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HWANG’S QUASI-POWER-THEOREM IN DIMENSION TWO

CLEMENS HEUBERGER

ABSTRACT. In a frequently used theorem, H.-K. Hwang proved convergence rates for the central
limit theorem of a class of random variables whose moment generating function has a “quasi-
power” structure. We generalise this result to random vectors of two variables.

Gaussian laws in large random combinatorial structures are a frequently observed pattern. In
his “quasi-power-theorem”, Hwang [2] proved asymptotic normality for a certain class of random
variables whose moment generating function satisfies an asymptotic expression which is almost
(apart from an error term) of the form e"~(*). He also includes the convergence rates, cf. Theo-
rem 1 below. His result turned out to be particularly useful and frequently used.

The purpose of this note is to provide a version of Hwang’s theorem in the case of random
vectors of dimension 2, again including the convergence rate. For this, we use a two-dimensional
Berry-Esseen-estimate proved by Sadikova [3], cf. Lemma 3.

Although there is a generalisation of Sadikova’s result to higher dimensions by Gamkrelidze [1],
it seems to be non-trivial to use it for a further generalisation of the quasi-power theorem to higher
dimensions.

We will use boldface letters for vectors and || - || will denote the maximum norm ||s|| = max{|s;|}.

Hwang’s result is the following.

Theorem 1 (Hwang [2]). Let {Qy}n>1 be a sequence of integral random variables. Suppose that
the moment generating function satisfies the asymptotic expression

M, (s) == E(ef*) = Z P(Q, = m)e™ = eV ()(1 + 0k 1)),
m>0
the O-term being uniform for |s| <1, s € C, 7 > 0, where
(1) Wih(s) = u(s)p(n) + v(s), with u(s) and v(s) analytic for |s| < 7 and independent of n;
and v (0) # 0;
(2) limy,—o0 @(n) = 00;
(3) limy—e0 kn = 00.

Then the distribution of 1, is asymptotically normal, i.e.,
o
P Q, u(0)¢(n)<x =®o(z)+ 0 1 +i ,
u”(0)p(n) p(n)  Fn

uniformly with respect to x, x € R, where ® denotes the standard normal distribution

(z) = \/%/; exp (—%f) dy.

We intend to prove the following 2-dimensional version of Theorem 1.
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Theorem 2. Let {Q,}n>1 be a sequence of two dimensional integral random vectors. Suppose
that the moment generating function satisfies the asymptotic expression

Myfs) = E(e8%) = 3 B(n = m)e™ = ™ O 1+ O, 1),
m>0
the O-term being uniform for ||s||e < 7, s € C%, 7 > 0, where

(1) Wy(s) = u(s)p(n) + v(s), with u(s) and v(s) analytic for ||s|| < 7 and independent of n;
and the Hessian H,(0) of u at the origin is nonsingular;
(2) limy—o0 ¢(n) = 00;

(3) limy,— o0 kp = 00.

Then, the distribution of 1, is asymptotically normal, i.e.,

Qn_ rad u n
P ( g (b(n()o)(b( ) < X) = @Hu(o)(x) +0 <% + %ﬂ) 7

where @y, denotes the distribution function of the two dimensional normal distribution with mean
0 and variance-covariance matriz 3, i.e.,

1 1
Oy(x) = ——— ex ——t21>d,
2(x) 277\/det2//y<x p< 2y )

where'y < x means y1 < x1 and y2 < Ta.

The proof of Theorem 2 relies on the following two-dimensional Berry-Esseen-inequality.

Lemma 3 (Sadikova [3]). Let X and Y be two-dimensional random wvectors with distribution
functions F' and G and characteristic functions f and g, respectively.
Let

(1) f(s1,82) = f(s1,82) — f(s51,0)£(0, 2), g(s1,82) = g(s1,52) — g(51,0)g9(0, 52),

and

A1 — sup 8G(ZE1,I2), A2 — sup 8G(ZE1,JE2).
T1,T2 0x1 T1,T2 O0xa
Then for any T > 0, we have
2) sup|F(z,y) — Gla, 81,82 — §(s1,52) ds
T,y Isi<T 5152

+2sgp|F(:v,oo)—G(:C,oo)|+281;p|F(oo,y)—G(oo,y)|+%(3\/_+4\/_)

Proof of Theorem 2. We define E,,(s) by the relation M, (s) = e"V»()(14 E,(s)) and note that by
assumption, E,(s) = O(k,!) uniformly for ||s|| < 7. We note that this implies u(0) = v(0) = 0
and therefore E,(0) = 0.

Let p,, = ¢(n) gradu(0) and ¥ = H,,(0). We define the random vector Q% = ¢(n)~/2(Q,—pu,,)
with distribution function F),(x) and characteristic function

fu(s) = M, (isb(n)*” 2s) exp (—z‘aﬁ(n)*” 2t s>) = exp <—%st2s + W;;(s)> (1+E, (i¢(n)"*/2s))
with
Wi(s) = ulig(n)29)6(n) + (i6(n) 2s) — i6(n) /2, 8) + 555
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We consider the univariate analytic functions w;(s;), v;(s;), En j(s;) for j = 1,2 and the
bivariate analytic functions wug(s), vo(s), En o(s) satisfying
u(s) = (grad u(0),s) + %stEs + 57u1(51) 4 s3ua(s2) + s152u0(s),
1(81) + v2(s2) + s18200(8),
E,(s) = En1(s1) + En2(s2) + s152En o(s),
(0) = v;(0) = En ;(0),  je{L,2},

S
~
2]
Z
I
S

Let ¢ be a positive constant less than max{7/2,1} which will be specified later and let T, =
cy/¢(n). With these notations, we have

W;i(s) = — stui(ig(n) "/ %s1) — s3ua(id(n) "/ ?s2) — s1saug(ig(n)/?s)

+v1(ig(n) "1 %s1) + va(ig(n) T 2s3) — ;1(22) vo(ig(n)~/%s)
=0(pn(s)).
for ||s|| < T, where
o) . Isl® + sl

Since E,((s1,0)) = E,1(s1) = O(k,;}) and E,((0,s2)) = En2(s2) = O(k,; '), we also have
5182, 0(s) = O(k,;}). By Cauchy’s integral formula, we also get E,, o(s) = O(k,, 1) for ||s|| < 7/2.
Similarly, we have E, ; = s;0(x,;!) for [|s|| < 7/2 and j = 1,2.

Note that

lim fa(s) = exp (—%st25> = g(s)

n—oo

for s € R?, which implies that in distribution, Q2 converges to the normal distribution with mean
zero and variance-covariance matrix Y. Although we have to refine our estimates for applying
Lemma 3, we conclude immediately that ¥ is positive definite (since it is nonsingular).

We now estimate f(s) as defined in (1) for ||s|| < T}:

f(s) =exp (—%st25> exp(W7 (s))
X (1 + En1(ig(n)"2s1) + Epo(id(n) ™Y 2sy) — s150¢(n) " E, 0(ig(n) "1/ ?s)

— exp(s152(012 + uo(i(n) ~/?s) + ¢(n) ~two(ig(n) /%))
X (14 Ena (i6(n) 7 251) + Epp(i6(n) "/282) + Bu 1 (i6(n) ™/ 251) B 2 i6(n)/252)) )

= cxp((— 5558 exp(1W:(5)) (1 — exp(s152012) (1 + 51520(Is6(n) /) exp(O(pn(s))))
% (L4 B (i6(n)™"/281) + Ena(i(n)~?s2))
+ 5152050~ 5555 + O(pa(s)) ) O 6(m) ™)
+susexp (=3 (0115 + 02253) + 0(pu(5))) O *6(m) )
— exp(—%stzs> (1 — exp(s152012))
+ 5152050~ 5555 + O(pa(s)) ) O 6(n) ™)
+ 5152050~ 5 (0157 + 02253) + O(pu(5)) Ol + pa(s)

where the inequality |exp(w) — 1| < |w|exp(Jw|) for all complex w has been used repeatedly.
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In order to apply Lemma 3, we estimate |f(s) — §(s)|/|s1s2| for ||s|| < Tp:

f(s) = (s)

8182

- exp(—%stES +0(pn(s))) Ol é(m) ™)

1
+ exp (—i(ansf + 092583) + O(pn(S)))O(Ii;1 + pn(s)).
We choose ¢ sufficiently small such that for ||s|| < To,:

f(s) = 4(s)

_ _1 t -1 -1 _1 2 2 _1
o = exp((— 558 Ol o) ) - exp(—(0115F + 02253) ) Ol 4 pa(s).

For a constant k£ > 0, we have
& 1 k+1
/ exp(—a?)a? dx = =T <L>
0 2 2

// 9 -96)| oL, 1

5152 o(n)  EKn

and we conclude that

IsI<Tn
For estimating the second and the third summand in (2) we simply use Hwang’s result in dimension
1 (Theorem 1) to see that they are also bounded by O(¢(n)~'/2 4 k). The fourth summand is
bounded by O(¢(n)~1/?). O
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