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Short description of two showcases of PhD Research Projects

Subdivision means the iterative refinement of discrete data with the aim of creating a contin-
uous limit. Linear subdivision operators are well understood, both for data on regular grids
and data with polyhedral connectivity. We are interested in nonlinear, geometric, data. E.g.
flight recorder data are a sequence with values in the Lie group SO3, and diffusion tensor
MRI produces images with values in the Riemannian symmetric space of 3×3 positive definite
symmetric matrices. Such nonlinear, geometric data are important in many fields and are an
active topic of research from PDEs to statistics [Grohs et al. 2018; Pennec 2018].

For any analysis, statistics or computation it is essential to employ operations which are
natural, that is, invariant w.r.t. the relevant transformation groups. An important eary con-
tribution to the systematic treatment of elementary operations in nonlinear geometries was
made by the ‘Symmlab’ group at Stanford University, which aimed at providing software tools
for symmetric spaces. Concrete suggestions for subdivision were proposed in a 2001 lecture
by D. Donoho. The specific interest in subdivision comes from its usefulness for smoothing,
interpolation, and multiresolution representations.

In its simple and linear form, a subdivision rule for discrete data is applied to (pβ)β∈Zs in R
n

and creates denser data (Spα)α∈Zs by finite averages, (Sp)α =
∑

β∈Zs aα−Nβpβ . We require

that
∑

β aα−Nβ = 1. This procedure may be visualized by interpreting p as a regular sample
of a curve or s-dimensional surface, and Sp is a denser sample of the same object. We are
interested in situations where the sequence of iterates p, Sp, S2p, . . . converges to a continuous
limit curve resp. limit surface. The interpretation of S as averaging is key to the generalization
of subdivision to the geometric setting, which is mainly based on the equivalences

(Sp)α =
∑

β
aα−Nβpβ ⇐⇒ (Sp)α = argmin

x

∑
β
aα−Nβ dist(pβ , x)

2
⇐⇒

(Sp)α solves
∑

β
aα−Nβ(pβ − x) = 0 ⇐⇒ (Sp)α = EX, where P(X=pβ) = aα−Nβ.

Subdivision is thus defined in such metric spaces where the expression involving distances has
a minimizer; and it is defined in Lie groups where the third expression is interpreted with
a ⊕ v = a exp(v) and a ⊖ b = exp−1(a−1b) as substitutes for addition and subtraction. This
viewpoint has been successfully exploited to obtain satisfactory results concerning smoothness
of limits. The last equivalence, valid only in case of nonnegative coefficients, in the 1st phase
of this DK programme has been employed by Ebner [2013, 2014] to show the following: A
subdivision rule defined by coefficients aγ ≥ 0 (γ ∈ Z

s) in an Hadamard CAT(0) metric space
produces continuous limits for any given data p, if and only if this is true in the linear case of
the metric space R.

Showcase 1. Convergence properties of geometric subdivision processes.

Existence of continuous limits is a fundamental property of subdivision processes and in the
geometric (nonlinear) case depends not only on the coefficients aγ but also on the data. It is

known that a manifold subdivision scheme will produce Ck-smooth limits for all data where
convergence happens, if the linear scheme with the same coefficients has this property [Grohs
2010; Duchamp et al. 2016]. Unfortunately, convergence in the general case can only be shown
for dense enough input data. Results valid for all input data apply to special schemes like
interpolatory schemes [Wallner 2014] or to special geometries like Hadamard metric spaces
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[Ebner 2013, 2014]. A recent result shows convergence for all input data in the s = 1 case,
for manifolds with nonpositive curvature, but without a sign assumption on the coefficients
aγ [Hüning and Wallner 201?]. There are still many open questions regarding convergence.

One is the obvious gap between theory and practice in situations where convergence is
guaranteed only for dense enough input data. These results have been obtained by the method
of proximity inequalities proposed by Wallner and Dyn [2005], which quantify the deviation
of a nonlinear subdivision rule from a linear one. For multivariate data (s ≥ 2) they probably
cannot be substantially improved – this has to do with the possibility of topological features
not mappable from the unit cube [0, 1]s. We therefore propose to focus on the case s = 1.

Another open question we want to investigate concerns situations where convergence hap-
pens for all input data, if these data are multivariate (s ≥ 2) or have more general polyhedral
connectivity. So far only local results for general geometries have been obtained [Weinmann
2010]. Global results exist for the univariate case. The methods of Riemannian geometry,
often founded on the seminal paper [Karcher 1977], can also be applied in the multivariate
setting. They work best in case of nonpositive curvature, where the exponential mapping does
not decrease distances, and to a limited extent also in the case of bounded positive curvatures.
Topological features of the base space can be dealt with in a manner similar to the univariate
case [Hüning and Wallner 201?]. It is also worth investigating special geometries which play
an important role, such as the Riemannian symmetric space of positive definite matrices.

Besides mere convergence, further properties of the limit are interesting. Subdivision pro-
cess easily yield Hölder continuity estimates, but we also want to study geometric shape
properties. Oscillation can be measured against suitable submanifolds, and we propose to
start this research with subdivision rules defined in terms of repeated geodesic averaging.

Showcase 2. Multiresolution representations of geometric data.

Multiresolution representation of data hinges on downscaling and upscaling procedures D,U

and comparing dat p with UDp. When data (pγ)γ∈Zs are interpreted as samples of an s-variate
function, then Dp resp. Up are coarser resp. finer samples of the same function. Typically U

is a subdivision operator, and D is defined via similar elementary operations.
Previous work on multiresolution representations of manifold-valued data concerns mostly

certain conceptually easy versions of D,U . The corresponding multiresolution representation
has properties similar to its linear counterpart (e.g. with regard to data regularity and coef-
ficient decay). On the negative side, perfect reconstruction without redundancy is possible
only in special cases [Grohs and Wallner 2009, 2012].

We propose to investigate multiscale representations of pixel-based and voxel-based data,
and to use previous work on combinatorial singularites by Weinmann [2012] to extend results
to bivariate data with polyhdral connectivity. A focus on special metric spaces is consistent
with an relevant application, namely diffusion-tensor images. It will be important to study
previous work (e.g. on feature detection) and compare it with methods employing only natural
(invariant) operations.

The reconstruction procedure contained in any multiresolution representation of discrete
data poses convergence questions. The most general question – convergence of reconstruc-
tion for arbitrary base data and detail data – contains the convergence questions posed in
showcase 1 as a special case. However, a different question is both easier and more relevant:
Data obtained by sampling are already known to converge upon reconstruction. We ask for
bounds on perturbations (incurred by quantization or thresholding) which do not destroy that
convergence.
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