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Reverse 2-Median Problem on Trees

Rainer E. Burkard Elisabeth Gassner Johannes Hatzl *

Abstract

This paper concerns the reverse 2-median problem on trees and the reverse 1-
median problems on cacti that contain one cycle. It is shown that both models under
investigation can be transformed to an equivalent reverse 2-median problem on a path.
For this new problem an O(nlogn) algorithm is proposed, where n is the number of
vertices of the path. It is also shown that there exists an integral solution if the input
data are integral.

Keywords: Reverse optimization, facility location, median problems, combinatorial
optimization.

1 Introduction

Location problems are due to their relevance in practice of special theoretical interest.
Classical location problems deal with finding optimal locations for facilities. However, in
practice the facilities may already exist and instead of finding optimal location the task
is to improve the given locations by changing some parameters (e.g., traffic connections)
within a given budget constraint. This kind of improvement problem is called reverse
problem.

This paper deals with reverse p-median problems on special graphs, namely the reverse
2-median problem on trees and the reverse 1-median problem on cacti with one cycle. Both
problems are edge improvement problems, i.e., the task is to find an optimal reduction
strategy of the edge lengths.

Reverse median and reverse center problems have already been subject of several inves-
tigations: The reverse 1-median problem as well as the reverse 1-center problem are known
to be N'P-hard (]3], [7]). Therefore, special networks have been studied. Berman, Ingco
and Odoni investigated the reverse 1-median problem on a tree [2] and Burkard, Gassner
and Hatzl [7] developed a linear time algorithm for the reverse 1-median problem on a
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cycle. Furthermore, Berman, Ingco and Odoni [3] and Zhang, Liu and Ma [14] dealt with
the reverse 1-center problem and developed polynomial time algorithms.

The term reverse location problem is often used for a similar class of improvement
problems, where the task is to modify parameters at minimum cost such that the quality
of the prespecified locations is within given bounds. Zhang, Yang and Cai [15] considered
the problem of how to reduce the lengths of the edges in a network so that the distances
from a given vertex to all other vertices satisfy a given upper bound. The authors prove
inapproximability results and suggest an O(nlogn) time algorithm for the special case of
a tree. Inapproximability results for the corresponding problems where the total cost are
measured in £;- or fo-norm are discussed in Zhang, Yang and Cai [16|. Furthermore, an
O(nlogn) time algorithm for the case of ¢, -norm is developed in [16].

Reverse problems are strongly related to inverse problems. The goal of an inverse
location problem is to modify parameters at minimum cost such that prespecified locations
become optimal. Burkard, Pleschiutschnig and Zhang [6] proved that inverse p-median
problems are solvable in polynomial time and presented fast algorithms for the inverse 1-
median on a tree and in the plane with /- and {,.-norm. Cai, Yang and Zhang [9] proved
by a reduction from the satisfiability problem that the inverse center problem is A/P-hard.

Network improvement problems have also been applied to several other classical com-
binatorial optimization problems, e.g., shortest paths (Burton, Pulleyblank and Toint [8],
Fulkerson and Harding [12|, Zhang, Liu and Ma [14]) minimum spanning trees (Freder-
ickson and Solis-Oba [11], Dragmeister et al. [10], Krumke et al.[13]) or bottleneck 0/1-
combinatorial optimization problems (Burkard, Klinz and Zhang [4] and Burkard, Lin and
Zhang [5]).

This paper is organized as follows: In Section 2 the problem under consideration is
introduced. It is proved that the reverse 2-median problem on trees as well as the reverse
1-median problem on cacti with one cycle can be transformed to the reverse 2-median
problem on a path. In Section 3 several properties of an optimal solution of the reverse
2-median problem on a path are proved. Furthermore, a solution method which leads to
an O(n?) time algorithm for linear cost functions is suggested. Based on the structural
investigations of Section 3 an O(nlogn) time algorithm for the reverse 2-median problem
on a path with uniform cost functions is developed in Section 4.

2 Problem Formulation

An instance of the reverse 2-median problem is given by a graph G = (V| E) with edge
lengths [, € R, for e € E and vertex weights w, € R, for v € V. Furthermore, a budget
B > 0 and two prespecified vertices, say v’ and v”, representing the locations of two
facilities are known. The task is to use the budget in order to change the length of some
edges such that the overall sum of the weighted distance of the vertices to the respective
closest facility becomes as small as possible. Thereby, the distance d'(v;, v;) in G of vertex
v; to vertex v, is the length of a shortest (v;,v;) path in G corresponding to the edge



lengths [.. In order to improve the locations of v" and v”, we are allowed to reduce the
edge lengths [.. The cost for reducing the edge e by z. units are given by some function
fe(ze) > 0. Thus, the decision variables are ., describing the reduction of the edge lengths
l. =1, — z.. Additionally, upper bounds u. < [, for all ¢ € E on the maximum allowable
edge reduction are taken into account. In the following, we will always denote the distance
from a vertex v to facility v’ by d}(v), whereas the distance to facility v” is denoted by
db(v). Using the notation introduced above, the problem can formally be stated as follows:

. . 7
min Z min w, d; (v) (1)
veV
st. =1 —x Vee E
Z fe(ze) < B (2)
eck
0 <z, <ue Ve e F.

In [7] it has already been shown that the reverse 1-median problem, i.e., the reverse
2-median problem where v' = v”, is strongly N'P-hard even for bipartite graphs and the
unit cost model, i.e.,

fe(xe) = Cxe (3)

for all e € E and some positive constant C. Furthermore, there does not exist any polyno-
mial time algorithm with constant approximation ratio (unless NP = P). Obviously, the
problem remains N'P-hard for the case where v’ # v”, because if we consider an instance
of the reverse 1-median problem with a facility given at vertex v’ we only have to add a
new vertex v, the edge e = (v,v’) and set v = v”. It is easy to see that it does not make
any sense to spend any budget in the artificial edge e and thus, the modified problem can
only be solved in polynomial time if and only if the original reverse 1-median problem can
be solved in polynomial time.

Thus, we restrict our investigations to the reverse 2-median problem on trees and the
reverse 1-median problem on cacti with one cycle. In this paper, we will mainly deal with
the unit cost model. Without loss of generality, we may assume that C' = 1 because
otherwise equation (2) can be rewritten as

and we can solve the problem with B instead of B.
From now on, we will always assume that in the reverse 2-median problems v' # v” and
that the prespecified vertex in the reverse 1-median problems is denoted by v'.



2.1 Reverse 2-Median Problem on Trees

In this subsection a transformation from the reverse 2-median problem on a tree to the
reverse 2-median problem on a path is presented.

Let T'= (V, E) be a tree with V' = {vy,...,v,} and let two prespecified vertices v and
v” be given. Then there exists a unique path P[v’,v”] in T that links v" and v”. If we denote
the vertex set of this path by V(P[v',v"]) = {v/ = vy, v9,...,v,_1,v, = v} the vertex set of
the tree can be partitioned into the sets V(P[v',v"]) and V¢(P[v',v"]) := V \ V(P[v',v"]).
Similarly, the edge set E of the tree can be written as £ = E(P[v',v"]) W E¢(P[v',v"]),
where E(P[v',v"]) = {e1,...,e,_1} is the edge set of the path P[v',v"], e; = (v;,v;11) and
E¢(P[v',v"]) .= E'\ E(P[v',v"]). For the sake of simplicity, we write e € P[v’,v"] instead
of e € E(P[v',v"]) and v € P[v',v"] instead of v € V(P[v’,v"]) if no confusion is possible.
If all edges e € P[v',v"] are deleted from the tree T" we obtain p disjoint trees each of
them containing exactly one vertex of V(P[v',v"]). Consider these trees T,, = (Vj, E)
for k =1,...,p rooted at the vertices vy, of the path P[v’,v"]. Furthermore, we will write
r(v) = vy, if vertex v € V is in the tree T,,.
Using these trees, a new weight for each vertex v, € P[v’,v”] is introduced by

Wy, 1= Z Wy. (4)

Notice that the path from v € V' to v’ is the disjoint union of Plv,r(v)] and P[r(v),v’]. An
analogue result holds for v”. Hence, we get

d(v) = d'(v, 7(v)) + d(r(v))

for i = 1,2 and v € V. Using these notations, (1) can be rewritten as

> (wvdi(%r(v)))Jr > (Fli% W, dj(r(v))) _

veV veV
7 gl _
Z <wyd (v,r(v))>+ Z (Zmig d;(vg) Z wv> =
veV v EP[V "] veVy
> (wud%v, r(v>>)+ > <}£}g Wy, df(w))- (5)
veV v EP[V "]

Now the two terms of the objective function given in (5) are investigated separately. The
first term corresponds to the objective function of a reverse 1-median problem on the tree
which can be obtained by identifying vq,vs, ..., v, with each other. The identified vertices
correspond to the prespecified location of one facility. The second term is equivalent to
the objective function of a reverse 2-median problem on the path P[v’, v”] with facilities v’
and v” and the new vertex weights @, (see Figure 1(b)).
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(a) Reverse 2-median (b) Transformation to a path
on a tree. and a tree.
U1
Uy U2 U3 Uy Uy U3 Uy 5 Us

(¢) Transformation to one path.

Figure 1: The transformation from the reverse 2-median problem on a tree to a reverse
2-median problem on a path. The numbers within the vertices are the vertex weights, the
numbers on the edges are the edge weights W, and the prespecified locations are marked

grey.)

The next step is to transform the reverse 1-median problem on a tree into a reverse
1-median problem on a path. Note that

@)= 3 (- (6
e€P[v,r(v)]

holds. For every e € E°(P[v',v"]) = |Hi_, Ex we define its edge weight as the sum of
weights travelling along e:

W, = Z Wy . (7)

{veV:ecPlv,r(v)]}

Using (6) and (7), we get

> (wd'wr@)) =Y w, > (e-w) = (lo—z)W..  (8)

veV veV e€E(P[v,r(v)]) e€E¢(Pv' v'"])



However, this modified part of the objective function is now equivalent to the objec-
tive function arising from a reverse 1-median problem on a path. We only have to sort
the edges of E°(P[v',v"]) in decreasing order corresponding to their coefficients W, i.e.,
E°(P',v"]) = {é,...,€,}, where W, > W, . Using this sorting, the path P =
(V(P), E(P)) with V(P) = {vy,...,0,1}, BE(P) = {é1,...,¢,} and & = (¥;,7;41) can
be constructed. In order to state the reverse 1-median problem on P, we set v/ = v; and
define the weights by

oy {W —We, fori=1...q o)

W fori =q+ 1.

Observe that the objective function of the reverse 1-median problem on path P with vertex
weights wg, for i = 1,...,¢ 4+ 1 is of the form

i=1 i=1 j=1
q q+1
= (léj xej) Z Wy,
j=1 i=j+1
q
= (lg; — 7e,)Ws, (10)
j=1

Hence, the objective function (8) of the reverse 1-median problem on a tree is equiva-
lent to the objective function (10) for the reverse 1-median problem on path P. Thus, we
have constructed a reverse 3-median problem on a disconnected graph with two compo-
nents P[v’,v”] and P, where each component is a path. However, these two components
can be combined by identifying v, with v;. Hence, a reverse 2-median problem on a path
with vertex weights given in (4) and (9) is obtained, which is equivalent to the original
reverse 2-median problem on a tree (see Figure 1(c)). This transformation can be done in
O(nlogn) time since we have to sort the edges in E¢(P[v’,v"]) according to W.,.

The reverse 2-median problem on a path with the unit cost model, R2MP for short,
can be stated in the following form:

Let P = (V, E) be apath,ie., |V|=|E|+1=nand V ={1,2,...,p—1,p,p+1,...,n}
and £ = {ey,...,e,_1} where ¢; = (i,i+ 1) for i = 1,...,n — 1. Furthermore, for each
edge e; there is given the length /; and a bound w; <[; on the edge reduction. In addition,

vertex weights w; > 0 for all i € V, two prespecified vertices v" = 1 and v = p and a



budget B > 0 are given. R2MP is then defined in the following way:

min Zw] Zm%gd z": (wj Zl ) (11)
J=p+1

n—1
> wm<B (13)
=1

Note that in (11)

holds for j =1,...,p and

Y Li=di() <di(j)  i=p+1,....n

hold. In order to exclude trivial cases, we assume throughout this paper that

n—1
> u;>B (14)
=1

holds. Otherwise z; = w; for ¢ = 1,...,n — 1 would be an optimal solution. Using
assumption (14), it is clear that there always exists an optimal solution such that the
whole budget is used. Thus, constraint (13) can be replaced by

> =B (15)

i=1

Furthermore, we assume without loss of generality that w; > 0 holds for all j € V. If
w,, = 0 vertex n and edge e,,_; can be deleted. If w; = 0for j =1,...,n—1 then we identify
vertex j with j 4+ 1 and set u;_; = w;_; + u; and [;_; = [;_; + [;. This procedure reduces
the number of zero-weight vertices by one and is therefore repeated until no zero-weight
vertex exists.

2.2 Reverse 1-Median Problem on Cacti with one cycle

In this subsection another reverse location problem is discussed, namely the reverse 1-
median problem on cacti with one cycle. At the beginning we need some definitions in
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order to introduce the discussed graph class. Let G = (V, F) be a connected graph. A
vertex v € V is called a cut vertex if the graph after removing v and all edges incident to v is
disconnected. A connected graph without a cut vertex is called a nonseparable graph, e.g.,
a cycle is nonseparable. A block of a graph is a maximal nonseparable subgraph. A block
that is a cycle is called a cyclic block. G is called cactus if every block with three or more
vertices is a cyclic block. Note that a cactus without a cyclic block is a tree. In this paper,
the reverse 1-median problem on cacti that have exactly one block C' = (V(C), E(C)) that
is cyclic is discussed. This means that the vertex set of the given graph G = (V, E) can
be partitioned into the set of vertices of the cycle denoted by V(C') = {vy,...,v,} and the
set V¢(C) :=V \ V(C). Similarly, the edge set E of the considered graph can be written
as £ = E(C) W E°(C), where E(C) = {ey,...,e,} and e; = (v;,v;41) fori=1,....,p—1
and e, = (p, 1).

Note that if all the edges e € E(C') are removed from the original graph p disjoint trees
are obtained where each of them contains exactly one vertex of V(C'). These trees are
denoted by T,, = (Vi, Ex) for k =1,...,p and are rooted at the vertices vy of the cycle C.
Without loss of generality it is assumed that v' € T,,. As in the previous subsection, we
write r(v) = vy if vertex v € V' is in the tree T, . Hence, v; = r(v').

Now a new weight function for the vertices vy € V(C') can be defined by

Vi T

P D vy, Wy + Wey  for k=1
2 ey, W for k=2,...,p.

Let v € V}, for k # 1. On the path from v to v’ vertex v travels along edges ¢ € E), C
E<(C), followed by some edges e € E(C) and finally ends with some edges e € E; C E¢(C).
Thus,

d'(0,0') = d (v, 7(0)) + d (r(v), 7 () + d'(r(0'), V)

for all v € U?:g V;, where the following equation holds for r(v) = vy

k—1 p
d' (v, r(v)) = d'(vg, v;) = min (Z L., l_e¢> :
i=1

i=k

Hence, the corresponding objective function can be written as

Z wyd' (v, V')

veV

= > w, (df(r(v), r(v') + d'(v,r(v)) + d'(r(v"), v')) + > wud (v, 0)

veV\W1 veVy

= Z Wy, d (v, (V) + Z wyd' (v, r(v)) + Z wod' (v,0') 4 Wy, d (vi, ). (16)

v €V(C) veV\VL vAv1EVY



Observe, that the first term in (16) corresponds to the traffic on the cycle C, the second
term corresponds to the traffic on the trees T,,,..., T, , the third term describes the cost
of all vertices v € Vi\{v;} travelling to v" and finally the fourth term describes the cost
for transporting the whole weight that travels through v; to v/. The terms of the objective
function (16) are now analyzed separately. The first term is the objective function of the
reverse 1-median problem on the cycle C' with vertex weights w,, and prespecified vertex
r(v") = v1. The remaining terms are equivalent to a reverse 1-median problem on a tree
which is obtained by identifying the vertices v', vq, ..., v, with each other and using vertex
weights w, for all v # v; and w,,. The identified vertices are the prespecified vertex. Thus,
the reverse 1-median problem on a cactus with one cycle is now equivalent to a reverse
2-median problem on a disconnected graph with two components, where one component is
a tree and the other one is a cycle each of them having one prespecified vertex (see Figure
2(b)).

Now it is shown that this modified instance can again be transformed to a reverse
2-median problem on a path. In the previous section we have already presented the trans-
formation from the reverse 1-median problem on a tree to a reverse l-median problem
on a path. In addition, the reverse 1-median problem on the cycle C' = (V(C), E(C))
with vertex weights w; for all vy € V(C) and prespecified vertex v; is equivalent to
the following reverse 2-median problem on a path P. Let P = (V(P), E(P)), where
V(P) :==V(C)Uuvy, and E(P) = {ey,...,e,} with e; = (v;,v41) for i = 1,..., p, vertex
weights w and w,,,, = 0. Furthermore, let v’ = v; and v" = v, be the new prespecified
vertices. Note that for this problem

_ j—1
d{(vj) = Zej
=1
and
B p
dé(“J) = Z l_ej
i=j

by

UkEV(C)

>, d (v, (V).

v eV(C)



This is exactly the objective function of the reverse 1-median problem of the cycle.

Thus the original problem is again equivalent to a reverse 3-median problem on a discon-
nected graph with two paths as components (see Figure 2(c)). As it was shown in the
previous section this problem can be transformed to the reverse 2-median problem on a
path given in (11) — (12) and (15).

(a) Reverse 1-median on a cactus with (b) Transformation to a cycle and a
one cycle tree

4
i
<
[\
4
w
4
N
4
ot
<
(<))
<
3

O—O)—G)—)——)—@)

(
C
S
¢

25 8 VO TV T o2 )LD
O—0—C0—0—0—0C—0—0

(¢) Transformation to two paths which are then connected to one path

Figure 2: The transformation from the reverse 1-median problem on a cactus with one
cycle to a reverse 2-median problem on a path.

3 Structural investigations
Before an efficient algorithm of the R2MP is discussed, some properties of an optimal

solution are proved. The following definition is crucial for the ideas behind the proofs and
will finally lead to an O(nlogn) time algorithm.
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Definition 3.1. An edge e = (k,k+ 1) for k = 1,.
to modified edge lengths [ = (I1,...,[, 1), if

min d’ (k) = d! (k)

1=1,2

..,p — 1 is called critical with respect

and

;§%£@+1y:@@+1y

If e = (k,k + 1) is critical with respect to [, the index k is called a critical index with
respect to [.
This definition immediately leads to the following observation.

Observation 3.2. Let x = (x1,...,x,_1) be a feasible solution and k a critical index with

respect to | = (I — x1,...,lp_1 — Tn_1). Then the inequalities
j—1 ~ ~
Li=di(j) <dsy(j)  forj=1,... .k,
i=1
and
p—1 ~ ~
> L= dy(j) < di(j) forj=k+1,...,p,
i=j
hold.

Using Observation 3.2, the objective value of a feasible solution = = (z1,...,2,_1) can be

obtained by

ij mln d

(£ 5 (%D) 5 (-5

i=1 j=k+1
zym¢+§jmw

2

j=1

>

J p+1

p—1
W’%Z
2:1
where
Z_];:iJrle i:17"'7k_17
Wk — OA 1=k,
O Siew =kl
S aw; i=p,...,n—L
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and e = (k,k + 1) is a critical edge with respect to [ = (I} — 21, ..., lh_1 — Tp_1).
Note that the following relations are true:

Wf“:WerwkH fore=1,... k,

W =Wk —wey fori=k+1,....,p—1,

I/VfH:VVfC fort=p,...,n—1.
Let »* = (zf,...,7;_;) be an optimal solution and k a critical index with respect to
Il =, —=x7,...,l,—1 — 2 _4). Then z* is an optimal solution of the following linear

program LP(k):

s.t. 0<z; <uwy 1=1,...,n—1
n—1
r; = B.

=1

The assumption that w; > 0 holds for all 7 = 1,...,n implies
WE>WE>  >W >Wi=0<Wi, <...<Wk, (17)

and

Wr>...>Wr,>Wr,. (18)

It is easy to see that LP(k) can be solved for any fixed k = 1,...,p — 1 in linear
time because of the monotonicity properties (17) and (18). This observation immediately
leads to an O(n?) algorithm by solving LP(k) for any k € {1,...,p — 1}. However, using
information from an optimal solution of LP(k — 1) for problem LP(k) yields a faster
algorithm which is developed in the next section.

The time complexity of O(n?) can even be achieved for a more general model, namely
using cost functions f;(z;) = C;z; where C; € R, for alle; € E = {ey,...,¢e,_1}. In this
model the budget constraint (15) has to be replaced by

n—1
i=1

The modified LP(k) is a continuous knapsack problem and can therefore be solved in linear
time (see Balas and Zemel [1]).

At the end of this section some observations are stated which can be proved in a
straightforward way using (17), (18) and the special form of LP(k).
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Lemma 3.3. Let x = (21,...,7,-1) be a feasible solution of LP(k). Then the following
properties are equivalent:

1. x is an optimal solution
2. If x; > 0 then x; = u; for all i for which W} > Wf

Let x = (x1,...,2,-1) be a feasible solution of LP(k). Then an edge e; is called fully
reduced if z; = u; and is called partially reduced if 0 < z; < u;.

*

Theorem 3.4. There exists an optimal solution x* = (z3,...,x% ;) of the reverse 2-
median problem on a path such that 0 < x} < u; holds for at most one indez 1, 1. e., there
exists at most one partially reduced edge.

Theorem 3.5. If B and u; for 1 = 1,...,n — 1 are integer values then there exists an
integral optimal solution of the reverse 2-median problem on a path.

4 An O(nlogn) Algorithm

In this section an O(nlogn) time algorithm for the reverse 2-median problem on a path
defined by (11) — (12) and (15) is developed. The main idea of the algorithm is to solve
LP(k) for k=1,...,p— 1. Instead of solving each LP(k) from the scratch we use some
information from the already solved problem LP(k — 1). In the following we call the
procedure to solve LP(k) an iteration. Hence, there are p — 1 = O(n) iterations in total.

In order to describe the computations needed in iteration k& the following notation is
introduced:

L :={ey,...,ep1};
R .= {es,. .., €p—1};

P:={e,,...,n}.

In order to simplify the notation, we write 1W; instead of W} for e; € P since these edge
weights are independent, of the iteration k.
The next task is to describe how an optimal solution of LP(k) given an optimal solution
of LP(k — 1) can be obtained. Recall that a feasible solution x of LP(k) is optimal if and
only if the following property holds: If z; > 0 then x; = u; for all edges i with W} > Wf.
The idea of the following procedure is to start with an optimal solution x*~! of LP(k — 1)
and to shift the investment successively from an edge i to an edge j with W}F < W}.

Now the shift procedure described in Algorithm 1 is explained in more detail.
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Algorithm 1 Shift Procedure: Solves LP(k) given an optimal solution of LP(k — 1)
1: optimal = false
2: while optimal = false do
3:  Determine et € E with W = max{W} : z. < u.} {e* is called valuable shift edge}

4:  Determine e~ € E with W» = min{W} : 2, > 0} {e™ is called trashy shift edge}
5. if WF > WPF then {x is not optimal}

6: 0 = min{uer — To+, To- }

7: Tet = Tet + 0, Tem = Te— — 0

8: 2(z) = z(x) — 6(WFE — Wh)

9: else

10: optimal = true

11:  end if

12: end while

Definition 4.1. Let x be a feasible solution of LP(k).
e An edge denoted by e (L*) € L* is called to be valuable in L* if
Wf+(Lk) =max{W":eec L* z, <u}.

In an analogue way we define an edge e*(R*) € R* to be valuable in R* and an edge
et (P) € P to be valuable in P. Among all valuable edges that one with maximum
weight is called valuable shift edge.

e An edge denoted by e (L*) € L¥ is called to be trashy in L* if
Wf_(Lk) = min{W?*:ec L¥ 2, >0}

A trashy edge e~ (R*) in R and a trashy edge e~ (P) in P is defined analogously.
Among all trashy edges that one with minimum weight is called trashy shift edge.

In order to determine the valuable and trashy edges, respectively, at the beginning of
a new iteration, we use the fact that the edges are already partially ordered. Recall that
Wk =WE, + w1 > WE | holds for all edges e; € L* and W} | = WF + w; 1 > W} holds
for all edges e; € R*. Since the edges in P are already ordered, we have W, > W, for all
edges ¢; € P.

Let 2*~! be an optimal solution of L*~!. Notice that L*¥ = L*! Ue,_; and WF =
WE=1 4wy, > wy, = W}, holds for all e; € L*. We distinguish two cases:

e There exists a valuable edge for 2*~! in L*~! with respect to W*~!: Due to the

optimality of 2*~! we conclude that the trashy and valuable edges in L*~! with
respect to W*~1 are also trashy and valuable, respectively, with respect to W*.

14



e If there does not exist a valuable edge for z*~! in LF~! with respect to W*~! then all
edges of L*~1 are fully reduced. Hence, e,_; becomes valuable in L* with respect to
W*. Furthermore, if #¥~1 > 0 then e;_; becomes also a trashy edge in L* otherwise
the edge that was trashy in L*~! for 2*~! with respect to W*~! remains trashy with
respect to W*.

A similar analysis yields for RF:

o If ¢, was valuable in R¥~! for 2*~! with respect to W*~! then there does not exist

any valuable edge for ¥~ in R* with respect to W* and e; becomes a trashy edge
in R*.

o If ¢;,_; was not a valuable edge in R¥~! for 2F~! with respect to W*~! then the
trashy and valuable edges in R¥~! with respect to W*~! are also trashy and valuable,
respectively, in R* with respect to W*.

Since the weights of the edges in P remain unchanged the corresponding trashy and valuable
edges in P do not change if a new iteration starts. Hence, given the trashy and valuable
edges of the previous iteration we can determine the initial trashy and valuable edges of
the new iteration in constant time.

Now we show how the valuable and trashy edges change if a shift operation is performed
during iteration k. We distinguish two cases:

® ) = Upt — To+:
If et = ¢; € L* then the new valuable edge in L* is equal to e, (with W}, =
VW‘“ — w;41) and the new trashy edge in LF is equal to e;. If et = ¢; € RF then the
new valuable edge in R* is equal to e¢; ; (with WF , = W} —w;) and the new trashy
edge in R* is equal to ;. And if et = ¢; € P then the new valuable edge in P to

e;+1 and the new trashy edge in P is equal to e;.

® ) =1,
If e~ = ¢; € L then the new trashy edge in L* is equal to e¢; ; (with W}, = WF+w;)
and the new valuable edge in L is equal to e;. If e~ = ¢; € R then the new trashy
edge in R* is equal to e;; (with WF, = W} + w;;,) and the new valuable edge in

RF is equal to e;. And if e~ = ¢; € P then the new traghy edge in P is equal to e;_;
(with WF | = WF + w;) and the new valuable edge in P is equal to e;.

Summarizing, the trashy (valuable) shift edge can be determined by computing the
minimum (maximum) weight among the trashy (valuable) edges. Since the trashy and
valuable edges can be determined in constant time, we are now interested in the number
of shift operations. The following observation is a direct consequence from Algorithm 1.

Observation 4.2. The weight of the trashy shift edge is greater or equal to the weight of
the previous trashy shift edge. Analogously, the weight of the new valuable shift edge is less
or equal to the weight of the previous valuable shift edge.
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Furthermore, the following lemma holds.

Lemma 4.3. An edge that has been a trashy (valuable) shift edge cannot become a valuable
(trashy) shift edge within the same iteration.

Proof. Assume that there exists an edge e; € E that has been a trashy shift edge in
iteration k and is now a valuable shift. Let e; be the current trashy shift edge. From
Observation 4.2 we conclude that Wf > Wf since e; has been a trashy shift edge before ¢;
becomes a trashy shift edge. This leads to a contradiction, because Wf < Wk must hold
if a shift operation is performed on e; and e;. O

In the following lemma it is proved that the investment into L* only increases and the
investment into R* only decreases.

Lemma 4.4. Let e* be a valuable shift edge and let e~ be a trashy shift edge, then
et e Ll*UP ande € RFUP.

Proof. Assume that Algorithm 1 chooses ¢; € L* as trashy shift edge. Let ¢; € RFU P
be the corresponding valuable shift edge. Then, we know that W < Wf. Let 27! be an
optimal solution of LP(k — 1). We distinguish two cases:

1 af~" > 0: Since W™ < Wf < WF < WF" holds and z}~" is an optimal solution
of LP(k — 1), we conclude that xf_l = u;. In order to achieve z; < u; edge e; must

have been a trashy edge during iteration k. This leads to a contradiction to Lemma
4.3.

2. 2871 = 0: In order to achieve x; > 0 edge e¢; must have been a valuable shift edge.
This leads to a contradiction to Lemma 4.3.

The observation for valuable edges in R* is proved in the same way. 0J

Unfortunately, it may happen, that the investment spent into P is increased in iteration
k while it is decreased in iteration k+1 or vice versa. This is the reason why shift operations
involving edges of P are of special interest and a more careful analysis is needed in order
to achieve an O(nlogn) algorithm.

In the following we denote by v the amount of budget used for the edges in P. In
order to minimize the second term in (11), i.e., the amount the vertices in P contribute
to the objective value of the reverse 2-median problem on a path, we totally reduce the
lengths of the edges ey, e,11, ..., e, for some m <n — 1 and partially decrease edge €, 1.
In the remaining edges of P no budget is invested at all. Note that this special form is
always maintained throughout the shift procedure. We assume that the following values
are already determined in a preprocessing
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UZ-:Zuj fori=p,...,n— 1.

Then the trashy edge e~ (P) and the valuable edge e*(P) with respect to y can be deter-
mined in the following way:

et(P) = e; such that U;_; <y < Uj,
e” (P) = e; such that U;_; <y < Uj.
Furthermore, it is useful to introduce a function zp(y) that measures the contribution
of the vertices P to the original objective function depending on y. In order to give a
formal definition, let y be the amount of investment spent into P = {e,,...,e,_1} in such
a way that if in edge e; some money is invested the edges e, ..., e;_; are totally reduced.

If we denote the modified edge lengths with respect to these changes by [;(y) the function
zp(y) is defined as

)= 3 (mSi0).

Jj=p+1

Obviously, the following equation holds

where

n—1 7
1) :Zlej —ZWjuj fore=p,...,n—1.
J=p J=p

Using the notation introduced above the shift operation where some edges of_P are
involved can be explained in more detail. We distinguish two cases: Either e (P) is a
valuable shift edge or e~ (P) is a trashy shift edge.

1. e*(P) is a valuable shift edge:
Due to Lemma, 4.4 the corresponding trashy shift edge e~ is element of R¥. Define

Wt =min{W,:j=p,...,n 1W>W rey W >W+(Lk)}
EX(P):={e; € P W* <W; < W}

Since W, > Wk b (pry holds for all e € E*(P), we conclude that e*(L*) does not
become a valuable shift edge unless all edges in e € E*(P) are fully reduced. On the
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other hand W, > W = (M) holds. Therefore, the solution is not optimal unless either

the total investment is fully removed from e~ (R*) or all edges in e € E*(P) are fully
reduced.

Hence, the edges in E*(P) can be accumulated to one valuable shift edge with
upper bound up+(p) = Y _.cp+(p) Ue and investment g+ (p) = ZejeEJr(p) Tj = Te+(p)-
Observe, that W™ can be found by using binary search. Let W W+(p and
W; = W then up+py = Uj — U;—1. The shift operation is then performed in the
following way:

Let y be the current investment spent into edges of P. Set z' = zp(y).

Determine 0 = min{ug+p) — Tg+(p), Te- }

Set y=y+dand .- = x,- — 0

Determine the new valuable and trashy edge in P.

Compute z5(y) and the new objective value z(z) = z(z) + 0W,.- + zp(y) — 2.
Update the trashy edge in R.

2. e~ (P) is a trashy shift edge:
Due to Lemma 4.4 the corresponding valuable shift edge et is in L*. Define

W™= max{ Wy j = p.oon — LW, < WE o, Wy < Wh ()
E~(P):={e;e P: W, ) SW; <W™}

The edges in E~(P) are accumulated to one trashy shift edge. W~ can again be
found by using binary search. Let W; = W~ and W; = W, p then the upper bound
of the accumulated edge is equal to ug+(p) = U; — U 1. The shift operation involving
E~(P) is performed in an analogue way.

Notice that the effort for one shift operation involving the accumulated shift edge is
equal to O(logn) because we have to do one binary search for the determination of W+ and
W, respectively, and a further binary search for the determination of the new valuable
and trashy edge in P. All further operations can be done in constant time.

See Algorithm 2 for a formal description of the developed algorithm for R2MP.

At the end of this section, we bound the running time of Algorithm 2. Consider a
shift operation involving e* € L* and e~ € R*: Either ' is fully reduced or the total
investment into e~ is removed. If the shift operation results in a fully reduction of et € L*
we charge the effort for this operation to this edge e*. Otherwise, if the shift operation
results in a fully removement of the investment of e~ we charge the effort of this operation
to e~. Notice that the investment into edges in L* only increases and the investment into
edges in R* only decreases during the whole algorithm. Hence, an edge can be charged
only once as valuable shift edge in L* and only once as trashy shift edge in R*.
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Algorithm 2 Determines an optimal solution of R2MP
Preprocessing:
Determine U; and zp(U;) fori =g¢q,...,n — 1.
Solve LP(1). Let ' be an optimal solution of LP(1).
Main loop:
for k from 2 to p — 1 do
Solve LP(k) using Algorithm 1
x* < optimal solution of LP(k)
z(2*) < objective value of z*
end for
Output:
. 2% = argmin{z(2*) : k=1,...,p— 1}, 2* is an optimal solution.

—_
= O

Notice that if there is no accumulated shift edge, i.e., the underlying graph is a cycle
which was transformed to a path, then Algorithm 2 runs in O(n) time. Observe that this
running time was already achieved in [7] for the reverse 1-median problem on a cycle.

In the general case shift operations including an accumulated edge have to be considered
as well. Due to the definition of an accumulated edge we conclude that a shift operation
including an accumulated edge is either followed by a shift operation on edges in L* and R*
or results in an optimal solution of LP(k). Thus, the number of shift operations including
an accumulated edge (and hence the number of binary searches) is bounded by the number
of shift operations between L* and R* plus the number of iterations. Since there are O(n)
shift operations between L* and R* and O(n) iterations, we conclude that the number of
shift operations including an accumulated edge is of the order O(n). These observations
prove the following theorem:

Theorem 4.5. Algorithm 2 determines an optimal solution of the reverse 2-median prob-
lem on a path in O(nlogn) time, where n is the number of vertices of P.

5 Conclusion

In the previous sections, we outlined an O(nlogn) time algorithm for the reverse 2-median
problem on a tree and the reverse 1-median problem on a cactus with just one cycle based
on the unit cost model. We have shown that both problems are equivalent in the sense
that they can be transformed to a reverse 2-median problem on a path. Moreover, it was
assumed that the vertex weights are positive.

Since the problem is NP-hard on general graphs, different other special graph classes
should be investigated. Moreover, it is a topic for further research to extend the results in
this paper to different cost functions and/or negative vertex weights. Another interesting
problem arises if the allowable changes are not restricted to the edge lengths, but it is also
possible to change some vertex weights.
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