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POSITIONAL NUMBER SYSTEMS WITH DIGITS FORMING AN

ARITHMETIC PROGRESSION

CLEMENS HEUBERGER, HELMUT PRODINGER, AND STEPHAN G. WAGNER

Abstract. A novel digit system that arises in a natural way in a graph-theoretical problem is
studied. It is defined by a set of positive digits forming an arithmetic progression and, necessarily,
a complete residue system modulo the base b. Since this is not enough to guarantee existence
of a digital representation, the most significant digit is allowed to come from an extended set.
We provide explicit formulæ for the jth digit in such a representation as well as for the length.
Furthermore, we study digit frequencies and average lengths, thus generalising classical results
for the base-b representation. For this purpose, an appropriately adapted form of the Mellin-
Perron approach is employed.

1. Introduction

The concept of digital expansions is fundamental to various branches of mathematics, computer
science and cryptography. We mention number-theoretic algorithms, the construction of pseudo-
random sequences and the analysis of particular algorithms and data structures. For some general
background we refer the reader to [2, 5, 9].

A fundamental question with respect to digital expansions is the distribution of digits, and
(as a consequence thereof) the sum of digits function. A breakthrough has been achieved by
H. Delange [1] in 1975, when he showed by elementary methods that for the sum of digits function
sb(n) in the b-ary number system the following exact formula holds:

1

N

∑

0≤n<N

sb(n) =
b− 1

2
logb N + F (logbN),

with a certain 1-periodic function F (x). Subsequently, Delange’s approach has been applied to
many problems related to digits, see the references in the above cited papers.

A further cornerstone was published by Flajolet et al. in 1994 [2], when Delange’s elementary
method was replaced by the Mellin-Perron summation formula, which generalises Perron’s sum-
mation formula for the partial sums of the coefficients of a Dirichlet series. This approach again
found many followers.

A third approach to deal with problems about frequencies of digits was developed using singular
measures and exponential sums. An early reference is [8]; the idea was subsequently applied to
various other problems.

Digit expansions have been designed for bases like bk, Fibonacci numbers (Zeckendorf expan-
sion), r0r1 . . . rk (Cantor expansion) and many others, including complex numbers which have to
satisfy certain properties that are very challenging to discover. Examples of digits are 0, 1, . . . , b−1
(standard), −1, 0, 1 (standard ternary and redundant binary expansion), etc. It is a common fea-
ture that ‘0’ is always a digit.
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It came as a surprise that in a graph theoretic context, two of the present writers [6] discovered
a number system with base 2 and digits 1 and 4. Certain positive integers like 2 and 5 cannot

be represented as
∑ℓ

k=0 ak2k, with ak ∈ {1, 4}, but if one allows as the leading digit aℓ also the
number 2, each positive integer has a unique representation. What is essential here, is to have one
odd and one even digit.

Increasing the maximum degree of the trees studied in the graph theoretic context led to
number systems to higher bases b ≥ 2 and sets of b nonnegative digits which are in an arithmetic
progression: a, a + ∆, . . . , a + (b − 1)∆. It is clear that we need one digit for each residue class
modulo b. From elementary number theory it follows that the greatest common divisor of the
step size ∆ and the base b must be 1, which is also sufficient. As before, we must allow for a few
extra digits which can only occur as leading digit. The case of the standard b-ary expansions is
contained as the special case (a,∆) = (0, 1).

The obvious question that comes to mind is how the digits are distributed, among, say, the
first N integers. This question will be addressed in this paper, and the Mellin-Perron technique
will be used, in a slightly more general form, as given in [3]. But an even simpler question
which isn’t really a question for the standard b-ary system, say, must be addressed: the length
of the representation! In general, the length is not a monotone function anymore, and a larger
number may have a shorter representation! In the case of a complex base, as in [3], where one has
fundamental regions with a fractal boundary, this is a common phenomenon.

In base b, the length of the standard representation (index of the leading digit) of n is given by
⌊logb n⌋. We will find similar formulæ, but with several terms, all expressed with floor functions.

The next section contains the announcement of all our results, while their proofs are postponed
to subsequent sections. It contains a formal proof of existence and uniqueness of the expansion in
question, a formula for the length of the representation and a formula that gives the jth digit of the
representation of n explicitly. Such formulæ are known, say, for the standard b-ary representation,
where it is given in terms of floor functions. A Delange type analysis of the frequencies of digits is
always based on such an explicit formula. We could have done such an analysis also in our instance,
but decided to use the Mellin-Perron approach, as the computations are then less cumbersome.
After the explicit formulæ for length and digits, we also study the averages and obtain asymptotic
results involving periodic functions that are completely described via their Fourier coefficients. All
our results are exemplied by the original system with base 2 and digits 1 and 4, but also other
ones.

2. Results

We consider digit expansions to a positive integer base b ≥ 2 with digits from D = {a+ r∆ |
0 ≤ r ≤ b− 1} for some integers a ≥ 0 and ∆ ≥ 1 with gcd(b,∆) = 1. Since in general, this is not
sufficient to represent all positive integers, we allow the most significant digit to belong to the set
Df = {a+ r∆ − kb | 0 ≤ r ≤ b − 1, 0 ≤ k < (a+ r∆)/b}. Note that by definition, all elements of
Df are positive, even if a = 0.

Definition 2.1. Let n be a positive integer and (εℓ, . . . , ε0) be a tuple with ℓ ≥ 0, εj ∈ D for
0 ≤ j < ℓ and εℓ ∈ Df . If

n =

ℓ
∑

j=0

εjb
j,

then (εℓ, . . . , ε0) is called a (b, a,∆)-expansion of n.

In the proof of existence and uniqueness, but also in the analysis of the expansion, the following
notations are useful.

Definition 2.2. Let n be a positive integer and η = a + r∆ be the unique element of D with
n ≡ η (mod b). We set

ε(n) :=

{

η, if η < n,

n, if η ≥ n.
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Furthermore, we set

T (n) :=
n− ε(n)

b
.

Note that η is uniquely defined since we assumed that gcd(b,∆) = 1.

Theorem 1. Let n be a positive integer. Then n admits exactly one (b, a,∆)-expansion.
In particular, this expansion is given by (ε(T ℓ(n)), . . . , ε(T (n)), ε(n)), where ℓ is the least non-

negative integer with T ℓ+1(n) = 0.

Proof. It is obvious that 0 ≤ T (n) < n for every positive integer n. Therefore, there is an ℓ with
T ℓ+1(n) = 0. Iterating n = ε(n) + bT (n) yields

n = T ℓ+1(n)bℓ+1 +

ℓ
∑

j=0

ε(T j(n))bj =

ℓ
∑

j=0

ε(T j(n))bj .

By definition, ε(n) ∈ D unless ε(n) = n. In this case, we have T (n) = 0, i.e., we are considering
the most significant digit, and we have n = η − kb for some k ≥ 0. Since n > 0, we conclude that
n = ε(n) ∈ Df . Thus (ε(T ℓ(n)), . . . , ε(T (n)), ε(n)) is indeed a (b, a,∆)-expansion of n.

Next, we prove uniqueness. Choose the least positive integer n that admits two different
(b, a,∆)-expansions (εℓ, . . . , ε0) and (ηℓ′ , . . . , η0), say. By minimality of n, we must have ε0 6= η0,
since otherwise, (εℓ, . . . , ε1) and (ηℓ′ , . . . , η1) would be two different expansions of (n − ε0)/b.
Modulo b, we have η0 ≡ n ≡ ε0 (mod b). Since D is a complete residue system modulo b, we
conclude that at least one of ε0 and η0, say η0, is not an element of D, but is an element of Df .
But this implies that ℓ′ = 0 and n = η0. Since ε0 6= η0, we cannot have ℓ = 0, too. Therefore,
η0 = n > ε0, ε0 ∈ D. This is a contradiction, since η0 ≡ ε0 (mod b). �

Definition 2.3. Let n be a positive integer. Its unique (b, a,∆)-expansion is denoted by (εℓ(n)(n),
. . . , ε0(n)).

By Theorem 1, we obviously have ε0(n) = ε(n), i.e., ε(n) is the least significant digit of the
(b, a,∆)-expansion of n.

The first part of our results concerns precise formulæ for the jth digit εj(n) of the (b, a,∆)-
expansion of a given integer n as well as for the length of its (b, a,∆)-expansion.

As usual, the fractional part x − ⌊x⌋ of a real number x is denoted by {x}. We denote the
inverse of b modulo ∆(b − 1) by b̄. The order of b modulo ∆(b− 1) is denoted by o.

Theorem 2. Let n be a positive integer with n = m∆ + d for some integer m and some d ∈
{0, . . . ,∆ − 1} and j < ℓ(n). Then we have εj(n) = a+ r∆ for some 0 ≤ r ≤ b− 1 if and only if

{

m+ ⌈c⌉

bj+1
− c · b̄j+1

}

lies in the interval [r/b, (r + 1)/b), where c = d(b−1)+a
∆(b−1) .

This theorem is proved in Section 3.
For (b, a,∆) = (2, 1, 3), we get the following result.

Corollary 2.4. Let (b, a,∆) = (2, 1, 3), n be a positive integer and j < ℓ(n).

(1) If n ≡ 0 (mod 3), then εj = 1 if and only if
{

n+ 3

3 · 2j+1
−

1

3
(−1)j+1

}

∈

[

0,
1

2

)

.

(2) If n ≡ 1 (mod 3), then εj = 1 if and only if
{

n+ 2

3 · 2j+1
−

2

3
(−1)j+1

}

∈

[

0,
1

2

)

.

(3) If n ≡ 2 (mod 3), then εj = 1 if and only if
{

n+ 1

3 · 2j+1

}

∈

[

0,
1

2

)

.
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Proof. This is an immediate consequence of Theorem 2. �

The length of the (b, a,∆)-expansion can be computed by the following explicit formula.

Theorem 3. Let 0 ≤ d < ∆. For an integer w, let

Ew =
{

µ ∈ Df

∣

∣

∣
µ ≡ b̄wd+ a

b̄w − 1

b− 1
(mod ∆)

}

. (2.1)

If Ew is non-empty, we set

mw := a+ (b− 1)minEw. (2.2)

The integers u in {0, . . . , o− 1} with Eu 6= ∅ (there is at least one such integer) are denoted by
u1, . . . , ut, where 0 ≤ u1 < u2 < · · · < ut < o.

Let n be a positive integer with n ≡ d (mod ∆). Then we have

ℓ(n) = ut + (o+ u1 − ut)

⌊

1

o
logb

n(b− 1) + a

bu1mu1

⌋

+

t
∑

i=2

(ui − ui−1)

⌊

1

o
logb

n(b− 1) + a

buimui

⌋

. (2.3)

We note that since b ≡ 1 (mod b− 1), we also have b̄ ≡ 1 (mod b− 1), thus b− 1 divides b̄w − 1
and the definition of Ew in (2.1) makes sense.

This theorem is proved in Section 4.
Note that the explicit formula (2.3) heavily depends on the remainder of n modulo ∆. In some

sense, we have a collection of length formulæ for the various residue classes.
As examples, we list the results for (b, a,∆) ∈ {(2, 1, 3), (4, 1, 3)}.

Corollary 2.5. Let (b, a,∆) = (2, 1, 3) and n be a positive integer. Then

ℓ(n) =











2
⌊

1
2 log2

n+1
4

⌋

+ 1, if n ≡ 0 (mod 3),

2
⌊

1
2 log2

n+1
2

⌋

, if n ≡ 1 (mod 3),
⌊

log2
n+1

3

⌋

, if n ≡ 2 (mod 3).

(2.4)

We have εℓ(n)(n) = 2 if and only if n ≡ 2 (mod 3).

Proof. For n 6≡ 2 (mod 3), (2.4) is a direct consequence of (2.3). For n ≡ 2 (mod 3), (2.3) yields

ℓ(n) = 1 +

⌊

1

2
log2

n+ 1

3

⌋

+

⌊

1

2
log2

n+ 1

6

⌋

.

This is equal to
⌊

log2
n+1

3

⌋

, cf. for instance [4, Eqn. (3.26)].
The additional assertion on εℓ(n) follows from the fact that

n ≡ εℓ2
ℓ + 2ℓ − 1 ≡ (εℓ + 1)(−1)ℓ − 1 (mod 3),

where we use the abbreviation ℓ = ℓ(n). We therefore have n ≡ 2 (mod 3) if and only if εℓ + 1 is
a multiple of 3, which is clearly equivalent to εℓ = 2. �

Corollary 2.6. Let (b, a,∆) = (4, 1, 3) and n be a positive integer. Then

ℓ(n) =











2 +
⌊

log64
3n+1

10

⌋

+
⌊

log64
3n+1

28

⌋

+
⌊

log64
3n+1

64

⌋

, if n ≡ 0 (mod 2),

2 +
⌊

log64
3n+1

4

⌋

+
⌊

log64
3n+1

40

⌋

+
⌊

log64
3n+1
112

⌋

, if n ≡ 1 (mod 2),

2 +
⌊

log64
3n+1

7

⌋

+
⌊

log64
3n+1

16

⌋

+
⌊

log64
3n+1
160

⌋

, if n ≡ 2 (mod 2).

Proof. This is a direct consequence of (2.3). �

The second part of our results are results on averages: We give a precise asymptotic description
of the number of occurrences of a certain digit η ∈ D in the (b, a,∆)-expansions of all positive
integers up to a certain N .

We will use Iverson’s notation (popularised in [4]) [condition ] = 1 if condition is true and
[condition ] = 0 otherwise. We also need a notation for the upper fractional part ufrac x of a real
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number x defined by ufracx := {x}+[x ∈ Z] = x− (⌈x⌉−1), i.e., ufracx is the unique real number
with 0 < ufrac x ≤ 1 and x− ufrac x ∈ Z. We will also use the Hurwitz ζ function

ζ(s, ρ) =

∞
∑

n=0

1

(n+ ρ)s

for 0 < ρ ≤ 1. As usual, we write ζ(s) for ζ(s, 1), the Riemann ζ function.

Theorem 4. Let η ∈ D be a digit. The number of occurrences of the digit η in the (b, a,∆)-
expansion of a positive integer n is denoted by

sη(n) =

ℓ(n)
∑

j=0

[εj(n) = η]

and we set sη(0) = 0.
Let

α =
a

b− 1
, ρ1 = ufrac

α+ η

b
, ρ2 = ufrac

α+ η + ∆

b
, (2.5)

fη(n) =

{

sη(n) − sη(n− ∆), if n ≥ ∆,

0, if n < ∆,
(2.6)

gη(n) = fη(n) − [n ≡ η (mod b)] + [n ≡ η + ∆ (mod b)] , (2.7)

Cη,0 =

1
2 − 1

log b

b
+

logb

(

Γ(ρ1)
Γ(ρ2)

)

+ ρ1 − ρ2 +
∑∆−1

n=0 sη(n) −
∑

−α<n<a+b∆ gη(n) logb(n+ α)

∆
,

(2.8)

Cη,k =
ζ (χk, ρ1) − ζ (χk, ρ2) +

∑

−α<n<a+b∆
gη(n)

(n+α)χk

∆χk(χk + 1) log b
with χk :=

2kπi

log b
, k ∈ Z \ {0}.

(2.9)

Define the function Φη by its Fourier expansion

Φη(x) =
∑

k∈Z

Cη,k exp(2kπix). (2.10)

Then Φη is a 1-periodic continuous function and for δ > 0 and positive integers N , we have
∑

n<N

sη(n) =
1

b
N logbN +NΦη(logb(N + α)) +O(N1/2+δ). (2.11)

This theorem is proved in Section 5.
Note that we do not exclude the case that n is negative in (2.6), we simply have fη(n) = 0 for

n < 0. We emphasise that the three sums in the definition of Cη,0 and Cη,k are finite sums. Thus
the formulæ for Cη,0 and Cη,k are explicit, these constants only depend on b, a, ∆ and η.

As an example, we consider the (2, 1, 3)-expansion and the digit 1.

Corollary 2.7. For (b, a,∆) = (2, 1, 3), we have

C1,0 = −
6 + 4 log 3 − 5 log 2 + 2 logπ

12 log 2
,

C1,k = −
i
(

ζ
(

2kπi
log 2

)

+ 3−
2kπi
log 2 + 1

)

log 2

6kπ(2kπi+ log 2)
, k 6= 0,

Φ1(x) =
∑

k∈Z

C1,k exp(2kπix).

Then
∑

n<N

s1(n) =
1

2
N log2N +NΦ1(log2(N + 1)) +O(N1/2+δ)

for δ > 0.



6 CLEMENS HEUBERGER, HELMUT PRODINGER, AND STEPHAN G. WAGNER

6 8 10 12 14

-1.16

-1.14

-1.12

-1.08

-1.06

-1.04

Figure 1. Fluctuation for (b, a,∆) = (2, 1, 3) and η = 1: The gray dots are
(S1(N)−1/2N log2N)/N , the black line is Φ1(x) (approximated with 101 Fourier
coefficients). The x-axis is scaled logarithmically (base 2).

6 8 10 12 14 16

-2.22

-2.18

-2.16

-2.14

Figure 2. Fluctuation for (b, a,∆) = (2, 1, 7) and η = 8: The gray dots are
(S8(N)−1/2N log2N)/N , the black line is Φ8(x) (approximated with 201 Fourier
coefficients). The x-axis is scaled logarithmically (base 2).

As an illustration, we compare Sη(N) :=
∑

n<N sη(n) with the fluctuations Φη for some values
of (b, a,∆) and η in Figures 1, 2 and 3. Of course, the main term (1/b)N logb N is subtracted and
everything is normalised by dividing by N .

Next, we investigate the average number of occurrences of a digit µ ∈ Df as most significant
digit of a (b, a,∆) expansion.

Theorem 5. Let µ ∈ Df and

s(f)
η (n) :=

[

εℓ(n)(n) = η
]

.
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5 6 7 8

-0.495

-0.485

-0.48

-0.475

-0.47

Figure 3. Fluctuation for (b, a,∆) = (5, 7, 23) and η = 30: The gray dots
are (S30(N) − 1/5N log5N)/N , the black line is Φ30(x) (approximated with 201
Fourier coefficients). The x-axis is scaled logarithmically (base 5).

Setting

α =
a

b− 1
,

ψ(x) =
b1−{x}

b − 1
+ {x} , (2.12)

Ψη(x) =
ψ
(

x− logb(η + α+ ∆)
)

− ψ
(

x− logb(η + α)
)

+ logb
η+α+∆

η+α

∆
, (2.13)

then Ψη(x) is a 1-periodic continuous function. The average number of occurrences of η as leading
digit of the (b, a,∆)-expansion of the positive integers up to N equals

1

N

N
∑

n=1

s(f)
η (n) = Ψη(logb N) +O

(

logN

N

)

.

This theorem is proved in Section 6.

Remark. From the definition of Ψη(x), it is clear that its average value equals
∫ 1

0

Ψη(x) dx =
1

∆
logb

η + α+ ∆

η + α
,

since the integrals over the functions ψ cancel.

Remark. If ∆ = (bk − 1)(η + α) for some integer k, then {logb(η + α+ ∆)} = {logb(η + α)} and
Ψη(x) = k

∆ is constant. In particular, this is the case for (b, a,∆) = (2, 1, 3) and η = 2 (with
k = 1).

Finally, we analyse the average length of (b, a,∆)-expansions.

Theorem 6. Let

α =
a

b− 1
, (2.14)

C0 =
1

2
−

1

log b
+

∑

0≤n<∆ ℓ(n) −
∑

∆≤n<a+b∆(ℓ(n) − ℓ(n− ∆)) logb(n+ α)

∆
, (2.15)

Ck =

∑

∆≤n<a+b∆(ℓ(n) − ℓ(n− ∆))(n+ α)−χk

∆χk(χk + 1) log b
with χk :=

2kπi

log b
, k ∈ Z \ {0}, (2.16)
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6 8 10 12 14

-3.48

-3.46

-3.44
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-3.4

-3.38

-3.36

Figure 4. Fluctuation in the length for (b, a,∆) = (2, 1, 3): The gray dots are
(
∑

n<N ℓ(n)−N log2N)/N , the black line is Φ(x) (approximated with 101 Fourier
coefficients). The x-axis is scaled logarithmically (base 2).

where we set ℓ(0) = −1, and define the function Φ by its Fourier expansion

Φ(x) :=
∑

k∈Z

Ck exp(2kπix).

Then Φ is a 1-periodic continuous function and for positive integers N , we have
∑

n<N

ℓ(n) = N logb(N) +NΦ(logb(N + α)) +O(logN).

This theorem is proved in Section 7.
Again, we consider the example (b, a,∆) = (2, 1, 3).

Corollary 2.8. Let (b, a,∆) = (2, 1, 3),

C0 = −
6 + 9 log 2 + 2 log 3

6 log 2
,

Ck = −
3−

2kπi
log 2 log 2 + log 4

12k2π2 − 6kπi log 2
, k 6= 0,

Φ(x) =
∑

k∈Z

Ck exp(2kπix).

Then we have
∑

n<N

ℓ(n) = N log2(N) +NΦ(log2(N + 1)) +O(logN).

This is illustrated in Figure 4.
It is even possible to obtain explicit formulæ for the average length of an expansion by means

of the expression for ℓ(n) given in Theorem 3. However, the resulting formulæ are rather lengthy,
and so we only show this for the particular example (b, a,∆) = (2, 1, 3), where formulæ for ℓ(n)
are given in Corollary 2.5.

Theorem 7. For (b, a,∆), we have

N
∑

n=1

ℓ(n) = 2
(⌊

N
3

⌋

+ 4
3

) ⌊

1
2 log2

N+1
4

⌋

+ 2
(⌊

N+2
3

⌋

+ 2
3

) ⌊

1
2 log2

N+1
2

⌋

+
⌊

N+4
3

⌋ ⌊

log2
N+1

3

⌋

+
⌊

N
3

⌋

− 8
9 (N + 1) ·

(

4−{log4(N+1)} + 4−{log4
N+1

2
} + 3 · 2−2−{log2

N+1
3

}
)

+ 22
3 .

(2.17)
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This theorem is proved in Section 8.

3. Digit formula — Proof of Theorem 2

This section is devoted to the proof of the digit formula enunciated in Theorem 2.
We write εk(n) = a+ rk∆ and ℓ = ℓ(n). Then we have

n− a ·
bj+1 − 1

b− 1
= ∆

j
∑

k=0

rkb
k +

ℓ
∑

k=j+1

εk(n)bk.

Now set q =
(

a · bj+1−1
b−1 − d

)

b̄j+1, and consider the expression

M = n− a ·
bj+1 − 1

b− 1
+ q · bj+1 = ∆

j
∑

k=0

rkb
k + q · bj+1 +

ℓ
∑

k=j+1

εk(n)bk.

By our choice of q and b̄, this number is congruent to

d− a ·
bj+1 − 1

b− 1
+

(

a ·
bj+1 − 1

b− 1
− d

)

b̄j+1bj+1 = 0

modulo ∆. Hence

M

∆
=

j
∑

k=0

rkb
k +

q · bj+1 +
∑ℓ

k=j+1 εk(n)bk

∆

is an integer. Note also that the second summand is divisible by bj+1, as gcd(∆, b) = 1. If follows
that

{

M

∆bj+1

}

=
{

j
∑

k=0

rkb
k−j−1

}

=
rj
b

+

j−1
∑

k=0

rkb
k−j−1.

The second summand is trivially estimated to lie between 0 and 1
b − b−j−1. Thus, in order to

prove our theorem, it is sufficient to prove the inequality

0 ≤

{

m+ ⌈c⌉

bj+1
− c · b̄j+1

}

−

{

M

∆bj+1

}

< b−j−1,

which then implies that
rj
b

≤

{

m+ ⌈c⌉

bj+1
− c · b̄j+1

}

<
rj + 1

b
,

as claimed. So let us consider the difference

m+ ⌈c⌉

bj+1
−c · b̄j+1 −

M

∆bj+1

=
(m+ ⌈c⌉)∆(b − 1) − (d(b − 1) + a)bj+1b̄j+1 −

(

n− a · bj+1−1
b−1 + q · bj+1

)

(b − 1)

∆(b − 1)bj+1

=
(m+ ⌈c⌉)∆(b − 1) − (d(b − 1) + a)(bb̄)j+1 − (∆m+ d+ qbj+1)(b− 1) + a(bj+1 − 1)

∆(b− 1)bj+1

=
(⌈c⌉∆ − d)(b − 1) − a− (d(b− 1) + a)(bb̄)j+1 − (b − 1)qbj+1 + abj+1

∆(b − 1)bj+1

=
(⌈c⌉∆ − d)(b − 1) − a

∆(b − 1)bj+1
−

(d(b− 1) + a)b̄j+1 + (b− 1)q − a

∆(b− 1)

=
(⌈c⌉∆ − d)(b − 1) − a

∆(b − 1)bj+1
−

(d(b− 1) + a)b̄j+1 + (b− 1)
(

a · bj+1−1
b−1 − d

)

b̄j+1 − a

∆(b− 1)

=
(⌈c⌉∆ − d)(b − 1) − a

∆(b − 1)bj+1
−
a((bb̄)j+1 − 1)

∆(b − 1)
.
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The second fraction is an integer by our choice of b̄. Now note that the numerator of the first
fraction can also be written as

(⌈c⌉∆ − d)(b − 1) − a = ∆(b− 1)

(⌈

d(b − 1) + a

∆(b − 1)

⌉

−
d(b − 1) + a

∆(b− 1)

)

,

which shows that it lies between 0 and ∆(b − 1) − 1. Equation (3) readily follows, since we know
that M

∆bj+1 is a fraction with denominator bj+1.

4. Length Formula — Proof of Theorem 3

Before proving Theorem 3, we prove a lemma which characterises the length and the most
significant digit of the (b, a,∆)-expansion of an integer.

Lemma 4.1. Let n be a positive integer, ℓ ≥ 0 and µ ∈ Df . Then the following two conditions
are equivalent.

(1) ℓ(n) = ℓ and εℓ(n) = η.
(2) We have

n(b− 1) + a ≡ bℓ(η(b − 1) + a) (mod ∆(b− 1)),

0 ≤
n(b− 1) + a

∆(b− 1)bℓ
−
η(b − 1) + a

∆(b− 1)
< 1.

(4.1)

Proof. We have ℓ(n) = ℓ and εℓ(n) = η if and only if there are integers rj ∈ {0, . . . , b − 1} such
that

n = µbℓ + a
bℓ − 1

b− 1
+ ∆

ℓ−1
∑

j=0

rjb
j .

Set x =
∑ℓ−1

j=0 rjb
j. The conditions on the rj are equivalent to saying that x is an integer with

0 ≤ x < bℓ. Thus the first condition of the lemma is equivalent to

n = µbℓ + a
bℓ − 1

b− 1
+ ∆x, x ∈ Z, 0 ≤ x < bℓ. (4.2)

Multiplying this by (b − 1) and rearranging shows that (4.2) is equivalent to

n(b − 1) + a = bℓ(η(b − 1) + a) + ∆(b− 1)x, x ∈ Z, 0 ≤ x < bℓ. (4.3)

It is easily seen that (4.3) is equivalent to (4.1). �

The description of ℓ(n) in Lemma 4.1 can be used to obtain partial information on ℓ(n) in the
form of an explicit formula for ⌊(ℓ(n) − u)/o⌋ for certain u ∈ {0, . . . , o− 1}.

Lemma 4.2. Let 0 ≤ d < ∆. Choose u ∈ {0, . . . , o − 1} such that Eu as defined in (2.1) is
non-empty. Let n be a positive integer with n ≡ d (mod ∆).

Then we have
⌊

ℓ(n) − u

o

⌋

=

⌊

1

o
logb

n(b− 1) + a

bumu

⌋

(4.4)

where mu is defined in (2.2).

Proof. We use the abbreviations ℓ = ℓ(n) and εℓ = εℓ(n). We write ℓ = Lo+u+v for some integer
L and some v ∈ {0, . . . , o− 1}. Obviously, this implies L = ⌊(ℓ− u)/o⌋.

Since

mu ≡ b̄u
(

(b − 1)d+ a
)

(mod (b − 1)∆)

by (2.1) and (2.2) and

(εℓ(b− 1) + a)bv ≡ b̄u+Lo(n(b− 1) + a) ≡ b̄u
(

(b− 1)d+ a
)

(mod (b − 1)∆)

by (4.1), we have

mu ≡ (εℓ(b− 1) + a)bv (mod (b− 1)∆). (4.5)

By construction, all elements of Df are positive. In particular minEu > 0 and εℓ > 0.
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From (4.1), we obtain

εℓ(b− 1) + a

mu
bv · bLo ≤

n(b− 1) + a

bumu
<

∆(b− 1) + εℓ(b − 1) + a

mu
bv · bLo. (4.6)

We first claim that

mu ≤ (εℓ(b− 1) + a)bv. (4.7)

Assume the contrary. Then by (4.5), there is a positive integer f such that

mu = (εℓ(b − 1) + a)bv + f(b− 1)∆. (4.8)

If v = 0, this is a contradiction to the definition of mu. Therefore, we only have to consider the
case v > 0. We write minEu = a + r∆ − kb for some 0 ≤ r < b and 0 ≤ k < (a + ∆r)/b. Using
these estimates and (4.8) yields

ab+ f(b− 1)∆ < (εℓ(b − 1) + a)bv + f(b− 1)∆ = a+ (b− 1)(a+ r∆ − kb) ≤ ab+ r(b − 1)∆.

We conclude that 0 < f < r < b. Taking (4.8) modulo b, we get

a− (a+ r∆) ≡ −f∆ (mod b),

which implies that r ≡ f (mod b), which is a contradiction to 0 < f < r < b and concludes the
proof of (4.7).

Next, we claim that

∆(b − 1) + εℓ(b− 1) + a ≤ bo−vmu. (4.9)

By (4.5), we have ∆(b−1)+εℓ(b−1)+a ≡ bo−vmu (mod (b−1)∆). Therefore, there is an integer
f ′ such that

∆(b− 1) + εℓ(b − 1) + a = bo−vmu + f ′(b− 1)∆. (4.10)

We assume that f ′ is positive. We write εℓ = a+ ∆r′ − k′b and get

f ′(b− 1)∆ + ab < f ′(b− 1)∆ + bo−v(a+ (b− 1)minEu)

= ∆(b− 1) + (a+ ∆r′ − k′b)(b− 1) + a ≤ (r′ + 1)(b− 1)∆ + ab,

which implies 0 < f ′ < r′ + 1 ≤ b. Taking (4.10) modulo b yields

−∆ − (a+ ∆r′) + a ≡ −f ′∆ (mod b),

i.e., f ′ ≡ (r′ + 1) (mod b). This is a contradiction to 0 < f ′ < r′ + 1 ≤ b and therefore proves
(4.9).

Combining (4.6), (4.7), and (4.9) yields

bLo ≤
n(b− 1) + a

bumu
< b(L+1)o,

which immediately gives (4.4). �

The partial information obtained in Lemma 4.2 is now combined for several u and enables us
to prove Theorem 3.

Proof of Theorem 3. Again, we use the abbreviation ℓ = ℓ(n).
We write ℓ = L · o+R for a suitable integer L and some R ∈ {0, . . . , o− 1}. By (4.1) and (2.1),

we have εℓ(n) ∈ ER. In particular, ER 6= ∅ and there is a 1 ≤ j ≤ t with R = uj .
We may rewrite ℓ as

ℓ = L · o+ u1 +

t
∑

k=2

[R ≥ uk] (uk − uk−1).

Writing

Lk :=

⌊

ℓ− uk

o

⌋

for 1 ≤ k ≤ t, we note that L1 = L and

[R ≥ uk] = 1 + Lk − L1.
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Thus

ℓ = L1 · o+ u1 +
t
∑

k=2

(1 + Lk − L1)(uk − uk−1).

Collecting all coefficients of L1, we obtain

ℓ = ut + L1(o− ut + u1) +

t
∑

k=2

Lk(uk − uk−1). (4.11)

Plugging (4.4) in (4.11) yields (2.3). �

5. Digit Frequencies — Proof of Theorem 4

This section is devoted to the proof of Theorem 4.
We first rewrite Sη(n) =

∑

n<N sη(n) by summation by parts to a sum involving (N −n)fη(n),
where fη(n) is defined in (2.6).

We have
∑

n<N

(N − n)fη(n) =
∑

0≤n<N

∆sη(n) +
∑

N−∆≤n<N

(N − n− ∆)sη(n) −
∑

0≤n<∆

(N − n)sη(n)

= ∆Sη(N) −N

∆−1
∑

n=0

sη(n) + O(logN).

(5.1)

The remaining sum over 0 ≤ n < ∆ is a finite sum and will finally be part of Cη,0. Thus it is
sufficient to study

∑

n<N(N − n)fη(n).
We intend to use the Mellin-Perron summation formula in the version

∑

n
−α<n<N

(N − n)f(n) =
1

2πi

∫ C+i∞

C−i∞

(

∞
∑

n
n>−α

f(n)

(n+ α)s

)

(N + α)s+1 ds

s(s+ 1)
, (5.2)

where α ∈ R andC is in the half-plane of absolute convergence of the Dirichlet series
∑

n>−α
f(n)

(n+α)s ,

cf. [3, (4.3)]. Note that we do not impose the frequently used restriction 0 < α ≤ 1, but we sum over
n > −α, which amounts to the same. This version, however, smoothes the following calculations.
In our application, α is positive and f(n) = fη(n) vanishes for negative n.

It turns out that α as defined in (2.5) is a useful choice for our problem.
Therefore, we study the Dirichlet generating function

Λη(s) :=
∞
∑

n>−α

fη(n)

(n+ α)s
.

Since we trivially have |fη(n)| ≤ ℓ(n) + ℓ(n − ∆) = O(log n), this Dirichlet series converges
absolutely for ℜs > 1, so we may choose C = 2 in (5.2). To get an explicit formula for Λη(s), we
first derive recursive formulæ for sη(n) and fη(n).

We obviously have

sη(n) =

{

[ε(n) = η] + sη(T (n)), if n > 0,

0, if n = 0.
(5.3)

Assume that n ≥ a + b∆ and choose r ∈ {0, . . . , b − 1} such that ε(n − ∆) = a + r∆. Then
n ≡ a+ (r + 1)∆ (mod b), which implies

ε(n) =

{

a+ (r + 1)∆, if r < b− 1,

a, if r = b − 1

= ε(n− ∆) + ∆ − b∆[n ≡ a (mod b)] ,

since r = b− 1 is obviously equivalent to n ≡ a (mod b). For the transformation T , this yields

T (n− ∆) =
n− ∆ − ε(n) + ∆ − b∆[n ≡ a (mod b)]

b
= T (n) − ∆[n ≡ a (mod b)] . (5.4)
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Plugging (5.4) and (5.3) in (2.6) yields

fη(n) = [ε(n) = η] − [ε(n− ∆) = η] + sη(T (n)) − sη(T (n− ∆))

= [n ≡ η (mod b)] − [n ≡ η + ∆ (mod b)] + fη(T (n)) [n ≡ a (mod b)]

= [n ≡ η (mod b)] − [n ≡ η + ∆ (mod b)] + fη

(

n− a

b

)

[n ≡ a (mod b)] ,

(5.5)

for n ≥ a+ b∆, since n ≡ a (mod b) is equivalent to ε(n) = a.
To avoid dealing with various special summands arising from the fact that in general, (5.5) is

not true for n < a+b∆, we use the function gη(n) defined in (2.7) which takes care of these special
cases. This function gη(n) has been defined in such a way that

fη(n) = [n ≡ η (mod b)] − [n ≡ η + ∆ (mod b)]

+ fη

(

n− a

b

)

[n ≡ a (mod b)] + gη(n) [n < a+ b∆] (5.6)

now holds for all n ∈ Z, because we have (n − a)/b < ∆ for n < a + b∆ and fη vanishes for
arguments less than ∆ by definition.

Dividing (5.6) by (n+ α)s and summing over all integers n > −α yields the relation

Λη(s) =
∑

n>−α
n≡η

1

(n+ α)s
−

∑

n>−α
n≡η+∆

1

(n+ α)s
+
∑

n>−α
n≡a

fη((n− a)/b)

(n+ α)s
+Gη(s), (5.7)

where all congruences are modulo b and

Gη(s) =
∑

−α<n<a+b∆

gη(n)

(n+ α)s
.

Replacing n in the first three sums of (5.7) by η+ nb, η+ ∆ + nb, and a+ nb, respectively, yields

Λη(s) = b−sζ (s, ρ1) − b−sζ (s, ρ2) + b−sΛη(s) +Gη(s). (5.8)

For the third sum, the relation α = (a+α)/b has been used which is equivalent to (and motivates)
the definition of α in (2.5). From (5.8) we immediately get the explicit expression

Λη(s) =
b−sζ (s, ρ1) − b−sζ (s, ρ2) +Gη(s)

1 − b−s
.

The function Λη(s) is a meromorphic function in C with poles in χk for k ∈ Z, since the poles
of the ζ functions at s = 1 cancel. For some fixed 0 < δ < 1/2, we have |ζ(s, ρ)| ≤ (ℑs)1−δ for
ℜs ≥ −1/2+δ (cf. [10, § 13.51]). Thus we can shift the line of integration in (5.2) to ℜs = −1/2+δ
for some 0 < δ < 1

2 , where the residues in χk have to be taken into account. As usual, paths with
ℑs = (2M +1)πi/ log b are chosen for this purpose, where the denominator is bounded away from
zero.

We obtain
∑

−α≤n<N

(N − n)fη(n)

=
∑

k∈Z

Res

(

Λη(s)
(N + α)s+1

s(s+ 1)
, s = χk

)

+
1

2πi

∫ − 1
2
+δ+i∞

− 1
2
+δ−i∞

Λη(s)(N + α)s+1 ds

s(s+ 1)
. (5.9)

The integral is bounded by O(N1/2+δ). For k 6= 0, the residue at χk is

Res

(

Λη(s)
(N + α)s+1

s(s+ 1)
, s = χk

)

= ∆Cη,k(N + α) exp(2kπi logb(N + α)), (5.10)

where Cη,k is defined in (2.9). We note that Cη,k = O(k−3/2 log k), cf. [10, § 13.51]. At s = 0, the
integrand has a double pole with residue

Res

(

Λη(s)
(N + α)s+1

s(s+ 1)
, s = 0

)

= (Gη(0) − ρ1 + ρ2) (N + α) logb (N + α) + C̃η,0(N + α), (5.11)
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where

C̃η,0 = logb

Γ (ρ1)

Γ (ρ2)
+

(

1

2
+

1

log b

)

(ρ1 − ρ2) +

(

1

2
−

1

log b

)

Gη(0) +
G′

η(0)

log b
. (5.12)

Combining (5.9), (5.10) and (5.11) yields
∑

−α≤n<N

(N − n)fη(n) = (Gη(0) − ρ1 + ρ2)N logbN

+ C̃η,0N +N∆
∑

k∈Z\{0}

Cη,k exp(2kπi logb(N + α)) +O(N1/2+δ). (5.13)

We want to calculate the value of

Gη(0) =
∑

−α<n<a+b∆

gη(n)

=
∑

−α<n<a+b∆

fη(n) −
∑

−α<n<a+b∆

[n ≡ η (mod b)] +
∑

−α<n<a+b∆

[n ≡ η + ∆ (mod b)].

By the definition of fη and using (5.3), the first summand can be rewritten as
∑

∆≤n<a+b∆

(sη(n) − sη(n− ∆))

=
∑

∆≤n<a+b∆

sη(n) −
∑

0≤n<a+(b−1)∆

sη(n)

=
∑

a+(b−1)∆≤n<a+b∆

sη(n) −
∑

0≤n<∆

sη(n)

=
∑

a+(b−1)∆≤n<a+b∆

[n ≡ η (mod b)] +
∑

a+(b−1)∆≤n<a+b∆

sη(T (n)) −
∑

0≤n<∆

sη(n).

Here, the second and third summand cancel: note that 0 ≤ T (n) ≤ n−a
b < ∆ for all a+(b−1)∆ ≤

n < a+b∆, and that T (n1) 6= T (n2) for distinct n1, n2 in this range (otherwise, n1 ≡ n2 (mod ∆),
which is impossible). Therefore, the second sum is just a permutation of the third. It remains to
compute

∑

a+(b−1)∆≤n<a+b∆

[n ≡ η (mod b)] =
∑

a+(b−1)∆≤η+mb<a+b∆

1 =

⌈

a− η

b

⌉

−

⌈

a− η − ∆

b

⌉

.

Likewise, we have

∑

−α<n<a+b∆

[n ≡ η (mod b)] =

⌈

a− η

b

⌉

+

⌈

α+ η

b

⌉

+ ∆ − 1

and
∑

−α<n<a+b∆

[n ≡ η + ∆ (mod b)] =

⌈

a− η − ∆

b

⌉

+

⌈

α+ η + ∆

b

⌉

+ ∆ − 1.

Summing up, we obtain

Gη(0) =

⌈

α+ η + ∆

b

⌉

−

⌈

α+ η

b

⌉

.

Since ρ1 = 1 + α+η
b −

⌈

α+η
b

⌉

and ρ2 = 1 + α+η+∆
b −

⌈

α+η+∆
b

⌉

, it finally follows that

Gη(0) − ρ1 + ρ2 =
∆

b
, (5.14)

as expected.
Inserting (5.14) in (5.12), we see that

C̃η,0 +
∑

n<∆

sη(n) = ∆Cη,0, (5.15)
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where Cη,0 has been defined in (2.8).
Combining (5.1), (5.13), (5.14), (5.15) and (2.10) yields (2.11).
Since Cη,k = O(k−3/2 log k), the Fourier series (2.10) converges uniformly, which immediately

implies that Φη is a continuous function. The periodicity of Φη is an immediate consequence of
the definition as a Fourier series. This concludes the proof of Theorem 4.

Remark. The calculation of the coefficient of N logbN in (5.13) was slightly tedious, which is a
bit embarrassing in view of the intuitively “obvious” result of ∆/b. Alternatively, one could find
out the value of Gη(0) − ρ1 + ρ2 by comparing (5.13) with some rougher estimates. However,
this is not painless, neither, since the special treatment of the most significant digits prohibits a
completely straightforward exactification of the “obvious” result.

6. Frequencies of Leading Digits — Proof of Theorem 5

This section is devoted to the proof of Theorem 5.
The distribution of the exceptional leading digit can be analysed by means of the Mellin-Perron

approach as well. However, it is also possible to obtain the asymptotic behaviour in a more
elementary way. Note that the leading digit of n equals η if and only if n can be written in the
form

n = ηbℓ + a ·
bℓ − 1

b− 1
+ ∆k

for some 0 ≤ k < bℓ. Thus, given the length ℓ, there are

min

(

1 +

⌊

N − a · bℓ−1
b−1 − ηbℓ

∆

⌋

, bℓ

)

numbers ≤ N with leading digit η as long as this is nonnegative. Now, we have

1 +

⌊

N − a · bℓ−1
b−1 − ηbℓ

∆

⌋

≥ bℓ

for

ℓ ≤ L(N) :=

⌊

logb

N + α+ ∆

η + α+ ∆

⌋

and we have

1 +

⌊

N − a · bℓ−1
b−1 − ηbℓ

∆

⌋

> 0

for

ℓ ≤M(N) :=

⌊

logb

N + α

η + α

⌋

.

Hence, the total number of occurrences of the leading digit η among all positive integers ≤ N is
given by

L(N)
∑

ℓ=0

bℓ +

M(N)
∑

ℓ=L(N)+1

(

1 +

⌊

N − a · bℓ−1
b−1 − ηbℓ

∆

⌋)

=
bL(N)+1 − 1

b− 1
+

M(N)
∑

ℓ=L(N)+1

N − (η + α) bℓ

∆
+O(logN)

=
bL(N)+1

b− 1
+

η + α

∆(b − 1)

(

bL(N)+1 − bM(N)+1
)

+
N

∆
(M(N) − L(N)) +O(logN).

Now write L(N) and M(N) as

L(N) = logb

N + α+ ∆

η + α+ ∆
−

{

logb

N + α+ ∆

η + α+ ∆

}

= logbN − logb (η + α+ ∆) − F1(N) +O(N−1)
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and

M(N) = logb

N + α

η + α
−

{

logb

N + α

η + α

}

= logbN − logb (η + α) − F2(N) +O(N−1),

where the abbreviations F1(N) =
{

logb
N+α+∆
η+α+∆

}

and F2(N) =
{

logb
N+α
η+α

}

are used. Then we

can express the average number of occurrences of η as first digit among the positive numbers ≤ N
in the form

1

N

(

η + α+ ∆

∆(b − 1)
bL(N)+1 −

η + α

∆(b − 1)
bM(N)+1 +

N

∆
(M(N) − L(N)) +O(logN)

)

=
b

∆(b− 1)

(

b−F1(N) − b−F2(N)
)

+
1

∆

(

logb

η + α+ ∆

η + α
+ F1(N) − F2(N)

)

+O(N−1 logN).

(6.1)

Now note that the 1-periodic function ψ(x) defined in (2.12) satisfies ψ(0) = limx→1− ψ(x) = b
b−1 ,

so it is continuous. It is differentiable in every non-integer point; at an integer point, left and right
derivatives exist (but are not equal). Thus ψ is Lipschitz-continuous. Hence we can rewrite (6.1)
in yet another form:

1

∆

(

ψ(F1(N)) − ψ(F2(N)) + logb

η + α+ ∆

η + α

)

+O(N−1 logN)

=
1

∆

(

ψ

(

logb

N + α+ ∆

η + α+ ∆

)

− ψ

(

logb

N + α

η + α

)

+ logb

η + α+ ∆

η + α

)

+O(N−1 logN)

=
1

∆

(

ψ (logb N − logb (η + α+ ∆)) − ψ (logbN − logb (η + α))

+ logb

η + α+ ∆

η + α

)

+O(N−1 logN)

= Ψη(logbN) +O(N−1 logN),

where Ψη is defined in (2.13). By the above noted properties of ψ, the function Ψη is also
continuous and 1-periodic. This completes the proof of Theorem 5.

7. Average Length — Proof of Theorem 6

This section is devoted to the proof of Theorem 6.
The proof runs along the lines of the proof of Theorem 4, but the technical details are slightly

simpler, so we only point out the modifications. The difference function fη(n) is replaced with

f(n) =

{

ℓ(n) − ℓ(n− ∆), if n ≥ ∆,

0, if n < ∆.

We have the recursion

ℓ(n) = 1 + ℓ(T (n)) for n > 0,

which implies that all subsequent conditional expressions depending on η vanish. For instance, we
simply have

f(n) = f

(

n− a

b

)

[n ≡ a (mod b)]

for n ≥ a+ b∆. Setting g(n) = f(n), we get

f(n) = f

(

n− a

b

)

[n ≡ a (mod b)] + g(n) [n < a+ b∆] .

for all n.
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We obtain

Λ(s) :=
∑

n>−α

f(n)

(n+ α)s
=

G(s)

1 − b−s
,

where G(s) =
∑

−α<n<a+b∆ f(n)(n+ α)−s.
Since we do not have to care about Hurwitz ζ functions in this case, the line of integration in

the Mellin-Perron formula can be shifted to, e.g., ℜs = −1.
Calculation of the asymptotic main term involves calculating G(0), which can be performed by

the same ideas as in the proof of Theorem 6.

8. Explicit Formula for the Average Length — Proof of Theorem 7

This section is devoted to the proof of Theorem 7.
In order to determine the sum

N
∑

n=1

ℓ(n),

we have to consider the three sums

N
∑

n=1
n≡0 (mod 3)

ℓ(n) =

⌊N/3⌋
∑

m=1

(

2
⌊

1
2 log2

3m+1
4

⌋

+ 1
)

N
∑

n=1
n≡1 (mod 3)

ℓ(n) =

⌊(N−1)/3⌋
∑

m=1

2
⌊

1
2 log2

3m+2
2

⌋

and
N
∑

n=1
n≡2 (mod 3)

ℓ(n) =

⌊(N−2)/3⌋
∑

m=1

⌊log2(m+ 1)⌋ .

Sums like
M
∑

m=1

⌊

1
2 log2

3m+1
4

⌋

can be determined by means of partial summation (cf. [7, § 1.2.4, Ex. 42 (b)]):

M
∑

m=1

⌊

1
2 log2

3m+1
4

⌋

= M
⌊

1
2 log2

3M+1
4

⌋

−
M−1
∑

k=1

k
(⌊

1
2 log2

3k+4
4

⌋

−
⌊

1
2 log2

3k+1
4

⌋)

= M
⌊

1
2 log2

3M+1
4

⌋

−
M−1
∑

k=1

k
[

k = 4(4a−1)
3 for some a ∈ N

]

= M
⌊

1
2 log2

3M+1
4

⌋

−

⌊ 1
2

log2
3M+1

4 ⌋
∑

a=1

4(4a−1)
3

= (M + 4
3 )
⌊

1
2 log2

3M+1
4

⌋

− 16
9

(

4

j

1
2 log2

3M+1
4

k

− 1
)

.

Noting that
⌊

1
2 log2

3⌊N/3⌋+1
4

⌋

=
⌊

1
2 log2

N+1
4

⌋

for all positive integers N , we obtain the following expression for the first sum:

N
∑

n=1
n≡0 (mod 3)

ℓ(n) = 2
(⌊

N
3

⌋

+ 4
3

) ⌊

1
2 log2

N+1
4

⌋

− 32
9

(

4

j

1
2 log2

N+1
4

k

− 1
)

+
⌊

N
3

⌋

.
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The two other sums are determined in an analogous manner, yielding the explicit formula

N
∑

n=1

ℓ(n) = 2
(⌊

N
3

⌋

+ 4
3

) ⌊

1
2 log2

N+1
4

⌋

+ 2
(⌊

N−1
3

⌋

+ 5
3

) ⌊

1
2 log2

N+1
2

⌋

+
⌊

N+4
3

⌋ ⌊

log2
N+1

3

⌋

+
⌊

N
3

⌋

− 32
9 · 4

j

1
2 log2

N+1
4

k

− 16
9 · 4

j

1
2 log2

N+1
2

k

− 2 · 2

j

log2

N+1
3

k

+ 22
3 ,

which can be rewritten to (2.17).

9. Conclusion

There are several interesting questions that were not addressed in this paper, in order to keep
the length of the paper within a reasonable range. We mention: counting occurrences of blocks
(counting digits is the special case of blocks of length 1), negative digits, and larger digit sets,
leading to redundant representations. We leave these for further research.
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