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Short description of two showcases of PhD Research Projects

Showcase 1. Algorithms for multidimensional persistence.

While the computational pipeline for persistence is well-established for a single scale param-
eter, the generalization to two or more parameters is still in its infancy, especially under an
algorithmic lens. At the same time, an extension to a multi-parameter setup is a frequently
requested feature in applications: as example, consider a set of data points moving over time.
Instead of analyzing the multi-scale properties only for a fixed collection of time steps, one is
naturally interested in the evolution when the time and the scale parameter both vary, leading
to a two-dimensional scale space.

One obstacle in multidimensional persistence is that the one-dimensional theory generalizes
only in parts – while topological features can be defined and tracked for any choice of scale
parameters, there is no way to summarize this information in a complete discrete variant,
playing the role of a persistence diagram in the one-dimensional case [Carlsson and Zomorodian
2009]. Despite this discouraging result, several results in the last year revived this research
area and pointed out some remedies against this theoretical obstacle.

A case in point is the notion of distance between multi-parameterized filtrations. The
interleaving distance [Lesnick 2015] provides a metric on a broad class of filtrations that allows
us to compare multi-parameterized data sets even in the absence of a persistence diagram.
For a single scale-parameter, this distance can be re-phrased in combinatorial terms and
computed in polynomial time. In the multi-dimensional case, the abstract definition of that
distance (using categorical language) does not provide any efficient algorithmic approach for
computation, even when only an approximative answer is asked for. In fact, the complexity of
computing the interleaving distance is open for several years despite substantial efforts, with
partial progress being made only very recently [Bjerkevik and Botnan 2017].

Because of the computational difficulties of the interleaving distance, weaker but practi-
cal alternatives have received more attention. The matching distance [Biasotti et al. 2011]
defines the distance of two-dimensional filtrations in terms of the distances of all possible one-
dimensional slices, that is, all filtrations where the two scale parameters are linked by a linear
condition. An approximation of this distance can be achieved by a discrete sample of slices
toghether with an efficient method to compute distances of persistence diagrams [Kerber et al.
2017]. The approximate matching distance shows some promise of turning multi-dimensional
persistence relevant in practical applications, as it allows for a meaningful comparison of multi-
parametered data sets. While some prototypical implementations exist, we aim for a robust,
efficient, and scalable solution, based on our library HERA for the one-dimensional case.

A related question is the development of a kernel for multi-dimensional filtrations. In
the one-dimensional setup, such a kernel has been defined recently [Reininghaus et al. 2015],
turning the space of persistence diagrams into a Hilbert space. Such a structure allows for a
direct connection of persistence with the standard tool set from machine learning, immediately
increasing the range of possible applications. A kernel in 2 (or more) dimensions could possibly
be defined by the same slicing idea as in the case of the matching distance.

In the long run, multi-dimensional constructions will face the same problem as the one-
dimensional counterpart: standard ways to generate (multi-)filtration yield too large com-
plexes. To begin, it is worth investigating to what extent ideas to approximate simplicial
complexes [Sheehy 2013; Choudhary et al. 2017] generalize to the mutli-dimensional context.
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Progress on the above question would turn the theory of multi-dimensional persistence more
usuable in practical contexts. Our long-term goal is to provide a full efficient computational
pipeline for multi-dimensional persistence that is usuable by practioneers.

Showcase 2. Filtrations for complex data.

As mentioned above, the first step in the pipeline of topological analysis consists of turning
data into a filtration, representating the data at growing scales. Usually, in practice, this
filtration consists of an increasing sequence of simplicial complexes. This standard construction
can be (and has been) generalized in several ways: simplicial complexes can be replaced by
arbitrary combinatorial cell complexes, and instead of inclusions from lower to higher scale
complexes, we can use arbitrary chain maps which also can go in either direction (the latter
leads to the theory of zigzag persistence).

All these generalizations extend the range of scenarios in which the theory is applicable. To
give an example, an equivalent of zigzag persistence (for simplicial data) is that simplices can
be added and removed in the process. This is useful in surveillance of sensor networks, for
instance, where sensors might lose and re-establish contact over time, because of distance or
other environmental constraints. (Zigzag) persistent homology provides insights about parts
of the domain that have not been guarded by the sensors for a significant amount of time. See
the paper of Tausz and Carlsson [2011] for more applications.

The focus of this PhD project is to slightly move away from the prevalent standard con-
structions to generate filtrations (such as the Čech and Vietoris-Rips complex) and to explore
novel filtrations that provide a different perspective on the data. The major goal is to identify
useful filtrations and to find ways to compute them efficiently.

We discuss two ideas such non-standard filtrations which are independent of each other
and both can serve as starting point for a PhD project. For the first, note that the standard
construction is the union of balls filtration: on a fixed scale α, the input points are replaced
by the union of balls of radius α centered at the input points. To rephrase, the union of balls
filtration is the set of points in R

d that is covered by at least k = 1 ball. What is the effect
if we increase k? For k = 2, for instance, we obtain the union of all intersections of a pair
of balls. We call the resulting filtration the k-fold filtration of the point cloud. The k-fold
filtration is a useful object in the presence of outliers for denoising, but it might also simply
reveal additional structure of the input that is not available if only the union is considered.

k-fold filtrations relate to k-th order Voronoi diagrams and weigthed Delaunay triangula-
tions [Edelsbrunner and Iglesias-Ham 2018], but an efficient algorithm to compute them, even
in 3 dimensions, is not known. Moreover, in higher dimensions, the connection to Delaunay
triangulations is harder to exploit algorithmically, because of the lack of an efficient algorithm
for the latter in high dimensions. It would be worth investigating whether approximation
methods, as studied for the case of Čech filtrations, can be used also for k ≥ 2.

The second filtration idea deals with dynamic data: consider a set of balls whose centers
move along continuous trajectories (e.g., piecewise linear curves). The topological evolution
of this dynamic union of balls has been modeled in terms of a kinetic data structure for alpha
complexes, both well-studied concepts from computational geometry [Kerber and Edelsbrunner
2013]. The approach is currently restricted to the case of balls with the same radius. A low-
hanging fruit would be the extension to weighted alpha complexes (where the weight is also
allowed to change over time), although the details are not trivial. Moreover, in connection to
the previous paragraph, a kinetic version of a k-fold filtration would be of interest.
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There is also a deeper research question to be adressed beyond these examples: the kinetic
data structure framework works by maintaining a valid data structure (in the above case, a
Delaunay triangulation) over time, computes the event times for which the structure changes,
and updates accordingly. The event times have to be correctly ordered to ensure validity at
every moment in time; however, these times are algebraic numbers of degree > 4 in general.
While relatively efficient treatment of such numbers is possible, these algebraic computations
constitute a severe bottleneck in the computations. However, just approximating algebraic
numbers with floating point arithmetic has been observed to run into consistency problems
very fast. The question is: is there a robust model of kinetic data structures that yields
an approximative answer without falling back to symbolic computations? Progress on this
question, would certainly lead to significant follow-up work on dynamic data, especially in
topological contexts.
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