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Waveguide

Figure: Illustration of the line defect and the strip Ω = (0, 1)× R.
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Periodic Problem & Floquet Transform I

Consideration of TE-modes leads to the spectral problem for the
selfadjoint operator L0 acting on L2(R2) given by

L0u = −div 1

ε0
∇u,

where ε0(x , y) ≥ c > 0 is bounded and 1-periodic in both x and y .

Floquet transform U in the x-direction, gives a family of problems:

− div
1

ε0
∇u = λu in Ω := (0, 1)× R

with quasiperiodic boundary conditions

u(1, y) = e ikxu(0, y) and
∂u

∂x
(1, y) = e ikx

∂u

∂x
(0, y) (1)

for kx ∈ B := [−π, π].
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Periodic Problem & Floquet Transform II

Let L0(kx) be the operator in L2(Ω) given by

L0(kx)u = −div 1

ε0
∇u

subject to the quasi-periodic boundary conditions (1).

Then

L0 =

⊕∫
B

L0(kx) dkx and σ(L0) =
⋃
kx∈B

σ(L0(kx)).

For each kx , another Floquet transform in the y -direction gives operators
L0(kx , k), k ∈ B, on L2([0, 1]2) subject to qp-bcs in both x and y .
For the spectrum, we have

σ(L0(kx)) =
⋃
k∈B

σ(L0(kx , k)) =
⋃
n

(⋃
k∈B

λn(kx , k)

)
.

Any gap in the spectrum of L0 is due to gaps in the spectra of all L0(kx).
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Bloch Functions

Let {λs(k)}s∈N and {ψs(k)}s∈N be the eigenvalues and eigenfunctions of
L0(kx , k), i.e. L0(kx , k)ψs(k) = λs(k)ψs(k). These are analytic functions
in k on B.

The Bloch functions are complete: for any r ∈ L2(Ω) we have

r(~x) =
1√
2π

∑
s∈N

∫ π

−π
〈U r(·, k), ψs(·, k)〉ψs(~x , k) dk.

We have the resolvent representation

(
(L0(kx)− λ)−1r

)
(~x) =

1√
2π

∑
s∈N

∫ π

−π

〈U r(·, k), ψs(·, k)〉ψs(~x , k)

λs(k)− λ
dk

for λ outside the spectrum of L0(kx).
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Waveguide

On L2(R2) consider L1u = −div ε−1
1 ∇u, where

ε1 periodic in the x-direction,

ε0(x , y) = ε1(x , y) for y 6∈ (0, 1),

ε1 − ε0 ≥ 0 and there exists a ball D such that ε1 − ε0 > 0 on D.

Floquet transform in the x-direction gives family of problems

L1(kx)u := −div ε−1
1 ∇u (2)

in L2(Ω) satisfying qp-boundary conditions (1) with kx ∈ B.
The spectrum of the waveguide problem is given by

σ(L1) =
⋃
kx∈B

σ(L1(kx)).

Aim: Fix kx and assume (Λ0,Λ1) is a spectral gap for L0(kx). Introduce a
line defect into the crystal and compare σ(L1(kx)) and σ(L0(kx)).
Let λM(kx , k0) = Λ1 and assume that λM(kx , k) 6= Λ1 for all k different
from k0. Analyticity implies λM(kx , k) ≤ Λ1 + α|k − k0|2.
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The Bilinear Forms

Recall ε0, ε1 ∈ L∞ with a positive lower bound.

H1
qp(Ω) := {u ∈ H1

loc(R2) : u(~x + (m, 0)) = e ikxmu(~x),m ∈ Z, ~x ∈ R2}.

Bj [u, v ] :=

∫
Ω

(
1

εj(~x)
∇u∇v + uv

)
d~x , for u, v ∈ H1

qp(Ω), j = 0, 1.

Equip H1
qp(Ω) with the norm coming from B0.

Let Lj + 1 be the operator in H−1
qp (Ω) associated with Bj and

Gj = (Lj + 1)−1.

Proposition

L0 and G0 are self-adjoint in H−1
qp (Ω).

σ(L0(kx)) = σ(L0) and σ(L1(kx)) = σ(L1).

The essential spectra of G0 and G1 coincide.
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Approach: Birman-Schwinger Type Reformulation

(L1(kx)− λ)u = 0 with λ ∈ (Λ0,Λ1) is equivalent to

(G1 − µ)u = 0 for µ =
1

λ+ 1
∈
(

1

Λ1 + 1
,

1

Λ0 + 1

)
.

Moreover,

(G1 − µ)u = 0 ⇔ (G0 − µ)u + (G1 −G0)u = 0

⇔ (I − µG0
−1)u + (G0

−1G1 − I )u = 0

⇔ u + (I − µG0
−1)−1(G0

−1G1 − I )u = 0.

Note that (I − µG0
−1)−1 = −(λ+ 1)(L0 − λ)−1.

Lemma

Let K := G0
−1G1 − I . Then K : H−1

qp (Ω)→ H−1
qp (Ω) is positive and

symmetric and RanK ⊆ H−1
cs , the space of distributions on Ω with

compact support in the y-direction.
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The Inner Product Space K and Aµ

Set K = RanK and let P : H−1
qp (Ω)→ K be the orthogonal projection.

On K, we introduce a new inner product given by 〈f , g〉K := 〈Kf , g〉H−1
qp
.

Aµ := P(I − µG0
−1)−1K : K → K, for µ ∈

(
1

Λ1 + 1
,

1

Λ0 + 1

)
.

Lemma

(G1 − µ)u = 0 has a non-trivial solution iff −1 is an eigenvalue of Aµ.

Aµ is symmetric and compact in K.

κ(µ) := min
u 6=0

〈Aµu, u〉K
〈u, u〉K

.

Lemma

For µ in the spectral gap
(
(Λ1 + 1)−1, (Λ0 + 1)−1

)
of G0 we have that

µ 7→ κ(µ) is continuous and increasing.
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Expression for numerator

Let u ∈ K, (vn) in L2(Ω) such that vn → Ku ∈ H−1
qp (Ω). Then

〈Aµu, u〉K = 〈KAµu, u〉H−1
qp

= 〈Aµu,Ku〉H−1
qp

=
〈
P(I − µG0

−1)−1Ku,Ku
〉
H−1
qp

=
〈
(I − µG0

−1)−1Ku,Ku
〉
H−1
qp

= lim
n→∞

〈
(I − µG0

−1)−1vn, vn
〉
H−1
qp

= lim
n→∞

〈
G0(I − µG0

−1)−1vn, vn
〉
L2

= lim
n→∞

∑
s

∫ π

−π

|〈Uvn, ψs〉L2 |2

(1− µ(λs + 1)) (λs(k) + 1)
dk.

On the one hand, for a suitable test function u ∈ K (such that
[(L0 − L1)ψM(·, k0)][G1u] 6= 0),

〈Aµu, u〉K → −∞ as µ→ 1/(Λ1 + 1).
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qp (Ω). Then

〈Aµu, u〉K = 〈KAµu, u〉H−1
qp

= 〈Aµu,Ku〉H−1
qp

=
〈
P(I − µG0

−1)−1Ku,Ku
〉
H−1
qp

=
〈
(I − µG0

−1)−1Ku,Ku
〉
H−1
qp

= lim
n→∞

〈
(I − µG0

−1)−1vn, vn
〉
H−1
qp

= lim
n→∞

〈
G0(I − µG0

−1)−1vn, vn
〉
L2

= lim
n→∞

∑
s

∫ π

−π

|〈Uvn, ψs〉L2 |2

(1− µ(λs + 1)) (λs(k) + 1)
dk.
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Lower Estimate for κ(µ)

Recall: λM(k0
x , k0) = Λ1.

〈Aµu, u〉K ≥ lim
n→∞

∑
s≥M

∫ π

−π

|〈Uvn, ψs〉L2 |2

(λs(k) + 1) (1− µ(λs + 1))
dk

≥ 1

1− µ(Λ1 + 1)
lim
n→∞

∑
s≥M

∫ π

−π

1

λs(k) + 1
|〈Uvn, ψs〉|2 dk.

≥ 1

1− µ(Λ1 + 1)
lim
n→∞

∑
s

∫ π

−π

1

λs(k) + 1
|〈Uvn, ψs〉|2 dk

=
1

1− µ(Λ1 + 1)
lim
n→∞

〈G0vn, vn〉L2

=
1

1− µ(Λ1 + 1)
lim
n→∞

‖vn‖2
H−1 =

1

1− µ(Λ1 + 1)
‖Ku‖2

H−1

≥ 1

1− µ(Λ1 + 1)

∥∥∥∥ε1

ε0

∥∥∥∥
∞

∥∥∥∥ 1

ε1
− 1

ε0

∥∥∥∥
∞
‖u‖2

K .
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Result on Generation of Spectrum

Theorem

Assume that ∥∥∥∥ε1

ε0

∥∥∥∥
∞

∥∥∥∥ 1

ε1
− 1

ε0

∥∥∥∥
∞
<

Λ1 − Λ0

(Λ0 + 1)
.

Then weak localization takes place, i.e. the problem

−∇ · ε1(~x)−1∇u(k0
x ) = λu(k0

x ), ~x ∈ Ω = (0, 1)× R

has a nontrivial k0
x -quasiperiodic solution u(k0

x ) ∈ L2(Ω) for some
Λ0 < λ < Λ1.

Proof.

Combining the upper and lower estimates with the knowledge that κ(µ) is
monotonically increasing in µ and continuous, we obtain our main result
from the Intermediate Value Theorem.
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Further Results

Theorem

Let Σ = {(s, k) ∈ N× [−π, π] : λs(k) = Λ1}. Assume

(i) ε0, ε1 ∈ L∞(R2).

(ii) εi ≥ c0 > 0 for some constant c0 and i = 0, 1.

(iii) The perturbation is nonnegative, i.e. ε1(x)− ε0(x) ≥ 0.

(iv) There exists a ball D such that ε1 − ε0 > 0 on D.

(v) The band functions λs are not constant as functions of k ∈ [−π, π].

(vi) There are α > 0 and δ > 0 such that for all (ŝ, k̂) ∈ Σ and
k ∈ [−π, π] satisfying |k − k̂ | ≤ δ, we have λŝ(k) ≥ Λ1 + α|k − k̂ |2.

Then |Σ| is finite.

Moreover, let
∥∥∥ 1
ε0
− 1

ε1

∥∥∥
∞
> 0 be sufficiently small.

Then the number of eigenvalues of L1 in the gap (Λ0,Λ1) equals |Σ|.

Remark

For the case when all fields are constant in the z-direction, the results for
TM- and TE-fields together imply the same results for the Maxwell system.
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Thank you
for your attention!
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