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Abstract. This paper studies 7-adic expansions of scalars, which are
important in the design of scalar multiplication algorithms on Koblitz
Curves, and are less understood than their binary counterparts.

At Crypto ’97 Solinas introduced the width-w 7-adic non-adjacent form
for use with Koblitz curves. It is an expansion of integers z = Zf:o 2zt
where 7 is a quadratic integer depending on the curve, such that z; # 0
implies zy+ti—1 = ... = zi+1 = 0, like the sliding window binary recod-
ings of integers. We show that the digit sets described by Solinas, formed
by elements of minimal norm in their residue classes, are uniquely deter-
mined. However, unlike for binary representations, syntactic constraints
do not necessarily imply minimality of weight.

Digit sets that permit recoding of all inputs are characterized, thus ex-
tending the line of research begun by Muir and Stinson at SAC 2003 to
Koblitz Curves.

Two new useful digit sets are introduced: one set makes precomputations
easier, the second set is suitable for low-memory applications, generalis-
ing an approach started by Avanzi, Ciet, and Sica at PKC 2004. Results
by Solinas, and by Blake, Murty, and Xu are generalized.

Termination, optimality, and cryptographic applications are considered.
We show how to perform a “windowed” scalar multiplication on Koblitz
curves without doing precomputations first, thus reducing memory stor-
age dependent on the base point to just one point.
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1 Introduction

Elliptic curves (EC) [15,17] are now a well established cryptographic
primitive. The performance of an EC cryptosystem depends on the ef-
ficiency of the fundamental operation, the scalar multiplication, i.e. the
computation of the multiple sP of a point P by an integer s. Among all
EC, Koblitz curves [16], defined by the equation

Ey vy 4+ay=a3+az®+1 with a € {0,1} (1)

over the finite field Fon, permit particularly efficient implementation of
scalar multiplication. Key to their good performance is the Frobenius
endomorphism 7, i.e. the map induced on E,(Fan) by the Frobenius au-
tomorphism of the field extension Fon /Fo, that maps field elements to
their squares.

Set u = (—1)!7%. It is known [24, Section 4.1] that 7 permutes the
points P € Ey(Fan), and (72 + 2)P = p7(P). Identify 7 with a root of

™ —pur+2=0. (2)

If we write an integer z as Zf:o 27", where the digits z; belong to a
suitably defined digit set D, then we can compute zP as Zfzo 27 (P) via
a Horner scheme. The resulting method [16, 23, 24] is called a “7-and-add”
method since it replaces the doubling with a Frobenius operation in the
classic double-and-add scalar multiplication algorithm. Since a Frobenius
operation is much faster than a group doubling, scalar multiplication on
Koblitz curves is a very fast operation.

The elements dP for all d € D are computed before the Horner scheme.
Larger digit sets usually correspond to representations Zfzo 2Tt with
fewer non-zero coefficients i.e. to Horner schemes with fewer group addi-
tions. Optimal performance is attained upon balancing digit set size and
number of non-zero coefficients.

Solinas [23,24] considers the residue classes in Z[r] modulo 7% which
are coprime to 7, and forms a digit set comprising the zero and an element
of minimal norm from each residue class coprime to 7. We prove (The-
orem 2) that such elements are unique, hence this digit set is uniquely
determined. Solinas’ recoding enjoys the width-w non-adjacent property

2 7& 0 implies Ruw+i—1 =« = Zj+1 = 0 s (3)

and is called the 7-adic width-w non-adjacent form (or 7-w-NAF for
short). Every integer admits a unique 7-w-NAF.



We call a digit set allowing to recode all integers satisfying prop-
erty (3) a (width-w) non-adjacent digit set, or w-NADS for short. Theo-
rem 1 is a criterion for establishing whether a given digit set is a w-NADS,
which is very different in substance from the criterion of Blake, Murty,
and Xu [8]. The characterisation of digit sets which allow recoding with a
non-adjacency condition is a line of research started by Muir and Stinson
in [18] and continued, for example by Heuberger and Prodinger in [11].

Our criterion is applied to digit sets introduced and studied in §§ 2.3
and 2.4. We can prove under which conditions the first set is a w-NADS
(Theorem 3), and give precise estimates of the length of the recoding
(Theorem 4). The second digit set corresponds, in a suitable sense, to
“repeated point halvings” (cf. Theorem 5) and is used to design a width-
w scalar multiplication algorithm without precomputations. Among the
other results in Section 2 are the facts that the 7-adic w-NAF as defined
by Solinas is not optimal, and that it is not possible to compute minimal
expansions by a deterministic finite automaton. In Section 3 we discuss
the relevance of our results for cryptographic applications and perfor-
mance. Due to space constraints, most proofs have been omitted. They
will be given in the extended version of the paper.
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2 Digit Sets

Let p € {£1}, 7 be a root of equation (2) and 7 the complex conjugate
of 7. Note that 2/7 = 7 = u—7 = —pu(1+72). We consider expansions to
the base of 7 of integers in Z[7]. It is well known that Z[r], which is the
ring of algebraic integers of Q(1/—7), is a unique factorization domain.

Definition 1. Let D be a (finite) subset of Z[T] containing 0 and w > 1
be an integer. A D-expansion of z € Z[r] is a sequence € = (£;);50 € DO
such that

1. Only a finite number of the digits €; is nonzero.
2. value(e) == 3, e;7) =z, i.e., € is indeed an expansion of z.



Algorithm 1. General windowed integer recoding

INPUT: An element z from Z[7], a natural number w > 1 and a reduced residue system D’ for the
number ring R modulo 7.

OUTPUT: A representation z = Zﬁ;é
zj # 0then zj4; = 0for 1 < i < w.

Z]'Tj of length £ of the integer z with the property that if

=

J—0,u—z

Ue—u—2zj, u—u/T, je—j+1

l—3j

2. while u#0 do

3. if 7|w then

4. zj — 0 [Output 0]
5. else

6. Letz; € D' st z; = 2 (mod 7) [Output z;]
7.

8.

9.

return ({z; }f-;é: 0)

The Hamming weight of € is the number of nonzero digits € ;. The length
of € is
length(e) := 1+ max{j : ; #0} .

A D-expansion of z is a D-w-Non-Adjacent-Form (D-w-NAF) of z, if

3. Each block (€j4w—1,-.-,€;) of w consecutive digits contains at most
one nonzero digit €, j < k < j+w—1.

A {0,£1}-2-NAF is also called a T-NAF.
The set D is called a w-Non-Adjacent-Digit-Set (w-NADS), if each
z € Z|7] has a D-w-NAF.

Typically, D will have cardinality 1+2“~!, but we do not require this
in the definition. One of our aims is to investigate which D are w-NADS,
and we shall usually restrict ourselves to digit sets formed by adjoining
the 0 to a reduced residue system modulo 7%, which is defined as usual:

Definition 2. Let w > 1 a natural number. A reduced residue system
D' for the number ring Z[t] modulo TV is a set of representatives for the
congruence classes of Z[t] modulo T that are coprime to T.

For a digit set D for Z[r]| formed by 0 together with a reduced residue
system, Algorithm 1 either recodes an integer z € Z[7] to the base of T,
or enters in a infinite loop for some inputs when D is not a NADS.

Ezxample 1. A digit set obtained by adjoining the zero to a reduced residue
system is not necessarily a NADS. If we take w = 1 and the digit set
{0,1 — 7} (here the corresponding reduced residue set modulo 7 = 7!



comprises the single element 1 — 7) we see that the element 1 has an
expansion (1 —7)+ (1 —7)7+ (1 —7)72+ (1 — 7)73 + ---. Algorithm 1
does not terminate in this case.

2.1 Algorithmic Characterization

As already mentioned, one aim of this paper is to investigate which digit
sets D are in fact w-NADS. For concrete D and w, this question can be
decided algorithmically:

Theorem 1. Let D be a finite subset of Z[t] containing 0 and w > 1 be
an integer. Let

Mo max{N(d) : d 26 D}
@7 —1)
where N(z) denotes the norm of z, i.e., N(a+br) = (a + b7)(a+bT) =

a® + pab + 262 for a,b € 7.
Consider the directed graph G = (V, A) defined by its set of vertices

V:={0}u{z€Z[r] : N(z) < M, 71z}
and set of arcs
A= {(y,z) € V*: There exist d € D\{0}, and v > w s.t. z = 7'y+d} .

Then D is a w-NADS iff the following conditions are both satisfied.

1. The set D contains a reduced residue system modulo 7.
2. In G = (V,A), each vertex z € V is reachable from 0.

If D is a w-NADS and D \ {0} is a reduced residue system modulo
T, then each z € Z[r] has a unique D-w-NAF.

We now make some remarks and discuss two well-known examples.

Remark 1. A number a + 7b € Z|[7] is relatively prime to 7 iff a is odd.
This follows from the fact that 7 is a prime element in Z[7]| and that 7
divides a rational integer iff the latter is even.

Ezample 2. Let w = 1 and D = {0,1}. By Remark 1, there is only one
residue class prime to 7. In this case M =5, s0 V = {0,4+1,£1+7}. The
corresponding directed graph in the case p = —1 is shown in Figure 1.
The case p = 1 is similar. We see that all 7 states are reachable from
0. Thus, {0,1} is a 1-NADS. This is equivalent to saying that 7 is the
base of a canonical number system in Z[7] in the sense of [13], and is a
particular case of results from [12].



Fig. 1. Directed Graph G for y = —1, w = 1, D = {0, 1}. The arcs are labeled with
(v,d) as in the definition of the graph, i.e. y “9) » means that z = Ty +d.

Remark 2. Example 2 implies that there are exactly 2” residue classes
modulo 7%; a complete residue system is: {Z}Uz_ol g;7) with €; € {0,1}
for0<j < w}. There are 2¥~! residue classes coprime to 7%, a reduced
residue system is: {1+ Z;‘U;f g;70 with g5 € {0,1} for 1 < j < w}.
Ezample 3. Let w =2 and D = {0, +1}. Using Remark 2, it is easily seen
that {£1} is a reduced residue system modulo 72. In this case, M = 1,
the graph G consists of the three states V' = {0,£1} only, and those are
obviously reachable from 0. Thus {0,£1} is a 2-NADS. This has been
proved by Solinas [23, 24].

Ezample 4. Let us consider the digit set D = {0} U {#1,43,...,£(2% "1 -
1)}. The odd digits form a reduced residue system modulo 7%, since 7%
divides a rational integer iff 2% divides it. However, this digit set is not a
w-NADS for all w. For instance, for w = 6, the number 1— p7 has no D-6-
NAF. Using Theorem 1, we can verify that for w € {2,3,4,5,7,8,9,10},
this set D is a w-NADS.

2.2 Representatives of Minimal Norm

Theorem 2. Let 7, w = 2 be as above, and D a digit set consisting of 0
together with one element of minimal norm from each odd residue class
modulo Y.

The digit set D is uniquely determined. In other words, in each odd
residue class modulo T there exists a unique element of minimal norm.

In [5, 6] it has been shown that the 7-NAF has minimal weight among
all the T-adic expansions with digit set {0, £1}. Since the digit set D =
{0,4+1 £+ 7} is also Solinas’ set for w = 3, in the same paper it is in fact
shown that a D-w-NAF with this digit set is a D-expansion of minimal
weight. For the radix 2 the analogous result is known to be true for all
positive w [1,19]. So one might conjecture that the same holds for our
choice of 7. But, the following example shows that this is not the case:



Ezxample 5. Consider = —1, w = 4, and the set D of minimal norm
representatives modulo 7%. We have D = {0, +£1,£1 £ 7,£(3+ 7)} and

value(1,0,0,0,—1 — 7,0,0,0,1 — 7) = —9 = value(—3 — 7,0,0, —1) .

The first expansion is the D-w-NAF and has Hamming weight 3. The
second expansion does not satisfy the w-NAF condition, has Hamming
weight 2 and is even shorter than the first expansion.

Even worse, we exhibit chaotic behaviour in the following sense: for
every integer k > 0, a pair of numbers can be found which are congruent
modulo 7%, but whose optimal D-expansions differ even at the least signif-
icant position. Thus it is impossible to compute an optimal D-expansion
of z by a deterministic transducer automaton or an online algorithm.

Proposition 1. Letw =4, and D = {0,+1,£1+7, £(3—u71)} (all signs
are independent) be the set of minimal norm representatives modulo T*.
For every nonnegative integer £, we define

2y := value( 0,0,0,0,p —7,(0,0,0,-3u +7)®.,0,0,0,0,1 — p7,0,0,0,-1) ,
zp = value(—4,0,0,0, 1 — 7, (0,0,0, =3p + 7)(9,0,0,0,0,1 — p7,0,0,0,-1) ,

(4)

where (0,0,0,—3u + T)(é) means that this four-digit block is repeated £
times. Then zy = z, (mod 413 All D-optimal expansions of zp are
given by

((ana 073 - MT)(Z2)7O7O’/'L -7, (070707 _3/1/ + 7—)(51)70’0’0, 07 1- MT7O: 0707 _1) )

where £1 and fo are nonnegative integers summing up to £. There is only
one D-optimal expansion of z,, it is given by

((0,0,0, =3 + pr)“1.0,0,0,0, =3 + 7,0,0,1 + p7) .

Note that the D-optimal expansion of z; has Hamming weight ¢ + 3,
whereas the D-w-NAF of z; given in (4) has Hamming weight ¢ + 4. The
proof is based on the search of shortest paths in an auxiliary automaton.

2.3 Syntactic Sufficient Conditions

The aim of this section is to prove sufficient conditions for families of sets
D to be a w-NADS at the level of digits of the 7-NAF. In contrast to
Theorem 1, where a decision can be made for any concrete set D, we will
now focus on families of such sets. Blake, Murty, and Xu [8] gave sufficient
conditions based on the norm of the numbers involved.



Proposition 2. Let w > 1 and €, € two 7-NAFs. Then value(e) =
value(¢’) (mod 7%) if and only if

gj=¢; for 0<j<w—2and |ey1| = e,y - (5)
Definition 3. Let w be a positive integer and D be a subset of
{0} U{ value(e) : € is a T-NAF of length at most w with g9 # 0 }

consisting of 0 and a reduced residue system modulo 7. Then D is called
a set of short 7-NAF representatives for 7%.

An example for a set of short 7-NAF representatives is

D ={0}U/{ value(e) : € is a 7-NAF of length at most w

6
with €0 7é 0 and Ew—1 € {0,80} } . ( )

All other sets of short 7-NAF representatives are obtained by changing
the signs of ,,_1 without changing ¢ in some of the €. It is easy to check
that the cardinality of D is indeed 1 4 2%~

The main result of this section is the following theorem, which states
that in almost all cases, a set of short -NAF representatives is a w-NADS:

Theorem 3. Let w be a positive integer and D a set of short T-NAF
representatives. Then D is a w-NADS iff it is not in the following table

w| D Remark

3[-1{L -1, -7+ 1,7 -1} (-7 -1 (1 -7 = -7 +1
3|-1{1, -1, -2 +1, P21} (-7-1)(1-73)=—72+1
3-1{1,-1, 7241, 72-1} (r+1)(1-73)=712-1

31 L -1, 7241, P-(—m+ ) (1 -7 = (- + 1) +77 -1

(the “Remark” column contains an example of an element which cannot
be represented). In particular, if w > 4, then D is always a w-NADS.

The following result is concerned with the lengths of recodings that
make use of the set of short 7-NAF representatives.

Theorem 4. Let w > 2 be a positive integer, D a set of short T-NAF
representatives, and € a D-w-NAF of some z € Z[T].
Then the length of € can be bounded by

2log, |z| — w — 0.18829 < length(e) < 2logy |2| + 7.08685 , ifw >4, (7)
2log, |2| — 2.61267 < length(e) < 2log, |2| +5.01498 , ifw =3, (8)
2log, |z| — 0.54627 < length(e) < 2log, |2| +3.51559 , ifw=2 . (9)

Note that (9) is Solinas’ [24] Equation (53).



2.4 Point Halving

For any given point P, point halving [14,22] consists in computing a
point ) such that 2¢) = P. This operation applies to all elliptic curves
over binary fields. Its evaluation is (at least two times) faster than that
of a doubling and a halve-and-add scalar multiplication algorithm based
on halving instead of doubling can be devised. This method is not useful
for Koblitz curves because halving is slower than a Frobenius operation.

In [3] it is proposed to insert a halving in the “r-and-add” method
to speed up Koblitz curve scalar multiplication. This approach brings a
non-negligible speedup and was refined in [5, 6], where the insertion of
a halving was interpreted as a digit set extension as follows: Inserting
a halving in the scalar multiplication is equivalent to adding £7 to the
digit set {0,+1}. Note that, by Theorem 3, D = {0,+1,+7} is the only
3-NADS of short 7-NAF representatives. In particular D’ = {£1,£7} is
a reduced residue system modulo 73.

The next two theorems state that more powers of 7 still produce
reduced residue systems D’, which in some cases give rise to w-NADS.

Theorem 5. Let w > 2. Then D' := {£7% : 0 < k < 2¥~2} is a reduced
residue system modulo TV.

Theorem 6. Let D := {0} U{£7": 0 < k <22}, Ifw € {2,3,4,5,6}
then D is a w-NADS. If w € {7,8,9,10, 11,12} then D is not a w-NADS.

To prove Theorem 6, the conditions of Theorem 1 have been verified
or disproved by heavy symbolic computations.

2.5 Comparing the Digit Sets

So far, three digit sets have been studied: the minimal norm representa-
tives, short NAF representatives, and powers of 7. It is a natural question
to ask what are the relations between these sets when they are w-NADS.

The minimal norm representatives are exactly the powers of 7 for
w < 4. For the same range of w, all digits of these digit sets have a 7-
NAF of length at most w, which implies that they are also digit sets of
short NAF representatives.

If symmetry is required, i.e., if d is a digit, then —d must also be a digit,
by Theorem 3 there is only one w-NADS of short NAF representatives for
w < 3: it coincides with the digit sets of minimal norm representatives
and powers of 7. For w = 4, however, there is a symmetric w-NADS
of short NAF representatives distinct from the other two digit sets. For
w > 5, the three concepts are different: the lengths of the 7-NAF's of the



powers of 7 grow exponentially in w, and the lengths of some minimal
norm representatives exceed w slightly (at most by 2).

The table below summarizes the above considerations and provides
further information. “MNR” stands for the minimal norm representatives
digit set, whereas “P7” stands for the powers of 7. The last two rows
show the maximum length of the 7-NAF's of the digits.

w 2 3 4 5 6

MNR=P7T True|True|True|False|False
Max 7-NAF length MNR| 1 3 4 6 8
Max 7-NAF length P7 | 1 3 4 8 | 17

3 Applications

All digit sets seen so far can be used in a T-and-add scalar multiplication,
where we first precompute dP for all d € D\ {0} and then we evaluate
the scheme Y z;7¢(P); in fact, only a half of the precomputations usually
suffice since in all cases that we explicitly described the non-zero elements
of the digit set come in pairs of elements of opposite sign.

The digit set from § 2.3 simplifies the precomputation phase. The digit
set from §2.4 allows us to perform precomputations very quickly or to
get rid of them completely. In the next two subsections we shall consider
these facts in detail. In §3.3 we explain how to use digit sets which are
not w-NADS when they contain a subset that is a k-NADS for smaller k.

3.1 Using the Short-NAF Digit Set

Let us consider here the digit set D defined in (6). With respect to Solinas’
set it has the advantage of being syntactically defined. If a computer has to
work with different curves, different scalar sizes and thus with different
optimal choices for the window size, the representatives in Solinas’ set
must be recomputed — or they must be retrieved from a set of tables. In
some cases, the time to compute representatives of minimal norm may
have to be subsumed in the total scalar multiplication time. This is not
the case with our set. This flexibility is also particularly important for
computer algebra systems.

The scalar is first recoded as a 7-NAF, and the elements of D are
associated to NAFs of length at most w with non-vanishing least signifi-
cant digit, and thus to certain odd integers in the interval [—a,,, a,,] where
oy = 221" _q These integers can be used to index the elements in
the precomputation table. We need only to precompute the multiples of
the base point by “positive” short NAFs (i.e. with most significant digit



equal to 1). The precomputed elements for the scalar multiplication loop
can thus be retrieved upon direct reading the 7-NAF, of which we need
only to compute the least w significant places. If the least and the w-th
least significant digits of this segment of the 7-NAF are both non-zero
and have different signs, a carry is generated: Thus, the computation of
the 7-NAF should be interleaved with the parsing for short NAFs.

3.2 T-adic Scalar Multiplication with Repeated Halvings

Let w > 2 be an integer and D the digit set defined in §2.4. Let P be
a point on an elliptic curve and Q; := 7/(27/P) for 0 < j < 2¥~2 and
R := Qow—2_1. To compute z P, we have to compute yR for y := F2UTE1y,
Computing a D-w-NAF of y, this can be done by using the points @,
0 < j < 2¥2 as precomputations. Now, a point halving on an elliptic
curve is much faster than a point doubling, and a point addition is not
faster than a doubling. Now, with, say, Solinas’ set or the short 7-NAF
representatives the precomputations always involve at least one addition
per digit set element. With our set we require a halving per digit set
element. Hence, our approach with the points @; and halvings is already
faster than traditional ones.

But we can do even better, especially if normal bases are used to
represent the field Fon. Algorithm 2 computes z P using an expansion y =
Zf:o y;7" of the integer y := 727*=1; where the digits y; belong to the
digit set introduced in Theorem 5, i.e. D := {0} U {+7F:0 < k < 272},

To explain how it works we introduce some notation. Write y; = ;7%
with ¢; € {0, £1}. We also define

y(k) = Z g7t .

010Kl yi=+7k

Now y = g:f_l y(k)fk and it can be easily verified that
211)72_1 9
QW2 _1—m
p—Fs0@7-1, p_ (Z> mhp .
o e S (] ™)

The last expression is evaluated by a Horner scheme in 7, i.e. by repeated
applications of 7 and a point halving, interleaved with additions of y (9 P,
y P, ete. The elements y*) P are computed by a 7-and-add loop as usual.
To save a memory register, instead of computing y*) P and then adding
it to a partial evaluation of the Horner scheme, we apply 7 to the negative
of the length of ) (which is 1 + ;) to the intermediate result X and



Algorithm 2. T7-adic Scalar Multiplication with Repeated Halvings

INPUT: A Koblitz curve E,, a point P of odd order on it, and a scalar z.
OUTPUT: zP

_ow—2_
1. y<« 72 12

Write y = Zf:o yiT" where y; € D := {0} U{7": 0 < k < 2¥7?}
Write y; = ;7% with ¢; € {0, +1}

2.l —max ({-1} U {i:y; = £7" for some k})
3. X«0

4. for k=0 to 2% —1 do

5. if k>0 then X — 7" %X X «— 1X

6. for i =/¢; to 0 do

7. X —71X

8. if y; =+7" then X «— X +¢&;P

9. return (X)

perform the 7-and-add loop to evaluate y¥) P starting with this X instead
of a “clean” zero. In Step 4 there is an optimization already present in [3]:
n is added to the exponent (since n =~ ¢, and 7" acts like the identity
on the curve) and the operation is also partially fused to the subsequent

5. At the end of the internal loop the relation X = anzo (%)k_m y(m™ Pp
holds, thus proving the correctness.

Apart from the input, we only need to store the additional variable
X and the recoding of the scalar. The multiplication of z by 72071 4y
an easy operation, and the negative powers of 7 can be easily eliminated
by multiplying by a suitable power of 7. Reduction of this scalar by
(7" —1)/(1 — 1) following [23, 24] is also necessary.

An issue with Algorithm 2 is that the number of Frobenius operations
may increase exponentially with w, since the internal loop is repeated up
to 2*~2 times. This is not a problem if a normal basis is used to represent
the field, but may induce a performance penalty with a polynomial basis.
A similar problem was faced by the authors of [20], and they solved it
adapting an idea from [21]. The idea consists in keeping a copy R of the
point P in normal basis representation. Instead of computing y*) P by a
Horner scheme in 7, the summands ¢;7°P are just added together. The
power of the Frobenius is applied to R before converting the result back to
a polynomial basis representation and accumulating it. According to [10]
a basis conversion takes about the same time as one polynomial basis
multiplication, and the two conversion routines require each a matrix
that occupies O(n?) bits of memory.

Algorithm 3 is a realisation of this approach. It is suited in the context
where a polynomial basis is used for a field and the cost of an inversion is



Algorithm 3. Low-memory 7-adic Scalar Multiplication on Koblitz Curves with Re-
peated Halvings, for Fast Inversion

INPUT: P € E(Fan), scalar z
OUTPUT: zP

_oqw—2_1q
1. y«<T z

Write y = Zf:o yiT" where y; € D= {0} UH{F": 0 < k < 2¥ 72}
Write y; = ;7% with ¢; € {0, %1}
R «— normal_basis(P)
Q0
for k=0 to 2¥2 -1

if k>0 then Q «— 7Q, Q(—%Q

for i=0 to ¢

if yi = 47" then Q — Q + e;polynomial_basis("R)

return @

© N o g s~ w D

Algorithm 4. Low-memory T-adic Scalar Multiplication on Koblitz Curves with Re-
peated Doublings, for Slow Inversion

INPUT: P € E(F2n), scalar z
OUTPUT: zP
1. Writtz = 3%, 27" where z; € D:= {0} U+{7": 0 < k < 2¥ 72}
Write z; = Eifk"' with g; € {0, j:l}

2. R < normal_basis(P) [Keep in affine coordinates]
3. Q<0 [Q is in Lopez-Dahab coodinates]
4. for k=2""2-1 to 0

5. if k>0 then Q —77'Q, Q « 2Q [~ " is three square roots|
6. for i=0 to ¢

7. if z; ==+7" then Q « Q + e;polynomial_basis(7°R) [Mixed coord.]
8. return Q [Convert to affine coordinates]

not prohibitive. The routines normal_basis and polynomial_basis convert
the coordinates of the points between polynomial and normal bases.

Algorithm 4 is the version for fields with a slow inversion (such as large
fields). It uses inversion-free coordinate systems and, since no halving
formula is known for such coordinates, a doubling is used instead of a
halving. This is not a problem, since using Projective or Lépez-Dahab
coordinates (see [9, §15.1]) a doubling followed by an application of 771
(which amounts to three square root extractions) is about twice as fast
as a mixed-coordinate addition preceded by a basis conversion, hence the
situation is advantageous as the previous one.

Although the digit set D introduced in Theorem 5 is not a w-NADS
for all w, in the next subsection we show how to save the situation.



Algorithm 5. Windowed Integer Recoding With Termination Guarantee

INPUT: An element z from Z[7], a natural number w > 1 and a set of reduced residue systems
D}, C Diy1 C ... C D), modulo 7%, 71 7 respectively, (1 < k < w) where D, U {0}
is a k-NADS.

OUTPUT: A representation z = Ef;(l) 277 of length £.

1. J—0,u—zv—w

2. while u#0 do

3. if 7|wu then

4. zj <0

5. else

6. Letz; € D) st z; = u (mod 7Y)
7. if (2] > |u(2¥/? — 1) AND v > k) then decrease v and retry:
8. v+« v —1,goto Step 6

9. u—u—2zj, u—u/T, j—j+1
10, fL«—3j

11, return ({z;}525,0)

3.3 Stepping Down Window Size

Let D, be a family of digit sets, parametrized by an integer w, which are
w-NADS for some small values of w, but not in general, and such that
D,_1 C D, for all v. Then, Algorithm 1 may enter a loop for a few inputs.
This can be caused by the appearance of “large” digits towards the end
of the main loop of the recoding algorithm. Then the norm of the variable
<

U—=z4
TWw

u gets too small in comparison to the chosen digit, and |u| <

%. For most other inputs the algorithm terminated and delivers the

expected low density. How can we save it? One possibility is to decrease
w for the rest of the computation, so that the corresponding digit set is
a NADS. We call this operation stepping down. The resulting recoding
may have a slightly higher weight, but the algorithm is guaranteed to
terminate. One possible implementation is presented as Algorithm 5.

Solinas can prove that his 7-adic w-NAF terminates because his digits
are representants of minimal norm, and have norm bounded by %2“’. The
presence of digits of non-minimal norm is a necessary but not sufficient
condition for non-termination. In fact, the digit sets from Example 4 and
from §2.4 are w-NADS with some digits of norm larger than 2.

Remark 3. The digit set from Example 4, the set of §2.3 and the set of
Theorem 5 all have the property that each set is contained in the sets
with larger w — hence Algorithm 5 can be used.

Remark 4. Checking an absolute value (or a norm) in Algorithm 5, Step 7
is expensive. Hence we need an alternative strategy. Let M,, be defined as



M in Theorem 1 for the digit set we are considering, with parameter w.
Consider an easy function that is bounded by the norm: for example, if z =
a+b7, M(z) = max{[|a+4b[]%, 2[|4a+b|]?}. It is easy to check that A(z) <
N(z) and that A(z) = 0 iff z = 0. Therefore, if [logy(M,)]| = |logy(A(2))]
we step down to a new value of v with [logy(M,)] < |logs(A(2))]. These
checks are quickly computed only by using the bit lengths of a and b
and performing additions, subtractions and bit shifts (but no expensive
multiplication). The values [logy(M,)] are precomputed in an easy way.

Remark 5. In our experiments, the recodings done with the different digit
sets have similar length, the average density is 1/(w + 1) (see also § 3.4),
and stepping down only marginally increases the weight. Thus, the new
digit sets bring their advantages with de facto no performance penalty.

3.4 A Performance Remark

Algorithms 2, 3 and 4 perform 2¥~2 — 1 “faster” operation blocks and

(roughly) n/(w+ 1) “slower” operation blocks. In Algorithm 2 (with nor-
mal bases) the two block types are given by a halving, resp. an addition.
In Algorithm 3 (resp. 4) these two block types are given by a Frobenius
operation plus a halving (resp. by an inverse Frobenius plus a doubling),
and by a basis conversion followed by an addition (for both algorithms).
In all cases we can see that computing the first block takes a times the
time for the second block, where a < /.

We now determine asymptotically optimal values for w in these al-
gorithms in terms of n, where n is assumed to be large. This will lead
to large values w, such that the digit set from § 2.4 is probably not a
w-NADS. We will therefore have to use Algorithm 5 (or a variant of it).
For the sake of simplicity, we do not decrease v step by step depending
on the norm of |z;|, but we use v = w for j < L and v = 6 for j > L,
where the parameter L will be chosen below.

Let z be a random integer in Z[r| with |z| < |7]|™. Here “random”
means that for every positive integer m, every residue class modulo 7™

is equally likely. Let y = Zf:_ol ijj where the z; are calculated by Al-

gorithm 5. Then y = z (mod 7%) and |y| < |7|** 7~ 1+E=1(1 + |7|7w)~ L.
Thus |(z — y) /75| < |7|*F + |7|2" *~2. The choice

L=n—-2"242

implies that |(z—y) /77| < 2|7|"~%. The expected length of the Dg-6-NAF
of (z —y)/rF isn — L+ O(1). Here, Dg = {0} U {+7* : 0 < k < 16}. We



conclude that the expected Hamming weight of the expansion returned
by Algorithm 5 is
L n—1L
wil 7
Here, we use the well-known fact that a v-NAF of length m has ex-
pected Hamming weight m/(v + 1) + O(1).
Algorithm 2 performs 2¥~2—1 point halvings, the number of additions
being given by the Hamming weight of the expansion. With « as above,

the total costs of the curve operations (measured in additions) is

+0(1) .

L n—L
211)72
@ +w—i—1+ 7

_ qw—2 1 n_2w—2
+0(1) =2 <a+7 o)

Balancing the two main terms gives

21a+410

1 (7-27a+110g2> Ta+8
n .

W =

log 2 Ta+1 C Ta+1

where W is the main branch of Lambert’s W function. Asymptotically,
this is W = logy n — log, logy n + 2 —log, (a + %) +0 (M) . Thus we

logn
choose )
w = {logg n — log, logs n + 2 — log, <a + ?>J
and see that the expected number of curve additions asymptotically equals

log 1
n <1+c+0<70g Og">> (10)
logs n logn

with % <= 2—{log2 n—log, log, n+2—logy (oz-i—%)} <1
For Algorithms 3 and 4, the unit in the cost (10) is given by the cost

of a group addition and a base conversion — the latter being comparable
to a field multiplication. We thus have the following result:

Theorem 7. Algorithms 2, 3 and 4 are sublinear scalar multiplication
algorithms on Koblitz Curves with constant input-dependent memory con-
sumption.

Note that here sublinear refers to the number of group operations, and
“constant memory consumption” refers to the number of registers re-
quired for temporary variables — each one taking of course O(n) bits.
Usual windowed methods with precomputations have, of course, similar
time complexity but use storage for 2~2 — 1 points [23,24] and thus



O(n2¥) = O(n?/logn) bits of memory. Algorithms 3 and 4 need O(n?)
bits of field-dependent (but not point-dependent) data for base conversion
(as in [21,20]) that can be stored statically (such as in ROM).

For the same values of w, our algorithms perform better than tech-
niques storing precomputations. The precomputation stage with Solinas’
digit set takes one addition and some Frobenius operations per precompu-
tation. Using the digit set from § 2.4 these additions can be replaced with
cheaper operations (halvings or doublings depending on the coordinate
system), whereas in Algorithms 3 and 4 the cost of the basis conversion as-
sociated to each addition in the main loop is relatively small. In all cases,
the increase in recoding weight is marginal. A more precise performance
evaluation (including small values of n and w) lies beyond the scope of
this paper; however, in [2] some simple operation counts and comparisons
with other methods can be found. The method in [7] is also sublinear,
but its applicability still has to be assessed — the authors warn that the
involved constants may be quite large. See [4] for another approach.

4 Conclusions

The paper at hand presents several new results about 7-adic recodings.

Digit sets allowing a w-NAF to be computed for all inputs are charac-
terised. We study digit sets with interesting properties for Koblitz curves.

We prove that Solinas’ digit set, characterised by the property that the
elements have minimal norm, is uniquely determined. We show, by means
of an example, that the non adjacency property does not imply minimality
of weight, and enunciate a result implying that optimal expansions cannot
be computed by a deterministic finite automaton.

In §2.3 we introduce a new digit set characterised by syntactic prop-
erties. Its usage is described in §3.1.

The digit set introduced in §2.4 together with Algorithms 2, 3 and 4
permit to perform a “windowed” 7-adic scalar multiplication without
requiring storage for precomputed points. This is potentially useful for
implementation on restricted devices. Our methods can perform better
than previous methods that make use of precomputations. Some opera-
tion counts (based on the performance of real-world implementations of
finite field arithmetic) comparing our algorithms with other methods can
be found in [2]. Better performance assessments are part of future work.
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