty,

» T acountable tree with
no leaves, vertices may Q W
have infinitely many
neighbours.
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» T acountable tree with
no leaves, vertices may Q W
have infinitely many
neighbours.

> P=(p(x.y)), er
stochastic traxn}:ition 4 F

matrix of nearest neighbour

randomwalk: p(x,y)>0& x~y.
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Transition operators on trees Ty,

» T acountable tree with
no leaves, vertices may Q W
have infinitely many

neighbours.

> P = (p(Xr y))x'ye_T /‘ [\
stochastic transition
matrix of nearest neighbour '
randomwalk: p(x,y)>0& x~y.

» Analogue of —A is - P, where

Pf(x) = Z p(x,y)f(y) for f: T —C (abs. convergent).
y~x

©00000000 Section 2 4/20



Transition operators on trees Ty
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» A A-harmonic function (A € C) is afunction h: T — C with

Ph=A-h.
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» A A-harmonic function (A € C) is afunction h: T — C with
Ph=A-h.

» Which A? P acts as a self-adjoint operator on ¢?(T,m) with
weights (measure) satisfying m(x)p(x,y) = m(y)p(y, X) .
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» A A-harmonic function (A € C) is afunction h: T — C with
Ph=A-h.

» Which A? P acts as a self-adjoint operator on ¢?(T,m) with
weights (measure) satisfying m(x)p(x,y) = m(y)p(y, X) .

» spec(P) c [-p(P), p(P)] with spectral radius

p(P) = limsup p(M(x,y)'/".
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» A A-harmonic function (A € C) is afunction h: T — C with
Ph=A-h.

» Which A? P acts as a self-adjoint operator on ¢?(T,m) with
weights (measure) satisfying m(x)p(x,y) = m(y)p(y, X) .

» spec(P) c [-p(P), p(P)] with spectral radius
p(P) = limsup p((x, y)/" .

» Want A eres(P) =C\ spec(P) (possibly also A = xp(P).)
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Transition operators on trees

» Resolvent = Green function
G(x,yIA) = (A- 1= P) "y(x)

for [A| > p(P) =Y pM(x y)[am.
n=0

Satisfies  PG(-,yIA) = A-G(,, ylA) = 1y.

©000000 Section 2
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» Resolvent = Green function
G(x,yIA) = (A- 1= P) "y(x)

for [A| > p(P) =Y pM(x y)[am.
n=0
Satisfies  PG(-, yIA) = A-G(-, ylA) —1y.
- G(x, ylA)
» Martinkernel  K(x,ylA) = =—==
YN = Glo,yin)
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» Resolvent = Green function
G(x,yIA) = (A- 1= P) "y(x)

for [A| > p(P) =Y pM(x y)[am.
n=0
Satisfies  PG(-, yIA) = A-G(-, ylA) —1y.
- G(x, ylA)
» Martinkernel  K(x,ylA) = =—==
5= Glo,yi)

» Is well defined for
Aeres’(P)={Aeres(P): G(x,x|[A\)#0VY x e T}

D{AeC:|Al>p(P)}
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Transition operators on trees Ty
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v

Resolvent = Green function
G(x,yIA) = (A- 1= P) "y(x)

for [A| > p(P) =Y pM(x y)[am.
n=0
Satisfies  PG(-,yIA) = A-G(,, ylA) = 1y.
G(x, ylA)

» Martin kernel  K(x,ylA) = G(o,yIA)

» Is well defined for
Aeres’(P)={Aeres(P): G(x,x|[A\)#0VY x e T}
D{AeC:|Al>p(P)}

» extends to the boundary JT in the 2" variable.
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Boundary integral representation Ty

Theorem [Picardello and W, 2018] For A € res*(P), every
A-harmonic function h on T has a unique integral representation

h(x) = fa Klxd)dv(z),

where v is a (strong) distribution on JT .

(Borel measure when A > p(P) and h>0.)
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Theorem [Picardello and W, 2018] For A € res*(P), every
A-harmonic function h on T has a unique integral representation

h(x) = fa Klxd)dv(z),

where v is a (strong) distribution on JT .

(Borel measure when A > p(P) and h>0.)

Analogue of Poisson integral representation of harmonic functions on the unit disk.
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Boundary integral representation Ty,
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Theorem [Picardello and W, 2018] For A € res*(P), every
A-harmonic function h on T has a unique integral representation

h(x) = fa Klxd)dv(z),

where v is a (strong) distribution on JT .

(Borel measure when A > p(P) and h>0.)

Analogue of Poisson integral representation of harmonic functions on the unit disk.

Generalizes different previous more restricted variants by
[Cartier, 1972], [Cartwright, Soardi and Woess, 1993],
[Figa-Talamanca and Steger, 1994], [Woess, 2009]
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Geometry of the boundary Ty,
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» Every boundary point & is represented by a geodesic ray
starting from the root o,

E=[0o=Xxy,X1,X2,...] wWith X5~ Xp_1, Xn # Xm When m # n.
0
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» Every boundary point & is represented by a geodesic ray
starting from the root o,

E=lo=Xp,X1,X2,...] With X5 ~ Xp_1, Xn # Xm When m#n.
» Confluent of w,z €T =TuadT Z
(z # w) : last common vertex zZAw

on geodesic paths from
o to w,resp. z.
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Geometry of the boundary Ty,
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» Every boundary point & is represented by a geodesic ray
starting from the root o,

E=lo=Xp,X1,X2,...] With X5 ~ Xp_1, Xn # Xm When m#n.
» Confluent of w,z €T =TuadT Z
(z # w) : last common vertex zZAw

on geodesic paths from
o to w,resp. z.

w
_ 2-leavwl -z 2w
» Newmetricon T: 0(z,w)= { 7
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Geometry of the boundary Ty,

raz University of Technology

» Every boundary point & is represented by a geodesic ray
starting from the root o,

E=lo=Xp,X1,X2,...] With X5 ~ Xp_1, Xn # Xm When m#n.
» Confluent of w,z €T =TuadT Z
(z # w) : last common vertex zZAw

on geodesic paths from
o to w,resp. z.

—

2—|Z/\W|/ Z+W
» New metricon T: G(Z,W):{ 7

0, zZ=Ww.
> T discrete and densein T.
T compact only when T is locally finite.
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Geometry of the boundary Ty,
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» Thebranch Ty at xe T, '
its boundary arc JTy, \
and Ty = T, UdTy \
(open and closed !). 00—~ . :.
Note that T, = T. !
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Geometry of the boundary Ty,
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» Thebranch Ty at xe T, '
its boundary arc JTy, \
and Ty = Ty UJTy \
(open and closed !). 00—~ . ‘:
Note that T, = T. !

» For £€0T,
E=[0=X0,X1,X2,...],

the sets /fxn form a neighbourhood basis.

0000
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Distributions on the boundary Ty,
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» A (strong) distribution on ¥, = {dTx : x € T} is a set function
v:Fo — Csuchthatforevery xe T,

v(dTx) = Z v(dTy) (absolutely convergent).
Yy =x
Here, y~ = neighbour of y closerto o.
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» A (strong) distribution on ¥, = {dTx : x € T} is a set function
v:Fo — Csuchthatforevery xe T,
v(dTx) = Z v(dTy) (absolutely convergent).
Yy =x
Here, y~ = neighbour of y closerto o.
» Extends to the ring generated by 75 .

(When v > 0: even extends to Borel measure on JT.)
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» A (strong) distribution on ¥, = {dTx : x € T} is a set function

v:Fo — Csuchthatforevery xe T,
v(dTx) = Z v(dTy) (absolutely convergent).
Yy =x

Here, y~ = neighbour of y closerto o.

» Extends to the ring generated by 75 .
(When v > 0: even extends to Borel measure on JT.)

» Locally constant function f: T — C:
{x ~y:f(x)#f(y)} isfinite. Extends continuously to T.
Locally constant function ¢ on JT : trace of a l.c. function
onT.
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Distributions on the boundary

>

A (strong) distribution on ¥, = {dTx : x € T} is a set function
v:Fo — Csuchthatforevery xe T,

v(dTx) = Z v(dTy) (absolutely convergent).

Yy =x

Here, y~ = neighbour of y closerto o.
Extends to the ring generated by 75 .
(When v > 0: even extends to Borel measure on JT.)
Locally constant function f: T — C:
{x ~y:f(x)#f(y)} isfinite. Extends continuously to T.
Locally constant function ¢ on JT : trace of a l.c. function
onT.
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» Fact: dT > & K(x,£&|A) is locally constant Vx e T:
» For A eres’(P), set

% [for A1 > p(P Zf (x,y)[A", where
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f(N)(x, y) = P[random walk starting at x first hits y at time n]

F(x,ylA) =
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Boundary integral representation Ty

» Fact: dT > & K(x,£&|A) is locally constant Vx e T:
» For A eres’(P), set

F(x,ylA) = % [for A1 > p(P Zf (x,y)[A", where
=0

f(N)(x, y) = P[random walk starting at x first hits y at time n]

= For v on geodesic from x to y:
F(Xr yl/\) = F(Xr VlA) F(V/ YM) :
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Boundary integral representation Ty

» Fact: dT > & K(x,£&|A) is locally constant Vx e T:
» For A eres’(P), set

G(x,ylA)
F(x,y|A) = =——= for |A| > f(N(x,y)[A", where
(oY1) = G = lfor 141> p(P Z& y)/

f("(x, y) = IP[random walk starting at x first hits y at time n]
= For v on geodesic from x to y: *

F(x,yIh) = FOOUA) Fvyld). o LA )

. G(x, ylA)  F(x,x AEJA)

= KbEA) = lim =) = Flo,x A 2iA) ¢
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Boundary integral representation (restated) Ty
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Theorem [Picardello and W, 2018] For A € res*(P), every
A-harmonic function h on T has a unique integral representation

h(x) = fa K(xd)dv(z),

where v is the (strong) distribution on JdT given by v(JT) = h(0)
and, for x # o,

h(x) — F(x,x"|A)h(x7)

1— F(x—, x|A)F(x,x7|A)

v(dTx) = F(o, x|A)
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Boundary integral representation (restated) Ty
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Theorem [Picardello and W, 2018] For A € res*(P), every
A-harmonic function h on T has a unique integral representation

h(x) = fa K(xd)dv(z),

where v is the (strong) distribution on dT given by v(dT) = h(o0)
and, for x # o,
h(x) — F(x,x"|A)h(x7)

v(9Tx) = Flo,XI) 3= X F oo x 1)

Theorem [Figa-Talamanca and Steger, 1994], [Picardello and W, 2018]
If P isinvariant under a group I acting transitively on T
(ie. p(yx,yy) =p(x,y) ¥y eT)then

res(P) \ {0} c res*(P) c res(P).
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» A A-polyharmonic function of order n is a function f: T — C
with
(A-1-P)'f=0.
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A-polyharmonic functions Ty
» A A-polyharmonic function of order n is a function f: T — C
with
(A-1-P)"f=0.

»  Previous work (for A = 1): [Cohen, Colonna, Gowrisankaran
and Singman, 2002], in particular for regular tree of degree
g+1,and p(x,y)=1/(q+1) for x ~y.
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A-polyharmonic functions Ty

» A ‘basis” for space of A-harmonic functions (A € res*(P)) is given
by the Martin kernels

G(x, x AEJA)

x> K(x,&A) = Glox A )’

EedT.
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» A ‘basis” for space of A-harmonic functions (A € res*(P)) is given
by the Martin kernels

G(x, x AEJA)

x> K(x,&A) = Glox A )’

EedT.
» “Basis” for space of A-polyharmonic functions ? Simple new idea:
differentiate with respectto A! P K(-,éIA) = AK(-,EIA) =
ar ar dr—1

K(-, &IA)
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A-polyharmonic functions Ty

» A ‘basis” for space of A-harmonic functions (A € res*(P)) is given
by the Martin kernels

G(x, x AEJA)

x = K(x, &) = GO,x A )’

EedT.

» “Basis” for space of A-polyharmonic functions ? Simple new idea:
differentiate with respectto A! P K(-,éIA) = AK(-,EIA) =

ar ar dr—1
P KC EA) = A oK, 8l0) + 1 ==K (., €lA)
. Set K(xan) = S 9 kg,

rl dAr
Then x — Ki(x,&|A) is A-polyharmonic of order r+ 1.
One deduces

000 Section 3 14/20



A-polyharmonic functions Ty
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Theorem [Picardello and W, 2018] For A € res*(P), every
A-polyharmonic function f of order n on T has a unique
representation

n—1
(x) = ;) fa Kol E0) ave(2),

where where vq,...,v,_1 are (strong) distributions on JT.
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A-polyharmonic functions Ty

»  Ongoing work: limiting behaviour at the boundary - Dirichlet and
Fatou type problems (Riquier problem).
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»  Ongoing work: limiting behaviour at the boundary - Dirichlet and
Fatou type problems (Riquier problem).

» Other graphs ? Use Martin boundary. Need
(i) differentiability of the A-Martin kernels with respect to A, in
particular stability of the Martin boundary (OK in several known
cases),
(il) boundary integral representation of all A-harmonic function
with respect to suitable distributions (functionals on suitable
space of functions on the boundary).
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A-polyharmonic functions Ty

»  Ongoing work: limiting behaviour at the boundary - Dirichlet and
Fatou type problems (Riquier problem).

» Other graphs ? Use Martin boundary. Need
(i) differentiability of the A-Martin kernels with respect to A, in
particular stability of the Martin boundary (OK in several known
cases),
(il) boundary integral representation of all A-harmonic function
with respect to suitable distributions (functionals on suitable
space of functions on the boundary).

» Continuous analogues ?
Yes, hyperbolic Laplacian on Poincaré disk (ongoing work).
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A-polyharmonic functions on the Poincaré disk Ty
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» Poincaré disk = unitdisk D ={z=x+1iy e C:|z| <1} with
hyperbolic length element and metric

2+/dx? + dy?

1-1z)?

1 —zw|+ |z - w|

dps = — .
h H—zw|—|z—w|

and dp(z,w) = log
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A-polyharmonic functions on the Poincaré disk 1Y,

» Poincaré disk = unitdisk D ={z=x+1iy e C:|z| <1} with
hyperbolic length element and metric

2+/dx? + dy?

1-1z)?

1 —zw|+ |z - w|

dps = — .
h H—zw|—|z—w|

and dp(z,w) = log

» The hyperbolic Laplace(-Beltrami) operatorin z=x +1iy is

(1-1z2)

A =
h 4

(98 + ).
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A-polyharmonic functions on the Poincaré disk Ty
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» Poincaré disk = unitdisk D ={z=x+1iy e C:|z| <1} with
hyperbolic length element and metric

2+/dx? + dy?

1-1z)?

1 —zw|+ |z - w|

dps = — .
h 1 —zw|—|z - w|

and dp(z,w) = log

» The hyperbolic Laplace(-Beltrami) operatorin z=x +1iy is

1-|z[2)?
pn=OZFF (5 )
. 1—|z]
» Poisson kernel P(z,&) = E 2P (ze D, £€dD)

_ 2D with b(z,E) = Iimé(dh(w,z)—dh(W,O)),

the Busemann function.
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A-polyharmonic functions on the Poincaré disk Ty
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» A-polyharmonic function of order n: function f: D — C with
(A-1-Ap)"f=0.

A-harmonic function if n=1.
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A-polyharmonic functions on the Poincaré disk Ty
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» A-polyharmonic function of order n: function f: D — C with
(A-1-Ap)"f=0.
A-harmonic functionif n=1.
» Map A(t)=t(t-1), {teC, Rt>1/2} > C\ (—c0,—1/4]

is bijective. A = t(A) inverse mapping.
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A-polyharmonic functions on the Poincaré disk ™Y,

nnnnnnnnnnnnnnnnnnnnnnn

» A-polyharmonic function of order n: function f: D — C with
(A-1-Ap)"f=0.

A-harmonic function if n=1.

» Map A(t)=t(t-1), {teC, Rt>1/2} > C\(-c0,—1/4]

is bijective. A = t(A) inverse mapping.

Theorem [Helgason, 1974] For A € C\ (—co0,—1/4], every
A-harmonic function h on D has a unique integral representation
h(z) = f P(z, &)™ dv(&),
aD
where v is a an analytic functional on dD.

(Borel measure when A > -1/4 and h>0.)
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A-polyharmonic functions on the Poincaré disk 1Y,

Theorem [W, 2018] For A € C\ (—c0,—1/4], every A-polyharmonic
function f of order n on D has a unique representation

n—1
= ; faD b(z,&)" P(z,&) ™ dvi(¢),

where where vg,...,v,_1 are (strong) distributions on 9D .
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A-polyharmonic functions on the Poincaré disk 1Y,

Theorem [W, 2018] For A € C\ (—c0,—1/4], every A-polyharmonic
function f of order n on D has a unique representation

n—1
= Z&faﬂ, b(z,&)" P(z,&) ™ dvi(¢),

where where vg,...,v,_1 are (strong) distributions on 9D .

Compare with Almansi’s theorem (A = 1, Euclidean disk)

n—1
f(z) = ;) faD 217" P(z, &) dvi(€),
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Analytic functionals on the unit circle Ty,

» For any open annulus As containing dD, let H(As) be the
space of holomorphic functions on As .

Topology: uniform convergence on compact sets.
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» Analytic functionson dD: H(dD) = U H(As) .

0<o<1
Topology: inductive limit.
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Analytic functionals on the unit circle Ty,

» For any open annulus As containing dD, let H(As) be the
space of holomorphic functions on As .

Topology: uniform convergence on compact sets.

» Analytic functionson dD: H(dD) = U H(As) .
0<6<1
Topology: inductive limit.

» Analytic functionals on 9D : topological dual space of H(JD)
(continuous linear functionals).

° Section4  20/20



	Section 1
	Section 2
	Section 3
	Section 4

