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HWANG’S QUASI-POWER-THEOREM IN DIMENSION TWO

CLEMENS HEUBERGER

Abstract. In a frequently used theorem, H.-K. Hwang proved convergence rates for the central
limit theorem of a class of random variables whose moment generating function has a “quasi-
power” structure. We generalise this result to random vectors of two variables.

Gaussian laws in large random combinatorial structures are a frequently observed pattern. In
his “quasi-power-theorem”, Hwang [2] proved asymptotic normality for a certain class of random
variables whose moment generating function satisfies an asymptotic expression which is almost
(apart from an error term) of the form eWn(s). He also includes the convergence rates, cf. Theo-
rem 1 below. His result turned out to be particularly useful and frequently used.

The purpose of this note is to provide a version of Hwang’s theorem in the case of random
vectors of dimension 2, again including the convergence rate. For this, we use a two-dimensional
Berry-Esseen-estimate proved by Sadikova [3], cf. Lemma 3.

Although there is a generalisation of Sadikova’s result to higher dimensions by Gamkrelidze [1],
it seems to be non-trivial to use it for a further generalisation of the quasi-power theorem to higher
dimensions.

We will use boldface letters for vectors and ‖ · ‖ will denote the maximum norm ‖s‖ = max{|sj|}.
Hwang’s result is the following.

Theorem 1 (Hwang [2]). Let {Ωn}n≥1 be a sequence of integral random variables. Suppose that

the moment generating function satisfies the asymptotic expression

Mn(s) := E(eΩns) =
∑

m≥0

P(Ωn = m)ems = eWn(s)(1 + O(κ−1
n )),

the O-term being uniform for |s| ≤ τ , s ∈ C, τ > 0, where

(1) Wn(s) = u(s)φ(n) + v(s), with u(s) and v(s) analytic for |s| ≤ τ and independent of n;

and u′′(0) 6= 0;
(2) limn→∞ φ(n) = ∞;

(3) limn→∞ κn = ∞.

Then the distribution of Ωn is asymptotically normal, i.e.,

P

(

Ωn − u′(0)φ(n)
√

u′′(0)φ(n)
< x

)

= Φ(x) + O

(

1
√

φ(n)
+

1

κn

)

,

uniformly with respect to x, x ∈ R, where Φ denotes the standard normal distribution

Φ(x) =
1√
2π

∫ x

−∞

exp

(

−1

2
y2

)

dy.

We intend to prove the following 2-dimensional version of Theorem 1.
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Theorem 2. Let {Ωn}n≥1 be a sequence of two dimensional integral random vectors. Suppose

that the moment generating function satisfies the asymptotic expression

Mn(s) := E(e〈Ωn,s〉) =
∑

m≥0

P(Ωn = m)e〈m,s〉 = eWn(s)(1 + O(κ−1
n )),

the O-term being uniform for ‖s‖∞ ≤ τ , s ∈ C2, τ > 0, where

(1) Wn(s) = u(s)φ(n) + v(s), with u(s) and v(s) analytic for ‖s‖ ≤ τ and independent of n;

and the Hessian Hu(0) of u at the origin is nonsingular;

(2) limn→∞ φ(n) = ∞;

(3) limn→∞ κn = ∞.

Then, the distribution of Ωn is asymptotically normal, i.e.,

P

(

Ωn − gradu(0)φ(n)
√

φ(n)
≤ x

)

= ΦHu(0)(x) + O

(

1
√

φ(n)
+

1

κn

)

,

where ΦΣ denotes the distribution function of the two dimensional normal distribution with mean

0 and variance-covariance matrix Σ, i.e.,

ΦΣ(x) =
1

2π
√

detΣ

∫∫

y≤x

exp

(

−1

2
ytΣ−1y

)

dy,

where y ≤ x means y1 ≤ x1 and y2 ≤ x2.

The proof of Theorem 2 relies on the following two-dimensional Berry-Esseen-inequality.

Lemma 3 (Sadikova [3]). Let X and Y be two-dimensional random vectors with distribution

functions F and G and characteristic functions f and g, respectively.

Let

(1) f̂(s1, s2) = f(s1, s2) − f(s1, 0)f(0, s2), ĝ(s1, s2) = g(s1, s2) − g(s1, 0)g(0, s2),

and

A1 = sup
x1,x2

∂G(x1, x2)

∂x1
, A2 = sup

x1,x2

∂G(x1, x2)

∂x2
.

Then for any T > 0, we have

(2) sup
x,y

|F (x, y) − G(x, y)| ≤ 2

(2π)2

∫∫

‖s‖≤T

∣

∣

∣

∣

∣

f̂(s1, s2) − ĝ(s1, s2)

s1s2

∣

∣

∣

∣

∣

ds

+ 2 sup
x

|F (x,∞) − G(x,∞)| + 2 sup
y

|F (∞, y) − G(∞, y)| + 2(A1 + A2)

T

(

3
√

2 + 4
√

3
)

.

Proof of Theorem 2. We define En(s) by the relation Mn(s) = eWn(s)(1+En(s)) and note that by
assumption, En(s) = O(κ−1

n ) uniformly for ‖s‖ ≤ τ . We note that this implies u(0) = v(0) = 0
and therefore En(0) = 0.

Let µn = φ(n) gradu(0) and Σ = Hu(0). We define the random vector Ω∗
n = φ(n)−1/2(Ωn−µn)

with distribution function Fn(x) and characteristic function

fn(s) = Mn

(

iφ(n)−1/2s
)

exp
(

−iφ(n)−1/2 〈µn, s〉
)

= exp

(

−1

2
stΣs + W ∗

n(s)

)

(1+En(iφ(n)−1/2s))

with

W ∗
n(s) = u(iφ(n)−1/2s)φ(n) + v(iφ(n)−1/2s) − iφ(n)−1/2〈µn, s〉 +

1

2
stΣs.
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We consider the univariate analytic functions uj(sj), vj(sj), En,j(sj) for j = 1, 2 and the
bivariate analytic functions u0(s), v0(s), En,0(s) satisfying

u(s) = 〈gradu(0), s〉 +
1

2
stΣs + s2

1u1(s1) + s2
2u2(s2) + s1s2u0(s),

v(s) = v1(s1) + v2(s2) + s1s2v0(s),

En(s) = En,1(s1) + En,2(s2) + s1s2En,0(s),

0 = uj(0) = vj(0) = En,j(0), j ∈ {1, 2},
0 = u0(0).

Let c be a positive constant less than max{τ/2, 1} which will be specified later and let Tn =

c
√

φ(n). With these notations, we have

W ∗
n(s) = − s2

1u1(iφ(n)−1/2s1) − s2
2u2(iφ(n)−1/2s2) − s1s2u0(iφ(n)−1/2s)

+ v1(iφ(n)−1/2s1) + v2(iφ(n)−1/2s2) −
s1s2

φ(n)
v0(iφ(n)−1/2s)

=O(ρn(s)).

for ‖s‖ < Tn, where

ρn(s) :=
‖s‖3 + ‖s‖
√

φ(n)
.

Since En((s1, 0)) = En,1(s1) = O(κ−1
n ) and En((0, s2)) = En,2(s2) = O(κ−1

n ), we also have
s1s2En,0(s) = O(κ−1

n ). By Cauchy’s integral formula, we also get En,0(s) = O(κ−1
n ) for ‖s‖ < τ/2.

Similarly, we have En,j = sjO(κ−1
n ) for ‖s‖ < τ/2 and j = 1, 2.

Note that

lim
n→∞

fn(s) = exp

(

−1

2
stΣs

)

=: g(s)

for s ∈ R2, which implies that in distribution, Ω∗
n converges to the normal distribution with mean

zero and variance-covariance matrix Σ. Although we have to refine our estimates for applying
Lemma 3, we conclude immediately that Σ is positive definite (since it is nonsingular).

We now estimate f̂(s) as defined in (1) for ‖s‖ < Tn:

f̂(s) = exp

(

−1

2
stΣs

)

exp(W ∗
n (s))

×
(

1 + En,1(iφ(n)−1/2s1) + En,2(iφ(n)−1/2s2) − s1s2φ(n)−1En,0(iφ(n)−1/2s)

− exp
(

s1s2(σ12 + u0(iφ(n)−1/2s) + φ(n)−1v0(iφ(n)−1/2s))
)

×
(

1 + En,1(iφ(n)−1/2s1) + En,2(iφ(n)−1/2s2) + En,1(iφ(n)−1/2s1)En,2(iφ(n)−1/2s2)
)

)

=exp
(

−1

2
stΣs

)

exp(W ∗
n (s))

(

1 − exp(s1s2σ12)
(

1 + s1s2O(‖s‖φ(n)−1/2) exp(O(ρn(s)))
)

)

×
(

1 + En,1(iφ(n)−1/2s1) + En,2(iφ(n)−1/2s2)
)

+ s1s2 exp
(

−1

2
stΣs + O(ρn(s))

)

O(κ−1
n φ(n)−1)

+ s1s2 exp
(

−1

2
(σ11s

2
1 + σ22s

2
2) + O(ρn(s))

)

O(κ−2
n φ(n)−1)

= exp
(

−1

2
stΣs

)

(

1 − exp(s1s2σ12)
)

+ s1s2 exp
(

−1

2
stΣs + O(ρn(s))

)

O(κ−1
n φ(n)−1)

+ s1s2 exp
(

−1

2
(σ11s

2
1 + σ22s

2
2) + O(ρn(s))

)

O(κ−1
n + ρn(s))

where the inequality | exp(w) − 1| ≤ |w| exp(|w|) for all complex w has been used repeatedly.
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In order to apply Lemma 3, we estimate |f̂(s) − ĝ(s)|/|s1s2| for ‖s‖ < Tn:
∣

∣

∣

∣

∣

f̂(s) − ĝ(s)

s1s2

∣

∣

∣

∣

∣

= exp
(

−1

2
stΣs + O(ρn(s))

)

O(κ−1
n φ(n)−1)

+ exp
(

−1

2
(σ11s

2
1 + σ22s

2
2) + O(ρn(s))

)

O(κ−1
n + ρn(s)).

We choose c sufficiently small such that for ‖s‖ < Tn:
∣

∣

∣

∣

∣

f̂(s) − ĝ(s)

s1s2

∣

∣

∣

∣

∣

= exp
(

−1

4
stΣs

)

O(κ−1
n φ(n)−1) + exp

(

−1

4
(σ11s

2
1 + σ22s

2
2)
)

O(κ−1
n + ρn(s)).

For a constant k ≥ 0, we have
∫ ∞

0

exp(−x2)xk dx =
1

2
Γ

(

k + 1

2

)

and we conclude that
∫∫

‖s‖≤Tn

∣

∣

∣

∣

∣

f̂(s) − ĝ(s)

s1s2

∣

∣

∣

∣

∣

ds = O

(

1
√

φ(n)
+

1

κn

)

.

For estimating the second and the third summand in (2) we simply use Hwang’s result in dimension
1 (Theorem 1) to see that they are also bounded by O(φ(n)−1/2 + κ−1

n ). The fourth summand is
bounded by O(φ(n)−1/2). �
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