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MAXIMIZING THE NUMBER OF INDEPENDENT SUBSETS OVER TREES

WITH BOUNDED DEGREE

CLEMENS HEUBERGER AND STEPHAN G. WAGNER

Abstract. The number of independent vertex subsets is a graph parameter that is, apart from
its purely mathematical importance, of interest in mathematical chemistry. In particular, the
problem of maximizing or minimizing the number of independent vertex subsets within a given
class of graphs has already been investigated by many authors. In view of the applications of
this graph parameter, trees of restricted degree are of particular interest. In the current paper,
we give a characterization of the trees with given maximum degree which maximize the number
of independent subsets, and show that these trees also minimize the number of independent edge
subsets. The structure of these trees is quite interesting and unexpected: it can be described by

means of a novel digital system—in the case of maximum degree 3, we obtain a binary system
using the digits 1 and 4. The proof mainly depends on an exchange lemma for branches of a
tree.

1. Introduction

The parameter number of independent subsets of a graph first appears in the mathematical
literature in a paper of Prodinger and Tichy [14] in 1982. They call it the Fibonacci number of a
graph in view of the fact that the number of independent subsets of a path on n vertices is exactly
the Fibonacci number Fn+2. Among other results, they show that the number of independent
vertex subsets is maximal among all trees on n vertices for the star graph Sn and minimal for
the path Pn. In subsequent papers, Kirschenhofer, Prodinger and Tichy study the asymptotic
behavior of this parameter for complete t-ary trees and for families of simply generated trees
[8, 9].

Independently, Merrifield and Simmons [13] introduced the number of independent vertex sub-
sets (which they call the σ-index ) to the chemical literature in 1989, showing connections between
the σ-index of a molecular graph and physicochemical properties such as boiling points. Mean-
while, the number of independent subsets of a graph is called the Merrifield-Simmons index in
mathematical chemistry, and there is already a substantial amount of literature on chemical ap-
plications as well as on graph-theoretical properties of this index (see [3, 19] and the references
therein). It belongs to the group of so-called topological indices, which are used to give quantita-
tive descriptions for the structure of a (molecular) graph. Another representative of this group is
the so-called Hosoya index [5], defined as the number of independent edge subsets (which are also
referred to as matchings).

One of the major graph-theoretical problems in connection with these indices is the question
which graphs from a given class (typically, trees) maximize or minimize the index value [6, 11,
12, 20]. It is known that the extremal graphs for the number of independent vertex subsets resp.
edge subsets usually coincide, where an extremal graph maximizes one of these indices while it
minimizes the other, compare [20]. It is also conjectured that the trees which minimize the Hosoya
index also minimize the energy (the sum of the absolute values of a graph’s eigenvalues), see [1].
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In view of the chemical applications, it is quite natural to consider trees of restricted degrees.
For instance, trees of maximum degree 4 which minimize the Hosoya index have been determined
by means of an extensive computer search in [1]; [18] provides a faster algorithm for this purpose.
However, we believe that this question is also very interesting from a purely graph-theoretical
point of view. Quite a lot of similar results are given in the graph-theoretic literature as well:
for instance, Hedman [4] studies the (essentially equivalent) problem of maximizing the number
of cliques in graphs with a given maximal clique size, and Wilf [21] gives the largest number of
maximal independent vertex sets of a tree on n vertices, see also [15].

In the following, we fix the maximum degree d + 1 ≥ 3 of our trees. In spite of the simple
problem statement, the problem of determining the trees from this set which maximize the number
of independent subsets is quite intricate and reveals an interesting and unexpected structure, which
can be described by means of a novel digit system. For other graph parameters, namely the Wiener
index (sum of all distances between pairs of vertices) and the number of subtrees, the extremal
trees of given maximum degree are already known (see [2, 7, 16, 17])—basically, the solution is
given by the complete d-ary trees.

Thus it was quite a surprise to find that the complete d-ary tree is not maximal with respect
to the number of independent subsets. Yet, complete trees play a major role in the description of
the extremal trees—in the case that d = 2, our main results read as follows:

Theorem. Let n be a positive integer. Then there is a unique (up to isomorphism) tree T with
n vertices and maximum degree ≤ 3 that simultaneously maximizes the number of independent
vertex subsets and minimizes the number of independent edge subsets. It can be decomposed as

M0 M1 M2 M3

· · ·

Mℓ−2 Mℓ−1

Mℓ

with Mk ∈ {Ck, Ck+2} for 0 ≤ k < ℓ and Mℓ ∈ {Cℓ, Cℓ+1, Cℓ+2}. Here, Ch denotes the complete
binary tree of height h − 1 (and C0 is the empty tree).

Furthermore, there are unique d0,. . . , dm such that dk ∈ {1, 4} for 0 ≤ k < m, dm ∈ {1, 2, 4},
and

n + 1 =

m
∑

k=0

dk2k,

and they are given by m = ℓ and dk = 2δk for 0 ≤ k ≤ m, where δk ∈ {0, 1, 2} is defined by
Mk = Ck+δk

.

The paper is organized as follows: we start with basic definitions and a recursive characterization
of the number of independent vertex subsets. Section 3 provides the necessary preliminary results.
In Section 4, the main exchange lemma is formulated and used to prove the main result of this
paper. In the final section, we show how the proof can be adapted to the case of independent edge
subsets. If not stated otherwise, all trees are assumed to have maximum degree ≤ d + 1 for some
fixed integer d ≥ 2.

2. Notations

Definition 2.1. (1) Let G be a graph. Then σ(G) is defined to be the number of independent
subsets of G.

(2) For a rooted tree T with root v, we also define σ0(T ) to be the number of independent
subsets of G not containing the root v and σ1(T ) to be the number of independent subsets
of G containing the root v. The ratio σ0(T )/σ(T ) is abbreviated as ρ(T ).
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Note that we do not mention the root v in the notations σ0(T ), σ1(T ), and ρ(T ) since the roots
will usually be anonymous.

The empty set is always an independent subset of G, even if G is the empty graph. Therefore,
σ(G) is always positive.

v1 v2 vk

v

T1 T2 Tk
. . .

Figure 1. Rooted tree with branches

For a rooted tree T with root v, the connected components T1, . . . , Tk of T − v are called the
branches of v, cf. Figure 1. Taking the neighbor vj of v contained in Tj as root of Tj, Tj is again
a rooted tree.

The following recursive formulæ will be used throughout the paper without further reference.

Lemma 2.2. Let T be a rooted tree with root v and branches T1, . . . , Tk. Then

σ0(T ) =

k
∏

j=1

σ(Tj),(1)

σ1(T ) =

k
∏

j=1

σ0(Tj),(2)

ρ(T ) =
1

1 +
∏k

j=1
ρ(Tj)

.(3)

Proof. The recursive formulæ (1) and (2) are easy to prove and well known, cf. for instance [3, 10].
Equation (3) is a consequence of (1) and (2). �

3. Rooted trees

A rooted d-ary tree is a rooted tree where every vertex has 0 or d children. The (rooted)
complete d-ary tree of height n − 1 is denoted by Cn, i.e., C1 is a single vertex and Cn has d
branches Cn−1, . . . , Cn−1, cf. Figure 2. It is convenient to define C0 to be the empty graph with
σ0(C0) = 1 and σ1(C0) = 0. Note that equations (1) and (2) remain valid with this setting.

(a) C1 for all d (b) C2 for d = 2 (c) C2 for d = 3 (d) C3 for d = 2

Figure 2. Complete d-ary trees

The number of vertices of Cn satisfies

|V (Cn+1)| = 1 + d|V (Cn)| for n ≥ 0, |V (C0)| = 1

and therefore

|V (Cn)| =
dn − 1

d − 1
for n ≥ 0.
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The sequence ρ(Cn), n ≥ 0, has been studied by Kirschenhofer, Prodinger, and Tichy in [8].
By (3), we have

ρ(Cn) =
1

1 + ρ(Cn−1)d
for n ≥ 1, ρ(C0) = 1.

We list the first few values of ρ(Cn) since they occur frequently:

ρ(C0) = 1, ρ(C1) =
1

2
, ρ(C2) = 1 −

1

2d + 1
.

Lemma 3.1 ([8]). The subsequences of ρ(Cn) of odd and even indices, respectively, are convergent
to limits codd and ceven, respectively, where codd ≤ ceven.

The subsequence of ρ(Cn) with odd indices is strictly increasing,

1

2
= ρ(C1) < ρ(C3) < · · · < ρ(C2k−1) < ρ(C2k+1) < · · · < codd,

whereas the subsequence with even indices is strictly decreasing,

1 = ρ(C0) > ρ(C2) > · · · > ρ(C2k) > ρ(C2k+2) > · · · > ceven.

We note a first rough estimate of ρ(T ) for rooted trees T .

Lemma 3.2. Let T be a rooted tree. Then

1

2
≤ ρ(T ) ≤ 1 −

1

2d + 1
,

unless T is empty, where ρ(T ) = 1.

Proof. Since ρ(C0) = 1, we can assume that T has at least one vertex and proceed by induction
on the number of vertices. Denote the branches of T by T1, . . . , Td (allowing Tj to be the empty
graph), where each Tj satisfies 1/2 ≤ ρ(Tj) ≤ 1 by the induction hypothesis. We obtain

1

2
=

1

1 + 1
≤ ρ(T ) =

1

1 + ρ(T1) . . . ρ(Td)
≤

1

1 + 1

2
· · · 1

2

= 1 −
1

2d + 1
.

�

Definition 3.3. Let T be a possibly rooted tree. Then we construct the outline graph of T
by replacing all maximal subtrees isomorphic to some Ck, k ≥ 0, by a special leaf Ck. In this
process, we attach (d + 1 − r) leaves C0 to internal nodes (non-leaves and non-root) of degree r
with 2 ≤ r ≤ d. If T is a rooted tree with a root of degree r (1 ≤ r ≤ d), then we also attach d− r
leaves C0 to it.

The construction ensures that the outline graph of a rooted tree is a rooted d-ary tree, and
that the outline graph of an arbitrary tree of maximum degree ≤ d + 1 has only vertices of degree
1 and d + 1. An example is shown in Figure 3. The outline of a rooted tree Ck is just the rooted
tree consisting of the single leaf Ck.

C2

C1 C0

Figure 3. Reduction to the outline graph (d = 2)

If enough information on the outline of a rooted tree is available, we can determine it from its
ρ-value.



MAXIMIZING THE NUMBER OF INDEPENDENT SUBSETS 5

Lemma 3.4. Let j ≥ 0 be an integer and T be a rooted tree whose outline does not contain any
Ck for 0 ≤ k ≤ j − 3. If

j is even and ρ(Cj) ≤ ρ(T )

or
j is odd and ρ(T ) ≤ ρ(Cj),

then T ∈ {Cj−2, Cj}.

For clarity, we remark that for j < 2, we assert that T = Cj .

Proof. We first assume that T = Cℓ for some ℓ. Since the outline of T does not contain a Ck for
k ≤ j − 3, we conclude that ℓ ≥ j − 2. The monotonicity properties of ρ(Cn) in Lemma 3.1 imply
that ℓ ∈ {j − 2, j} and we are done. Thus we may assume that the outline of T is a d-ary rooted
tree with more than one vertex.

We proceed by induction on j. The case of j = 0 has been shown in Lemma 3.2. Assume that
j ≥ 1. By our assumption, T is not empty and has (possibly empty) branches T1, T2, . . . , Td.
Furthermore, there is no Ck in the outlines of the Ti for k ≤ j − 3.

Assume that j is odd. Then

1

1 + ρ(T1) . . . ρ(Td)
= ρ(T ) ≤ ρ(Cj) =

1

1 + ρ(Cj−1)d
,

which is equivalent to

(4) ρ(Cj−1)
d ≤ ρ(T1) . . . ρ(Td).

Without loss of generality, we may assume ρ(T1) ≥ ρ(T2) ≥ · · · ≥ ρ(Td).
We claim that ρ(Ti) = Cj−1 for 1 ≤ i ≤ d. We proceed by induction on i. Assume that the

claim is proved up to i − 1 for some i ≥ 1. Then dividing (4) by ρ(Cj−1)
i−1 yields

ρ(Cj−1)
d−i+1 ≤ ρ(Ti) . . . ρ(Td) ≤ ρ(Ti)

d−i+1,

thus ρ(Cj−1) ≤ ρ(Ti). By the (outer) induction hypothesis, Ti ∈ {Cj−1, Cj−3}. Since the outline
of Ti does not contain any Ck for k ≤ j − 3, we clearly have Ti 6= Cj−3 and therefore Ti = Cj−1,
as required.

Thus T1 = · · · = Ti = Cj−1 and therefore T = Cj , which has been handled earlier.
The proof for even j follows by exchanging “odd” and “even” and reversing all inequality

signs. �

4. Optimal Trees

A tree T is called maximal, if σ(T ) ≥ σ(T ′) for all trees T ′ with the same number of vertices
as T (and maximum degree ≤ d + 1).

Our key tool is the following local exchange lemma.

Lemma 4.1. Let T be a maximal tree. If there are (possibly empty) rooted trees L1, . . .Ld, R1,
. . . , Rd and a tree T0 such that T can be decomposed as

v w

L1

L2

Ld

R1

R2

Rd

. . .

...
...

T0
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and such that ρ(L1) < ρ(R1), then

max{ρ(Li) : 1 ≤ i ≤ d} ≤ min{ρ(Ri) : 1 ≤ i ≤ d}.

Proof. We need the following auxiliary quantities:

• σ00(T0): number of independent subsets of T0 containing neither v nor w.
• σ10(T0): number of independent subsets of T0 containing v, but not w.
• σ01(T0): number of independent subsets of T0 containing w, but not v.
• σ11(T0): number of independent subsets of T0 containing both v and w.

Define

F (L1, . . . , Ld, R1, . . . , Rd) :=

σ00(T0) + σ10(T0)

d
∏

i=1

ρ(Li) + σ01(T0)

d
∏

i=1

ρ(Ri) + σ11(T0)

d
∏

i=1

ρ(Li)

d
∏

i=1

ρ(Ri).

Then it is easily seen that

σ(T ) = F (L1, . . . , Ld, R1, . . . , Rd)

d
∏

i=1

σ(Li)

d
∏

i=1

σ(Ri).

Since T is maximal, we must have

F (L1, . . . , Ld, R1, . . . , Rd) ≥ F (π(L1), . . . , π(Ld), π(R1), . . . , π(Rd))

for all permutations π of {L1, . . . , Ld, R1, . . . , Rd}.
The first and the fourth summand of F (π(L1), . . . , π(Ld), π(R1), . . . , π(Rd)) are independent

of the permutation π, so the sum of the second and the third summand is maximal. By the
rearrangement inequality (note that all quantities are positive), we conclude that ρ(Li) ≤ ρ(Ri)
for 1 ≤ i ≤ d and σ10(T0) ≤ σ01(T0). Exchanging Ri and Rj for some i 6= j does not change
anything, but applying the rearrangement inequality in that situation, we obtain ρ(Li) ≤ ρ(Rj)
and ρ(Lj) ≤ ρ(Ri). �

Remark 4.2. It is a consequence of Lemma 4.1 that a maximal tree T contains at most one non-leaf
vertex of degree < d+1: otherwise, let v, w be two vertices of degrees D1, D2 (1 < D1, D2 < d+1);
then we have LD1

= · · · = Ld = C0, RD2
= · · · = Rd = C0 (and L1, . . . , LD1−1, R1, . . . , RD2−1 6=

C0) in Lemma 4.1, which is applicable since ρ(L1) < ρ(Rd) = ρ(C0) = 1 by Lemma 3.2. We
obtain 1 = ρ(C0) = ρ(Ld) ≤ ρ(R1), i.e., R1 = C0 by Lemma 3.2, a contradiction. This result has
already been proved in [18].

For our purposes, we need a stronger version of Remark 4.2. Here, we use the outline graph of
the maximal tree T . Note that since we do not assume it to be a rooted tree, some copies of C0

are attached to all vertices of degree r with 2 ≤ r ≤ d. For instance, if T = Cℓ for some ℓ ≥ 2, its
outline graph is:

C0 Cℓ

Lemma 4.3. Let T be a maximal tree and let j be the least nonnegative integer such that the
outline graph of T contains a Cj. Then the outline graph of T contains Cj at most (d − 1) times
and there is a vertex v of the outline graph of T which is adjacent to all copies of Cj in the outline
graph of T .

Proof. Assume that there are two copies of Cj in the outline graph of T that are adjacent to v
and to w, respectively, for different vertices v and w of the outline graph of T . For suitable rooted
trees L2, . . . , Ld and R2, . . . , Rd, the outline of T can be decomposed as follows:
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v w

Cj

L2

Ld

Cj

R2

Rd

. . .

...
...

By our assumption, the outlines of these rooted trees do not contain a Cℓ for ℓ < j.
Assume that j is odd. We claim that there is a Li with 2 ≤ i ≤ d such that ρ(Li) > ρ(Cj).

Otherwise, all Li satisfy ρ(Li) ≤ ρ(Cj) and do not contain a Cℓ for ℓ < j, which implies that
Li = Cj by Lemma 3.4 for all 2 ≤ i ≤ d. Thus Cj , L2, . . . , Ld could be merged to a Cj+1, which
is a contradiction to the assumption that the outline graph of T has the form given above.

Therefore, there is a Li with ρ(Li) > ρ(Cj). By Lemma 4.1, we conclude that ρ(Ri) ≤ ρ(Cj)
for all 2 ≤ i ≤ d. As above, Lemma 3.4 implies that R2 = · · · = Rd = Cj , again a contradiction.

Hence all copies of Cj in the outline of T are adjacent to the same vertex v. There cannot be d
copies of Cj , because they would be merged to a Cj+1. Therefore, there are at most d − 1 copies
of Cj .

Once again, the proof for even j follows by exchanging “odd” and “even” and reversing all
inequality signs. �

The following lemma performs one step of the decomposition of a maximal tree T .

Lemma 4.4. Let T be a maximal tree, k be a nonnegative integer and assume that the outline
graph of T can be decomposed as

Lk Rk

for some rooted trees Lk (possibly empty) and Rk with

(5a) k is odd and ρ(Ck) < ρ(Lk) < ρ(Ck+2)

or

(5b) k is even and ρ(Ck+2) < ρ(Lk) < ρ(Ck)

or

Lk = Ck.

Assume that Rk is non-empty and the outline of Rk does not contain any Cℓ with ℓ < k.
Then exactly one of the following assertions is true:

(1) Rk ∈ {Ck, Ck+1, Ck+3},
(2) Rk consists of d branches Ck+1, Ck+1, Cℓ3 , . . . , Cℓd

with ℓi ∈ {k, k+1, k+2} for 3 ≤ i ≤ d,
(3) the outline of Rk can be decomposed as

v Rk+1

Mk,1 Mk,2 Mk,d−1
. . .
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for Mk,1, . . . , Mk,d−1 ∈ {Ck, Ck+2} and a non-empty rooted tree Rk+1 whose outline does
not contain any Cℓ for ℓ ≤ k. Furthermore,

(6a) k is odd and ρ(Ck+3) < ρ(Lk+1) < ρ(Ck+1)

or

(6b) k is even and ρ(Ck+1) < ρ(Lk+1) < ρ(Ck+3)

where Lk+1 is defined as follows:

vLk

Mk,1 Mk,2 Mk,d−1
. . .

Before we prove the lemma it is worth pointing out that its assumptions are satisfied for k = j
and Lk = Cj by Lemma 4.3.

Proof. We first note that the three assertions are indeed mutually exclusive. In the second case,
Rk has at least two branches Ck+1. Thus Rk contains more vertices than a Ck or a Ck+1, but
we also have Rk 6= Ck+3; so we are not in the first case. In the third case, Rk has at most one
branch Ck+1, so the second and the third case are mutually exclusive. Finally, the third and the
first case are mutually exclusive since the outline of Rk can be decomposed in the third case, but
this cannot be done in the first case.

If Rk ∈ {Ck, Ck+1, Ck+3}, there is nothing to prove. Thus we assume that this is not the case.
We consider the case of odd k, the other case follows by reversing the signs of the inequalities.
Claim 1. Rk 6= C1. The outline of Rk does not contain a C1 for k ≥ 2, thus Rk 6= C1 for k ≥ 2.
For k ∈ {0, 1} the case Rk = C1 has already been excluded from our considerations. Therefore,
Rk has at least one non-empty branch. We denote the branches of Rk by T1, . . . , Td, where some
of them are allowed to be empty.

We observe that the outline graphs of T1, . . . , Td are the branches of the outline graph of Rk

unless Rk = Cℓ for some ℓ.
Claim 2. The outlines of Ti, 1 ≤ i ≤ d, do not contain any Cℓ with ℓ < k. By the above
observation and the assumptions of the lemma, this could only occur if T1 = · · · = Td = Ck−1 and
Rk = Ck, and this has already been ruled out.
Claim 3. If the outline of Ti contains Ck for some i ∈ {1, 2, . . . , d}, then Ti = Ck. Consider first
the case that Lk = Ck. In that case, all Ck in the outline graph of T are adjacent to the same
vertex v by Lemma 4.3, i.e., they are branches of Rk. Thus the outline graph of Ti can only
contain a Ck if Ti = Ck. So we may assume Lk 6= Ck and that the outline of Td, say, contains a
Ck with Td 6= Ck. We can decompose the outline of Td such that we get a decomposition of T as

v w

Lk

T1

Td−1

Ck

S2

Sd

. . .

...
...
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for suitable (possibly empty) rooted trees S2, . . . , Sd. The outline of Si is a subtree of the outline
of Td, therefore, it does not contain a Cℓ for ℓ < k. We have ρ(Ck) < ρ(Lk) by (5a) and therefore,
by Lemma 4.1, ρ(Si) ≤ ρ(Lk) < ρ(Ck+2) for 2 ≤ i ≤ d. From Lemma 3.4, we conclude that
S2 = · · · = Sd = Ck (the other possibility cannot occur due to the strict inequality). But this
means that the d copies of Ck would have been merged to a Ck+1in the outline of Td, contradiction.
Our claim is proved.
Claim 4. If T1, . . . , Td−1 ∈ {Ck, Ck+2}, then we are done. If T1 = · · · = Td−1 = Td, then
Rk ∈ {Ck+1, Ck+3}, which has been excluded. Otherwise, the outline of Rk decomposes into
the outlines of T1, . . . , Td. If Td = Ck, we exchange Td and some Ti 6= Ck (which exists since
Rk 6= Ck+1). Thus we may assume that Td 6= Ck. In particular, Td is not empty, since the
outline of Rk is known not to contain any Cℓ for ℓ < k. We set Mk,i = Ti for 1 ≤ i ≤ d − 1
and Rk+1 = Td. By our above claim, we know that the outline of Rk+1 does not contain a Cℓ for
ℓ ≤ k. The inequality

ρ(Ck+3) =
1

1 + ρ(Ck+2)d
< ρ(Lk+1) =

1

1 + ρ(Lk)ρ(Mk,1) · · · ρ(Mk,d−1)
≤

1

1 + ρ(Ck)d
= ρ(Ck+1)

holds by (5a) and since ρ(Ck) ≤ Mk,1 ≤ ρ(Ck+2) for all 1 ≤ i ≤ d − 1. To show that the right
inequality is strict, we note that ρ(Lk) = ρ(Mk,1) = ρ(Mk,d−1) = ρ(Ck) implies Lk = Mk,1 = · · · =
Mk,d = Ck, but then we have d copies of Ck adjacent to the same vertex, which could therefore
be merged to a Ck+1. This is a contradiction to our assumption that the original decomposition
of T into Lk and Rk is a decomposition of its outline graph. Thus we showed (6a) and the claim
is proved.
Claim 5. If one of the Ti, say Td, contains a Ck+2 as a proper subtree, then we are done. For
clarity we emphasize that Ck+2 is just assumed to be a subtree of Td, we neither require it to be
contained in the outline of Td nor to be a branch of Td. We can decompose T as

v w

Lk

T1

Td−1

Ck+2

S2

Sd

. . .

...
...

for suitable (possibly empty) rooted trees S2, . . . , Sd. By (5a), we have ρ(Lk) < ρ(Ck+2) and we
apply Lemma 4.1 to deduce ρ(Ti) ≤ ρ(Ck+2) for 1 ≤ i ≤ d − 1. Since the outline of Ti is known
to contain no Cℓ for ℓ < k, we obtain Ti ∈ {Ck, Ck+2} from Lemma 3.4 for 1 ≤ i ≤ d − 1. We are
done by the previous claim.

We may now assume that none of the Ti contains a Ck+2 as a proper subtree, and claim that
this implies that Ti ∈ {Ck, Ck+1, Ck+2} for all 1 ≤ i ≤ d. Assume that Ti /∈ {Ck, Ck+1, Ck+2}. A
leaf of the outline of Ti is of the form Cℓ for some ℓ by the definition of an outline graph. However,
the range for ℓ is already very restricted: We have ℓ ≥ k +1 since the outline graph of Ti has been
proved to contain no smaller Cℓ. On the other hand, we have ℓ ≤ k + 1, since Ti does not contain
Ck+2 as a proper subtree. In short, all leaves of Ti equal Ck+1. Consider a leaf Ck+1 of maximum
height (distance from the root). This leaf Ck+1 has a parent w, and all of the children of w have
to be leaves since our original leaf was assumed to be of maximum height. Thus we found the
subgraph
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w

Ck+1 Ck+1
. . .

of the outline graph of Ti, this would have been contracted to a Ck+2, contradiction.
We are now in the situation that all Ti ∈ {Ck, Ck+1, Ck+2}. If there are at least two copies of

Ck+1 amongst the Ti, we are in the second case. Otherwise, we have T1, . . . , Td−1 ∈ {Ck, Ck+2}
(after renumbering the branches), and we are done by one of the above claims. �

Theorem 1. Let n be a positive integer. Then there is a unique (up to isomorphism) maximal
tree T with n vertices and maximum degree ≤ d + 1. It can be decomposed as

M0,1 M0,d−1· · · Mℓ−1,1 Mℓ−1,d−1· · · Mℓ,1 Mℓ,d−1· · · Mℓ,d

· · ·

with Mk,1, . . . , Mk,d−1 ∈ {Ck, Ck+2} for 0 ≤ k < ℓ and either Mℓ,1 = · · · = Mℓ,d = Cℓ−1 or
Mℓ,1 = · · · = Mℓ,d = Cℓ or Mℓ,1, . . . , Mℓ,d ∈ {Cℓ, Cℓ+1, Cℓ+2}, where at least two of Mℓ,1, . . . ,
Mℓ,d equal Cℓ+1.

Proof. Let T be a maximal tree with n vertices, and let j be the least integer such that the
outline graph of T contains Cj . Now, we apply Lemma 4.4 inductively, starting with k = j and
Lj = Cj , until we reach a point where either assertion (1) or assertion (2) holds in Lemma 4.4.
Now, we expand Lj artificially: for j ≥ r ≥ 1, we further decompose Lr = Cr into its branches
Lr−1 = Cr−1 and Mr−1,1 = · · · = Mr−1,d−1 = Cr−1. At the end, L0 = C0 is discarded, but the
M0,i are retained even if they equal C0. Finally,

• if Rk = Ck, we set ℓ = k, Mℓ,1 = · · · = Mℓ,d = Cℓ−1,
• if Rk = Ck+1, we set ℓ = k, Mℓ,1 = · · · = Mℓ,d = Cℓ,
• if Rk = Ck+3, we set ℓ = k+1, Mℓ−1,1 = · · · = Mℓ−1,d−1 = Cℓ+1 and Mℓ,1 = · · · = Mℓ,d =

Cℓ,
• if (2) holds in Lemma 4.4, we set ℓ = k and use the branches of Rk as our Mℓ,1, . . . , Mℓ,d.

Now it can be seen that T has exactly the form that is described in the statement of the theorem,
we only have to check that T is uniquely determined by this description. For this purpose, we
count the number of vertices in the representation given in the theorem. Let rk be the number of
Mk,i which are equal to Ck+2. Then the number of vertices in all Mk,i, together with the vertex
they are all attached to, equals

(d − 1 − rk) ·
dk − 1

d − 1
+ rk ·

dk+2 − 1

d − 1
+ 1 = dk(1 + (d + 1)rk)

for 1 ≤ k < ℓ. Furthermore, let qℓ, rℓ be the number of branches Mℓ,i which are equal to Cℓ+1

and Cℓ+2 respectively. Then the number of vertices in all Mℓ,i, together with the vertex they are

all attached to, equals either dℓ−1

d−1
(if all Mℓ,i = Cℓ−1) or dℓ+1−1

d−1
(if all Mℓ,i = Cℓ) or

(d − qℓ − rℓ) ·
dℓ − 1

d − 1
+ qℓ ·

dℓ+1 − 1

d − 1
+ rℓ ·

dℓ+2 − 1

d − 1
+ 1 =

dℓ+1 − 1

d − 1
+ qℓd

ℓ + rℓ(d + 1)dℓ.

It follows that

(7) (d − 1)n + 1 =
ℓ

∑

k=0

akdk,

where ak = (d − 1)(1 + (d + 1)rk) with 0 ≤ rk ≤ d − 1 for k < ℓ and aℓ = 1 or aℓ = d or
aℓ = d + (d − 1)qℓ + (d2 − 1)rℓ with qℓ ≥ 2 and qℓ + rℓ ≤ d.
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Now assume that there is another expansion

(8) (d − 1)n + 1 =

ℓ′
∑

k=0

a′
kdk

that satisfies the same conditions; in particular, r′k, q′ℓ are given analogously. Let h be the least
integer such that dh 6= d′h. Then (7) and (8) yield

(9)
ℓ

∑

k=h

akdk−h =
ℓ′

∑

k=h

a′
kdk−h.

If h < min{ℓ, ℓ′}, we consider (9) modulo d and see that ah ≡ a′
h mod d or rh ≡ r′h mod d, which

is impossible, since 0 ≤ rh, r′h < d and rh 6= r′h, a contradiction. Hence, assume without loss of
generality that h = ℓ′. If ℓ = ℓ′ = h, it follows that dℓ = d′ℓ, yielding a contradiction once again.
Thus ℓ > ℓ′ = h. Now, using (9) modulo d once again, we see that

ah = (d − 1)(1 + (d + 1)rh) ≡ d + (d − 1)q′h + (d2 − 1)r′h = a′
h mod d

if a′
h 6∈ {1, d}, which simplifies to rh+1 ≡ q′h+r′h mod d. Since 1 ≤ rh+1 ≤ d and 1 ≤ q′h+r′h ≤ d,

it follows that rh = q′h + r′h − 1. Now, using the condition q′h ≥ 2, we obtain the inequality

a′
h = d + (d − 1)q′h + (d2 − 1)r′h ≤ d + 2(d − 1) + (d2 − 1)(q′h + r′h − 2)

= 3d − 2 + (d2 − 1)(rh − 1) = −d2 + 3d − 1 + (d2 − 1)rh ≤ d − 1 + (d2 − 1)rh = ah.

This estimate also holds if a′
h = 1 (trivially) and if a′

h = d. In the latter case, a′
h ≡ ah mod d

implies rh = d − 1 and ah = (d − 1)d2 > a′
h. But now it follows that the right hand side of (9)

is smaller than its left hand side, contradiction. Thus the uniqueness of the representation (7) is
shown, which means that the maximal tree T is uniquely characterized up to isomorphism. �

Remark 4.5. From the construction, it is clear that a representation of (d − 1)n + 1 of the form
(7) always exists. Of course, this can also be shown directly. The numbers ak can be interpreted
as digits, thus yielding a novel digital system that seems to be of interest on its own right. In the
special case d = 2, things simplify a lot, and one obtains a representation of the form

n + 1 =

m
∑

k=0

dk2k,

with dk ∈ {1, 4} and dm ∈ {1, 2, 4}, as it has been presented in the introduction.

5. Independent edge subsets

In this section, we will give a proof of an analogous theorem for independent edge subsets that
will basically follow the same lines. We start with the appropriate definitions:

Definition 5.1. (1) Let G be a graph. Then z(G) is defined to be the number of independent
edge subsets of G.

(2) For a rooted tree T with root v, we also define z0(T ) to be the number of independent
edge subsets of G not containing an edge incident with the root v and z1(T ) to be the
number of independent edge subsets of G containing an edge incident with the root v.
The ratio z0(T )/z(T ) is abbreviated as τ(T ).

Again, it is possible to give simple recursive formulæ for z, z0 and z1:



12 CLEMENS HEUBERGER AND STEPHAN G. WAGNER

Lemma 5.2. Let T be a rooted tree with root v and branches T1, . . . , Tk. Then

z0(T ) =

k
∏

j=1

z(Tj),(10)

z1(T ) =

k
∑

j=1

z0(Tj)

z(Tj)

k
∏

i=1

z(Tj),(11)

τ(T ) =
1

1 +
∑k

j=1
τ(Tj)

.(12)

Proof. The formulæ for z0 and z1 are easy to prove and can be found in [3, 10] again, and the
identity for τ(T ) follows at once. �

From formula (12), we obtain a simple recursion for τ(Cn). We define z0(C0) = 0, z1(C0) = 1
(so that (10) and (11) remain valid) and have, by (12),

τ(Cn) =
1

1 + dτ(Cn−1)
for n ≥ 1, τ(C0) = 0.

The first values are given by

τ(C0) = 0, τ(C1) = 1, τ(C2) =
1

d + 1
.

It is an easy exercise to prove the following lemma:

Lemma 5.3. The sequence τ(Cn), n ≥ 0, is convergent with limit c =
√

4d+1−1

2d
.

The subsequence with odd indices is strictly decreasing,

1 = τ(C1) > τ(C3) > · · · > τ(C2k−1) > τ(C2k+1) > · · · > c,

whereas the subsequence with even indices is strictly increasing,

0 = τ(C0) < τ(C2) < · · · < τ(C2k) < τ(C2k+2) < · · · < c.

Furthermore, we have the following analogue of Lemma 3.2 (the proof is basically the same):

Lemma 5.4. Let T be a rooted tree. Then

1

d + 1
≤ τ(T ) ≤ 1,

unless T is empty, where τ(T ) = 0.

Note that it doesn’t make a difference in the proof of Lemma 3.4 whether we have a product or
a sum in the denominator of formula (3). Hence we obtain the following analogue of Lemma 3.4
(we also remark that the roles of “odd” and “even” are interchanged in view of Lemma 5.3):

Lemma 5.5. Let j ≥ 0 be an integer and T be a rooted tree whose outline does not contain any
Ck for 0 ≤ k ≤ j − 3. If

j is odd and τ(Cj) ≤ τ(T )

or

j is even and τ(T ) ≤ τ(Cj),

then T ∈ {Cj−2, Cj}.

Now, it only remains to prove an analogue of the key lemma in our proof:

Lemma 5.6. Let T be a minimal tree in the sense that it minimizes z(T ) among all trees of
maximum degree ≤ d + 1 on n vertices. If there are (possibly empty) rooted trees L1, . . .Ld, R1,
. . . , Rd and a tree T0 such that T can be decomposed as
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v w

L1

L2

Ld

R1

R2

Rd

. . .

...
...

T0

and such that τ(L1) < τ(R1), then

max{τ(Li) : 1 ≤ i ≤ d} ≤ min{τ(Ri) : 1 ≤ i ≤ d}.

Proof. Again, we need four auxiliary quantities:

• z00(T0): number of independent edge subsets of T0 not containing an edge that is incident
with either v or w.

• z10(T0): number of independent edge subsets of T0 containing an edge incident with v,
but no edge incident with w.

• z01(T0): number of independent edge subsets of T0 containing an edge incident with w,
but no edge incident with v.

• z11(T0): number of independent edge subsets of T0 containing an edge incident with v and
containing an edge incident with w.

Define

G(L1, . . . , Ld, R1, . . . , Rd) := z00(T0)

(

1 +
d

∑

i=1

τ(Li)

)(

1 +
d

∑

i=1

τ(Ri)

)

+ z10(T0)

(

1 +
d

∑

i=1

τ(Ri)

)

+ z01(T0)

(

1 +
d

∑

i=1

τ(Li)

)

+ z11(T0).

Then it is easily seen that

z(T ) = G(L1, . . . , Ld, R1, . . . , Rd)

d
∏

i=1

z(Li)

d
∏

i=1

z(Ri).

In view of the minimality of z(T ), we must have

G(L1, . . . , Ld, R1, . . . , Rd) ≤ G(π(L1), . . . , π(Ld), π(R1), . . . , π(Rd))

for all permutations π of {L1, . . . , Ld, R1, . . . , Rd}. Ignoring the assumption τ(L1) < τ(R1) for
the moment, we see that the minimum of the first summand among all possible permutations is
attained if

(13) max{τ(Li) : i = 1, . . . , d} ≤ min{τ(Ri) : i = 1, . . . , d} or

min{τ(Li) : i = 1, . . . , d} ≥ max{τ(Ri) : i = 1, . . . , d}

by standard arguments (note that the sum of the two factors does not depend on the permutation).
The sum of the second and third summand is minimized if max{τ(Li) : i = 1, . . . , d} ≤ min{τ(Ri) :
i = 1, . . . , d} in the case z10(T0) ≤ z01(T0) and is minimized if min{τ(Li) : i = 1, . . . , d} ≥
max{τ(Ri) : i = 1, . . . , d} in the case that z10(T0) ≥ z01(T0). Therefore, the minimality of G
yields (13). The assumption τ(L1) < τ(R1) implies the first possibility. �
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From this point on, the remaining steps are literally the same as in the case of independent
vertex subsets (note again that the only slight difference lies in the fact that we have a sum in the
denominator of formula (12), as opposed to the product in formula (3), but this doesn’t alter the
argument). Hence we just state the resulting theorem—as it has been stated in the introduction,
the trees which maximize the number of independent vertex subsets among all trees of maximum
degree ≤ d + 1 are also the ones which minimize the number of independent edge subsets.

Theorem 2. Let n be a positive integer. Then there is a unique (up to isomorphism) tree T with
n vertices and maximum degree ≤ d + 1 that minimizes z(T ). It can be decomposed as

M0,1 M0,d−1· · · Mℓ−1,1 Mℓ−1,d−1· · · Mℓ,1 Mℓ,d−1· · · Mℓ,d

· · ·

with the same Mk as in Theorem 1.
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