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Abstract. In a recent paper, the authors of this note determined the
trees of given maximum degree which maximize the number of inde-
pendent vertex subsets and minimize the number of independent edge
subsets respectively. It turned out that some kind of digit representa-
tion plays a major role in the characterization of the optimal trees. In
the current paper, we study the asymptotic behavior of the optimal pa-
rameter values. It turns out that they increase exponentially, but with
fluctuations which can be described by means of the aforementioned
digit system.

1. Introduction

Characterizing the graphs or trees which maximize or minimize a certain
graph parameter is a problem that has already been the topic of a vast amount
of papers, see for instance [5, 10, 11, 14]. Most typically, the extremal values
of a graph parameter among all trees of a prescribed size are given for the
star and the path respectively. Among others, this is the case for the number
of independent vertex subsets and the number of independent edge subsets,
which will be discussed in the current work. An exception to this rule is the
number of maximal independent sets (cf. Wilf [14]). If the maximum degree
is bounded above, the path stays extremal, of course, but the star does not
for obvious reasons. However, this is a pretty natural restriction not only for
theoretical considerations, but also for applications: several graph parameters
are known to be of interest in theoretical chemistry, where they are used for
predicting the behavior of molecules [2, 3, 4, 8].

In recent articles of Székely and Wang [12, 13], binary trees maximizing
the number of subtrees are determined and formulæ for the resulting maximal
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numbers are given. Similarly, the authors of this paper investigated the num-
ber of independent vertex subsets and edge subsets for trees with bounded
maximum degree. The results are quite surprising—in particular, the follow-
ing theorem [7] was proved:

Theorem 1. Let n be a positive integer and d ≥ 2. Then there is a unique
(up to isomorphism) tree Xn with n vertices and maximum degree ≤ d + 1
that maximizes the number of independent vertex subsets; the same tree also
minimizes the number of independent edge subsets. It can be decomposed as

M0,1 M0,d−1· · · Mℓ−1,1 Mℓ−1,d−1· · · Mℓ,1 Mℓ,d−1· · · Mℓ,d

· · ·

with Mk,1, . . . , Mk,d−1 ∈ {Ck, Ck+2} for 0 ≤ k < ℓ and either Mℓ,1 =
· · · = Mℓ,d = Cℓ−1 or Mℓ,1 = · · · = Mℓ,d = Cℓ or Mℓ,1, . . . , Mℓ,d ∈
{Cℓ, Cℓ+1, Cℓ+2}, where at least two of Mℓ,1, . . . , Mℓ,d equal Cℓ+1. Here, Ch

denotes the complete d-ary tree of height h − 1 (and C0 is the empty graph).

It was also shown that there is a natural connection to digital systems : if
ak denotes the number of Mk,js which are isomorphic to Ck+2, and if ãℓ is
the number of Mℓ,js which are isomorphic to Cℓ+1, we have

(1) n =
ℓ−1
∑

k=0

(1 + (d + 1)ak)dk + (1 + ãℓ + (d + 1)aℓ)d
ℓ +

dℓ − 1

d − 1
.

In the case that Mℓ,1 = · · · = Mℓ,d = Cℓ−1, we set aℓ = 0 and ãℓ = −1.
It follows immediately that ak is uniquely determined by the remainder of
(d−1)n modulo dk+1. The numbers ak (or 1+(d+1)ak) can thus be interpreted
as digits. Indeed, any positive integer n can be written uniquely in the form
(1).

However, nice explicit formulæ (as in the aforementioned papers of Székely
and Wang) for the corresponding extremal values of the two graph parame-
ters do not exist. In this paper, the asymptotic behavior of the number of
independent vertex subsets and independent edge subsets of Xn is exhibited.
The main result is the following:

Theorem. Let σ(Xn) and Z(Xn) denote the number of independent vertex
subsets and independent edge subsets of Xn respectively. There exist constants
β = β(d) and δ = δ(d), such that

σ(Xn) = ρnβ(d−1)n and Z(Xn) = τnδ(d−1)n,

where ρn and τn are bounded above and below by positive constants depending
only on d.



ASYMPTOTICS OF EXTREMAL GRAPH PARAMETERS 3

The values ρn and τn depend on the digits ak in representation (1) in a
rather complicated way. It is shown, though, that ρn is Cesàro-convergent for
d ≤ 4 and that τn is Cesàro-convergent for arbitrary d.

2. Notation and Preliminaries

Definition 2.1. (1) Let G be a graph. Then σ(G) is defined to be the
number of independent vertex subsets of G, and Z(G) is the number
of independent edge subsets (matchings) of G.

(2) For a rooted tree T with root v, we also define σ0(T ) to be the number
of independent vertex subsets of T not containing the root v and σ1(T )
to be the number of independent vertex subsets of T containing the
root v. Analogously, Z0(T ) denotes the number of independent edge
subsets of T not containing an edge incident with the root v, and
Z1(T ) the number of independent edge subsets of T containing an
edge incident with the root v.

Note that we do not mention the root v in the notations σ0(T ), σ1(T ),
Z0(T ) and Z1(T ) since the roots will usually be anonymous.

The empty set is always an independent (vertex or edge) subset of G, even
if G is the empty graph. Therefore, σ(G) and Z(G) are always positive.

v1 v2 vk

v

T1 T2 Tk
. . .

Figure 1. Rooted tree with branches

For a rooted tree T with root v, the connected components T1, . . . , Tk of
T − v are called the branches of v, cf. Figure 1. Taking the neighbor vj of v
contained in Tj as root of Tj, Tj is again a rooted tree.

The following recursive formulæ are essential, but easy to prove (see for
instance [4]), and will be used throughout the paper without specific reference.

Lemma 2.2. Let T be a rooted tree with root v and branches T1, . . . , Tk.
Then

σ0(T ) =

k
∏

j=1

σ(Tj),
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σ1(T ) =

k
∏

j=1

σ0(Tj),

Z0(T ) =

k
∏

j=1

Z(Tj),

Z1(T ) = Z0(T )

k
∑

j=1

Z0(Tj)

Z(Tj)
.

Since complete d-ary trees play a major role in the description of the op-
timal trees, we will need the asymptotics of σ(Ch) and Z(Ch). The former
has been studied in a paper of Kirschenhofer, Prodinger and Tichy [9]—their
result is the following:

Proposition 2.3. The number of independent vertex subsets of a complete
d-ary tree of height h − 1 is

sh := σ(Ch) = αh · β(d)dh

for a constant β(d), and the limits

lim
k→∞

α2k = A0(d) > 0 and lim
k→∞

α2k+1 = A1(d) > 0

exist. For d ≤ 4, A0(d) = A1(d) =: A(d).

Remark 2.4. From Lemma 2.2, it is clear that

sh = sd
h−1 + sd2

h−2,

and so the constants A0 = A0(d) and A1 = A1(d) satisfy the equations

(2) A0 = Ad
1 + Ad2

0 and A1 = Ad
0 + Ad2

1 .

From this, it also follows that 0 < A0, A1 < 1. However, we need a refinement
of this result for our purposes, which is given in the following proposition.

Proposition 2.5. With αh and A0, A1 as in Proposition 2.3, we have

α2k = A0 + O(Bk) and α2k+1 = A1 + O(Bk)

for a constant B = B(d) < 1.

Proof. Let φh = αhα−d
h−1 = shs−d

h−1. Then we have

φh = 1 + φ−d
h−1.

It has already been shown in [9] that φ2k is increasing, φ2k+1 is decreasing
and φ2k < φ2k+1 for all k. Hence, the two sequences converge to limits p0

and p1 respectively, where p0 ≤ p1, p0 = 1 + p−d
1 and p1 = 1 + p−d

0 . If
Φ(x) := 1 + (1 + x−d)−d, then φ2k+2 = Φ(φ2k) and φ2k+1 = Φ(φ2k−1), so p0

and p1 are fixed points of the map x 7→ Φ(x). If we can show that |Φ′(p0)|
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and |Φ′(p1)| are both less than 1, then Φ is a contraction in a neighborhood
of p0 and p1 respectively, and we have

φ2k = p0 + O(Bk) and φ2k+1 = p1 + O(Bk)

for some constant 0 < B < 1 that depends only on Φ (and thus on d). To
this end, consider the derivative of Φ(x), which is given by

Φ′(x) = d2x−d−1(1 + x−d)−d−1.

We want to show that

d2p−d−1
0 (1 + p−d

0 )−d−1 < 1 and d2p−d−1
1 (1 + p−d

1 )−d−1 < 1.

Note that since p0 = 1 + p−d
1 and p1 = 1 + p−d

0 , the two values are actually
equal. Since we have monotonous convergence to the points p0, p1, we know
that the derivative cannot be > 1, so it remains to rule out the case that it is
equal to 1, i.e., to prove that there is no solution to the system

p0 = 1 + p−d
1 , p1 = 1 + p−d

0 and (p0p1)
d+1 = d2.

This can be achieved as follows: from the first two equations, we deduce

(p0p1)
d =

1

(p0 − 1)(p1 − 1)

and thus

d2 = (p0p1)
d+1 =

p0p1

(p0 − 1)(p1 − 1)
.

It follows that p0 + p1 = (1− d−2)p0p1 + 1 = (1− d−2)d2/(d+1) + 1, so that p0

and p1 have to be the solutions of the quadratic equation

u2 −
(

(1 − d−2)d2/(d+1) + 1
)

u + d2/(d+1),

which are given by

1

2

(

(1 − d−2)d2/(d+1) + 1 ±
√

(

(1 − d−2)d2/(d+1) + 1
)2 − 4d2/(d+1)

)

.

p0 is the smaller of the two (it is trivial to rule out the case p0 = p1 = d1/(d+1)).
Now we claim that

(3)

√

(

(1 − d−2)d2/(d+1) + 1
)2 − 4d2/(d+1) ≥ (1 − d−2)d2/(d+1) − 1 − 2d−1

for d ≥ 6. To show this, note first that
(

(1 − d−2)d2/(d+1) + 1
)2

−4d2/(d+1) =
(

(1 − d−2)d2/(d+1) − 1
)2

−4d−2d/(d+1).

Of course, we only have to consider the case that the radicand and the right
hand side in (3) are positive. Thus, squaring the inequality (3) shows that it
is equivalent to

4d−1
(

(1 − d−2)d2/(d+1) − 1
)

≥ 4d−2d/(d+1) + 4d−2.
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We multiply by d1−2/(d+1)/4 and rearrange the summands to get

1 ≥ d−2/(d+1) + d−1 + d−1−2/(d+1) + d−2 = (1 + d−1)(d−1 + d−2/(d+1)).

This is equivalent to

d2/(d+1) ≥ 1 +
1 + 2d

d2 − d − 1
,

which can be strengthened to

2 log d

d + 1
≥ 1 + 2d

d2 − d − 1
,

and this is true for d ≥ 6. Now we get

p0 ≤ 1

2

(

(1 − d−2)d2/(d+1) + 1 − (1 − d−2)d2/(d+1) + 1 + 2d−1
)

= 1 + d−1 ≤ exp
(

d−1
)

,

and it follows that
1 + p−d

0 ≥ 1 + e−1.

On the other hand,

p1 =
1

2

(

(1 − d−2)d2/(d+1) + 1 +

√

(

(1 − d−2)d2/(d+1) − 1
)2 − 4d−2d/(d+1)

)

≤ 1

2

(

(1 − d−2)d2/(d+1) + 1 + (1 − d−2)d2/(d+1) − 1
)

≤ d2/(d+1),

and since d2/(d+1) < 1 + e−1 for d ≥ 18, this yields a contradiction. For the
remaining values 2 ≤ d ≤ 17, it can be checked directly that the equation
1 + p−d

0 = p1 is not satisfied. Therefore, our estimate for φh is proved.
Now note that

log sh = d log sh−1 + log φh

from which we deduce, by iteration,

log sh = dh log s0 +

h
∑

k=1

dh−k log φk = dh
∞
∑

k=1

d−k log φk −
∞
∑

k=h+1

dh−k log φk,

and finally

β = exp

( ∞
∑

k=1

d−k log φk

)

and

αh = exp

(

−
∞
∑

k=1

d−k log φh+k

)

= exp

(

−
∞
∑

k=1

d−2k+1
(

log p1 + O(Bh+2k)
)

−
∞
∑

k=1

d−2k
(

log p0 + O(Bh+2k)
)

)
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= exp

(

− d

d2 − 1
log p1 −

1

d2 − 1
log p0 + O(Bh)

)

= (pd
1p0)

−1/(d2−1) + O(Bh) = A0 + O(Bh)

for even h and analogously

αh = (pd
0p1)

−1/(d2−1) + O(Bh) = A1 + O(Bh)

for odd h, which proves our claim. �

To the best of our knowledge, the asymptotic behavior of Z(Ch) does not
appear in the literature, so we give a short proof for it (the treatment is even
easier than in the case of independent vertex subsets).

Proposition 2.6. The number of independent edge subsets of a complete
d-ary tree of height h − 1 is

zh := Z(Ch) ∼ γ(d) · δ(d)dh

for constants γ(d), δ(d), where

γ(d) =
(1 +

√
4d + 1

2

)−1/(d−1)

.

Proof. Lemma 2.2 readily yields the recursion

zh = zd
h−1 + dzd−1

h−1z
d
h−2

with initial values z0 = z1 = 1. Now, write yh = zhz−d
h−1. Then the recurrence

formula transforms to

yh = 1 +
d

yh−1
,

and straightforward induction (note that y1 = 1) yields

yh =
uh+1 − vh+1

uh − vh
,

where u := 1+
√

4d+1
2 and v := 1−

√
4d+1
2 , so yh tends to u = 1+

√
4d+1
2 . Iterating

zh = zd
h−1yh = zd2

h−2y
d
h−1yh = . . . gives

zh =

h
∏

k=1

ydh−k

k .

Now we take logarithms again, the usual method in the analysis of polynomial
recurrences (see [1]):

log zh = dh
h
∑

k=1

d−k log yk

= dh
∞
∑

k=1

d−k log yk − dh
∞
∑

k=h+1

d−k log yk
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= dhC(d) − dh
∞
∑

k=h+1

d−k log yk.

C(d) is a constant depending only on d—the sum converges since yk tends to
a limit and is thus bounded. Now

yk =
uk+1 − vk+1

uk − vk
= u + (u − v) · vk

uk − vk
= u + O

(∣

∣

∣

v

u

∣

∣

∣

k)

and thus

dh
∞
∑

k=h+1

d−k log yk = dh
∞
∑

k=h+1

(

d−k log u + O
(∣

∣

∣

v

ud

∣

∣

∣

k)
)

=
log u

d − 1
+ O

(
∣

∣

∣

v

u

∣

∣

∣

h)

.

Therefore,

zh = exp
(

C(d) · dh − log u

d − 1
+ O

(∣

∣

∣

v

u

∣

∣

∣

h))

,

and the proposition follows. �

3. Asymptotics for the optimal tree

Now, in order to obtain the asymptotic number of independent (vertex or
edge) subsets of the tree described in Theorem 1, we first consider a slightly
simpler tree defined as follows:

Definition 3.1. Let T (a0, a1, . . . , aℓ) (0 ≤ ak < d) be the tree that can be
decomposed as

M0,1 M0,d−1· · · Mℓ−1,1 Mℓ−1,d−1· · · Mℓ,1 Mℓ,d−1· · ·

· · ·

with Mk,1, . . . , Mk,ak
= Ck+2 and Mk,ak+1, . . . , Mk,d−1 = Ck.

Then we have, by Lemma 2.2,

(4) σ(T (a0, . . . , aℓ)) = σ(Cℓ)
d−1−aℓσ(Cℓ+2)

aℓσ(T (a0, . . . , aℓ−1))

+ σ(Cℓ−1)
d−1−aℓ−1σ(Cℓ+1)

aℓ−1σ0(Cℓ)
d−1−aℓσ0(Cℓ+2)

aℓσ(T (a0, . . . , aℓ−2))

and

Z(T (a0, . . . , aℓ)) = Z(Cℓ)
d−1−aℓZ(Cℓ+2)

aℓ

×
(

1 +
(d − 1 − aℓ)Z0(Cℓ)

Z(Cℓ)
+

aℓZ0(Cℓ+2)

Z(Cℓ+2)

)

Z(T (a0, . . . , aℓ−1))
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+ Z(Cℓ−1)
d−1−aℓ−1Z(Cℓ+1)

aℓ−1Z(Cℓ)
d−1−aℓZ(Cℓ+2)

aℓZ(T (a0, . . . , aℓ−2)).

Furthermore, denote the tree that maximizes σ and minimizes Z by Xn as in
Theorem 1, and take ak and ãℓ as in (1). We have the following formula for
the number of independent vertex subsets of Xn:

σ(Xn) = σ(Cℓ)
d−aℓ−ãℓσ(Cℓ+1)

ãℓσ(Cℓ+2)
aℓσ(T (a0, . . . , aℓ−1))

+ σ(Cℓ−1)
d−1−aℓ−1σ(Cℓ+1)

aℓ−1σ0(Cℓ)
d−aℓ−ãℓ

× σ0(Cℓ+1)
ãℓσ0(Cℓ+2)

aℓσ(T (a0, . . . , aℓ−2))

(5)

in the case that ãℓ 6= −1 and

σ(Xn) = σ(Cℓ−1)
dσ(T (a0, . . . , aℓ−1))

+ σ0(Cℓ−1)
dσ(Cℓ−1)

d−1−aℓ−1σ(Cℓ+1)
aℓ−1σ(T (a0, . . . , aℓ−2))

otherwise. On the other hand, the number of independent edge subsets of Xn

is given by

Z(Xn) =

(

1 +
(d − aℓ − ãℓ)Z0(Cℓ)

Z(Cℓ)
+

ãℓZ0(Cℓ+1)

Z(Cℓ+1)
+

aℓZ0(Cℓ+2)

Z(Cℓ+2)

)

× Z(Cℓ)
d−aℓ−ãℓZ(Cℓ+1)

ãℓZ(Cℓ+2)
aℓZ(T (a0, . . . , aℓ−1))

+ Z(Cℓ−1)
d−1−aℓ−1Z(Cℓ+1)

aℓ−1

× Z(Cℓ)
d−aℓ−ãℓZ(Cℓ+1)

ãℓZ(Cℓ+2)
aℓZ(T (a0, . . . , aℓ−2))

for ãℓ 6= −1 and

Z(Xn) =
(

Z(Cℓ−1)
d + dZ0(Cℓ−1)Z(Cℓ−1)

d−1
)

Z(T (a0, . . . , aℓ−1))

+ Z(Cℓ−1)
d−1−aℓ−1Z(Cℓ+1)

aℓ−1Z(Cℓ−1)
dZ(T (a0, . . . , aℓ−2))

otherwise. The first step in the derivation of the desired asymptotics is the
following proposition:

Proposition 3.2. Define λ(a0, . . . , aℓ) by

σ(T (a0, a1, . . . , aℓ)) = λ(a0, . . . , aℓ) · β(d−1)
P

ℓ

k=0
(1+(d+1)ak)dk

with β = β(d) as in Proposition 2.3. Then λ(a0, . . . , aℓ) is uniformly bounded
above and below by positive constants. Furthermore, for d ≤ 4, one can write

λ(a0, . . . , am) =

m
∑

k=0

µ(a0, . . . , ak),

where
|µ(a0, . . . , ak)| ≤ CσDk

σ

holds for absolute constants Cσ = Cσ(d) > 0 and 0 < Dσ = Dσ(d) < 1
depending only on d. Similarly,

Z(T (a0, a1, . . . , aℓ)) = ζ(a0, . . . , aℓ) · δ(d−1)
P

ℓ

k=0
(1+(d+1)ak)dk
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with δ = δ(d) as in Proposition 2.6, and the decomposition

ζ(a0, . . . , am) =
m
∑

k=0

ξ(a0, . . . , ak),

holds for arbitrary d, where

|ξ(a0, . . . , ak)| ≤ CZDk
Z

holds for absolute constants CZ = CZ(d) > 0 and 0 < DZ = DZ(d) < 1
depending only on d.

Proof. We only give a proof for λ(a0, a1, . . . , aℓ), since the second part can
be proved along the same lines (and is even easier). Noting that σ0(Ck) =
σ(Ck−1)

d, Proposition 2.3, together with formula (4), shows that

λ(a0, . . . , aℓ) · β(d−1)
P

ℓ

k=0
(1+(d+1)ak)dk

=

αd−1−aℓ

ℓ β(d−1−aℓ)d
ℓ

αaℓ

ℓ+2β
aℓdℓ+2

λ(a0, . . . , aℓ−1)β
(d−1)

P

ℓ−1

k=0
(1+(d+1)ak)dk

+ α
d−1−aℓ−1

ℓ−1 β(d−1−aℓ−1)d
ℓ−1

α
aℓ−1

ℓ+1 βaℓ−1dℓ+1

α
d(d−1−aℓ)
ℓ−1 β(d−1−aℓ)d

ℓ

αdaℓ

ℓ+1β
aℓdℓ+2

× λ(a0, . . . , aℓ−2) · β(d−1)
P

ℓ−2

k=0
(1+(d+1)ak)dk

or

(6) λ(a0, . . . , aℓ) = αd−1−aℓ

ℓ αaℓ

ℓ+2λ(a0, . . . , aℓ−1)

+ α
d−1−aℓ−1+d(d−1−aℓ)
ℓ−1 α

aℓ−1+daℓ

ℓ+1 λ(a0, . . . , aℓ−2).

Next we show that λ(a0, a1, . . . , aℓ−1) is bounded above and below by positive
constants. Let us assume that a0, a1, . . . is a given infinite sequence; using the
abbreviations xm = λ(a0, a1, . . . , a2m−1), ym = λ(a0, a1, . . . , a2m) and

r1,m = α
d−1−a2m−1

2m−1 α
a2m−1

2m+1 ,

r2,m = α
d−1−a2m−2+d(d−1−a2m−1)
2m−2 α

a2m−2+da2m−1

2m ,

r3,m = αd−1−a2m

2m αa2m

2m+2,

r4,m = α
d−1−a2m−1+d(d−1−a2m)
2m−1 α

a2m−1+da2m

2m+1 ,

one obtains

xm = r1,mym−1 + r2,mxm−1 and ym = r3,mxm + r4,mym−1.

Hence, if Rm is the matrix

Rm :=

(

r2,m r1,m

r2,mr3,m r1,mr3,m + r4,m

)

,

and xm = (xm, ym)T , we have

xm = Rmxm−1.
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From Proposition 2.3, it follows that

r1,m = Ad−1
1 + O(Bm),

r2,m = Ad2−1
0 + O(Bm),

r3,m = Ad−1
0 + O(Bm),

r4,m = Ad2−1
1 + O(Bm),

where the implied constants are independent of a0, a1, . . .. It follows that

Rm =

(

Ad2−1
0 Ad−1

1

Ad2+d−2
0 (A0A1)

d−1 + Ad2−1
1

)

+ O(Bm).

The limit matrix R = limm→∞ Rm has characteristic polynomial

t2 − ((A0A1)
d−1 + Ad2−1

0 + Ad2−1
1 )t + (A0A1)

d2−1.

Multiplying the equations for A0 and A1 in (2), we obtain

A0A1(1 − Ad2−1
0 )(1 − Ad2−1

1 ) = (A0A1)
d

or

1 − ((A0A1)
d−1 + Ad2−1

0 + Ad2−1
1 ) + (A0A1)

d2−1 = 0,

which shows that 1 is an eigenvalue of R. The other eigenvalue is (A0A1)
d2−1,

which lies between 0 and 1. Furthermore, note that R and all Rm have
only positive entries. Therefore, there is a real number ǫ > 0 such that the
inequality

|R − Rm| < ǫBm · R
holds componentwise. Choose m0 large enough such that 1 − ǫBm > 0 for
m > m0. Then we have

(1 − ǫBm)R ≤ Rm ≤ (1 + ǫBm)R

for m > m0 and therefore
(

m
∏

k=m0+1

(1 − ǫBk)

)

Rm−m0Rm0
Rm0−1 . . . R1x0

≤ RmRm−1 . . . R1x0 = xm ≤
(

m
∏

k=m0+1

(1 + ǫBk)

)

Rm−m0Rm0
Rm0−1 . . . R1x0,

where the inequalities hold in both components again. Since the products
are bounded and Rm−m0 converges to a positive limit matrix in view of its
eigenvalues, this shows that the components of xm can be bounded above and
below by absolute positive constants independent of a0, a1, . . . (and depending
only on d).
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For d ≤ 4, this can be refined as follows: we set wm = λ(a0, a1, . . . , am)
and have

wm = t1,mwm−1 + t2,mwm−2,

where

t1,m = αd−1−am

m αam

m+2

and

t2,m = α
d−1−am−1+d(d−1−am)
m−1 α

am−1+dam

m+1 .

From Proposition 2.3, we know that t1,m = Ad−1 + O(Bm/2) and t2,m =

Ad2−1 + O(Bm/2). Therefore,

(7) wm − Ad−1wm−1 − Ad2−1wm−2 = ηm,

where ηm = (t1,m − Ad−1)wm−1 + (t2,m − Ad2−1)wm−2 = O(Bm/2) for m ≥
2. All estimates are uniform in a0, a1, . . . again. Additionally, we set T1 =

Ad−1, T2 = Ad2−1, w−1 = w−2 = 0, η0 = w0 and η1 = w1 − T1w0, so that
equation (7) is valid for all m ≥ 0. In terms of the generating functions
W (t) =

∑

m≥0 wmtm and H(t) =
∑

m≥0 ηmtm, the recurrence becomes

W (t) =
H(t)

1 − T1t − T2t2
.

Note that the equations in (2) imply that T1 + T2 = Ad−1 + Ad2−1 = 1 and
0 < T1, T2 < 1. The partial fraction decomposition

1

1 − T1t − T2t2
=

1

1 + T2

(

1

1 − t
+

T2

1 + T2t

)

yields

W (t) =
H(t)

(1 + T2)(1 − t)
+

T2H(t)

(1 + T2)(1 + T2t)

or

wm =
1

1 + T2

m
∑

k=0

ηk +
T2

1 + T2

m
∑

k=0

(−T2)
m−kηk.

Therefore,

µ(a0, a1, . . . , am) := wm − wm−1 =

m
∑

k=0

(−T2)
m−kηk.

Since 0 < T2 < 1, and since ηk also decreases exponentially, we have

|µ(a0, a1, . . . , am)| ≤ CσDm
σ

for certain constants Cσ, Dσ. This finishes the proof of Proposition 3.2. �
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Now, let n be a positive integer, and take ak ≥ 0 (0 ≤ k ≤ ℓ) and ãℓ ≥ −1
as in (1). Then, (5) translates to

σ(Xn) = αd−aℓ−ãℓ

ℓ β(d−aℓ−ãℓ)d
ℓ

αãℓ

ℓ+1β
ãℓdℓ+1

αaℓ

ℓ+2β
aℓdℓ+2

× λ(a0, . . . , aℓ−1)β
(d−1)

P

ℓ−1

k=0
(1+(d+1)ak)dk

+ α
d−1−aℓ−1

ℓ−1 β(d−1−aℓ−1)d
ℓ−1

α
aℓ−1

ℓ+1 βaℓ−1dℓ+1

× α
d(d−aℓ−ãℓ)
ℓ−1 β(d−aℓ−ãℓ)d

ℓ

αdãℓ

ℓ βãℓdℓ+1

αdaℓ

ℓ+1β
aℓdℓ+2

× λ(a0, . . . , aℓ−2)β
(d−1)

P

ℓ−2

k=0
(1+(d+1)ak)dk

=
(

αd−aℓ−ãℓ

ℓ αãℓ

ℓ+1α
aℓ

ℓ+2λ(a0, . . . , aℓ−1)

+ α
d−1−aℓ−1

ℓ−1 α
aℓ−1

ℓ+1 α
d(d−aℓ−ãℓ)
ℓ−1 αdãℓ

ℓ αdaℓ

ℓ+1λ(a0, . . . , aℓ−2)
)

β(d−1)n+1

(8)

for α̃l 6= −1. In the special case that Mℓ,1 = · · · = Mℓ,d = Cℓ−1, aℓ = 0 and
ãℓ = −1, we obtain analogously

(9) σ(Xn) =
(

αd
ℓ−1λ(a0, . . . , aℓ−1) + αd2

ℓ−2α
d−1−aℓ−1

ℓ−1 α
aℓ−1

ℓ+1 λ(a0, . . . , aℓ−2)
)

× β(d−1)n+1.

Hence we have proved the following theorem:

Theorem 2. The number of independent vertex subsets of the optimal tree
Xn is

σ(Xn) = ρnβ(d−1)n

with β = β(d) as in Proposition 2.3, where ρn is bounded above and below by
positive constants which depend only on d.

For d ≤ 4, this can be refined once again:

Theorem 3. If d ≤ 4, the sequence ρn is Cesàro summable, i.e.

lim
N→∞

1

N

N
∑

n=1

ρn

exists.

Proof. From formulas (8) and (9) for σ(Xn), it follows that

ρn = β
(

Adλ(a0, . . . , aℓ−1) + Ad2+d−1λ(a0, . . . , aℓ−2)
)

+ O(Bℓ/2),

regardless of which of the two cases holds. Now, we make use of the sum
representation for λ(a0, . . . , aℓ):

ρn = βAd
ℓ−1
∑

k=0

µ(a0, . . . , ak) + βAd2+d−1
ℓ−2
∑

k=0

µ(a0, . . . , ak) + O(Bℓ/2).
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Note that ℓ = logd n + O(1). First of all, this means that the error term sums
to

O

(

N
∑

n=1

Blog
d

n/2

)

= O

(

N
∑

n=1

nlog B/(2 log d)

)

= O
(

N1+log B/(2 log d)
)

= o(N).

Now, set L = ⌊ 1
2 logd N⌋, and let N1 be the largest number such that the

representation of N1 according to equation (1) has length < L. Furthermore,
N2 denotes the largest multiple of dL less or equal to N . We divide the sum
∑N

n=1 ρn into three parts:

• First of all,
N1
∑

n=1

ρn ≪ N1 ≪ dL ≪
√

N.

• Moreover,
N
∑

n=N2+1

ρn ≪ dL ≪
√

N.

• Finally, since a0, a1, . . . , aL−1 only depend on n modulo dL, and since
we know that µ(a0, a1, . . . , ak) = O(Dk

σ), we have

N2
∑

n=N1+1

ρn = β(Ad + Ad2+d−1)
N2

dL

∑

0≤a0,a1,...,aL−1<d

L−1
∑

k=0

µ(a0, . . . , ak)

+ O(N1) + O(N2D
L
σ ).

Combining all the estimates, we obtain

1

N

N
∑

n=1

ρn = β(Ad + Ad2+d−1)
1

dL

∑

0≤a0,a1,...,aL−1<d

L−1
∑

k=0

µ(a0, . . . , ak)

+ O(N−1/2 + D
1
2

log
d

N
σ + N log B/(2 log d))

= β(Ad + Ad2+d−1)

L−1
∑

k=0

1

dk+1

∑

0≤a0,a1,...,ak<d

µ(a0, . . . , ak)

+ O(N−1/2 + D
1
2

log
d

N
σ + N log B/(2 log d)).

Hence, as N → ∞,
(10)

lim
N→∞

1

N

N
∑

n=1

ρn = β(Ad + Ad2+d−1)

∞
∑

k=0

1

dk+1

∑

0≤a0,a1,...,ak<d

µ(a0, . . . , ak).

�
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The same theorem holds (with an analogous proof) for Z(Xn) (and arbi-
trary d):

Theorem 4. The number of independent edge subsets of the optimal tree Xn

is

Z(Xn) = τnδ(d−1)n

with δ = δ(d) as in Proposition 2.6, where τn is bounded above and below
by positive constants which depend only on d. Furthermore, τn is Cesàro
summable.

Note that Theorem 3 is not correct for d > 4: this is due to the fact that
α̃ℓ and thus the most significant digit in the representation (1) is relevant
(also from an asymptotic point of view) for the value of ρn, and this digit
is, unlike the least significant digit, not uniformly distributed (cf. [6]). This
phenomenon leads to tiny fluctuations in the Cesàro means; however, the
restricted means over all n such that α̃ℓ is fixed converge by almost the same
argument (Proposition 3.2 has to be refined for this purpose as well) as in the
proof of Theorem 3.

Equation (10) is useful for the proof of convergence, but not for actually
computing the value of limN→∞

1
N

∑n
n=1 ρn. For this purpose, we rewrite it

once again:

lim
N→∞

1

N

N
∑

n=1

ρn = β(Ad + Ad2+d−1) lim
L→∞

L
∑

k=0

1

dk+1

∑

0≤a0,a1,...,ak<d

µ(a0, . . . , ak)

= β(Ad + Ad2+d−1) lim
L→∞

d−L−1
∑

0≤a0,a1,...,aL<d

L
∑

k=0

µ(a0, . . . , ak)

= β(Ad + Ad2+d−1) lim
L→∞

d−L−1
∑

0≤a0,a1,...,aL<d

λ(a0, . . . , aL).

Now, set Sℓ :=
∑

0≤a0,a1,...,aℓ<d λ(a0, . . . , aℓ). Then we can deduce a recur-

rence formula for Sℓ from (6):

Sℓ =
∑

0≤a0,a1,...,aℓ<d

λ(a0, . . . , aℓ)

=

d−1
∑

aℓ=0

∑

0≤a0,a1,...,aℓ−1<d

αd−1−aℓ

ℓ αaℓ

ℓ+2λ(a0, . . . , aℓ−1)

+
d−1
∑

aℓ=0

d−1
∑

aℓ−1=0

∑

0≤a0,a1,...,aℓ−2<d

α
d−1−aℓ−1+d(d−1−aℓ)
ℓ−1 α

aℓ−1+daℓ

ℓ+1 λ(a0, . . . , aℓ−2)
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=

d−1
∑

aℓ=0

αd−1−aℓ

ℓ αaℓ

ℓ+2Sℓ−1 +

d−1
∑

aℓ=0

α
d(d−1−aℓ)
ℓ−1 αdaℓ

ℓ+1

d−1
∑

aℓ−1=0

α
d−1−aℓ−1

ℓ−1 α
aℓ−1

ℓ+1 Sℓ−2

and finally

(11) Sℓ =
αd

ℓ − αd
ℓ+2

αℓ − αℓ+2
Sℓ−1 +

αd2

ℓ−1 − αd2

ℓ+1

αℓ−1 − αℓ+1
Sℓ−2.

This enables us to compute numerical values of the Cesàro means in an effec-
tive way; the result of the numerical computations in the case d = 2 is given
in the following section. Note also that an analogous formula can be proved
for
∑

0≤a0,a1,...,aℓ<d ζ(a0, . . . , aℓ).

4. Final remarks and numerical results

In this final section, we provide some numerical data for the most important
constants given in the previous section, namely ρn, τn and their Cesàro means.
Figure 2 shows a plot of ρn in the case d = 2—the different branches that
can be observed correspond to specific choices for the “least significant digits”
a0, a1, . . .

200 400 600 800 1000

1.145

1.15

1.155

1.16

1.165

Figure 2. Plot of ρn in the case d = 2.

The subsequent plot (see Figure 3) gives the corresponding mean values
1
N

∑N
n=1 ρn, which tend to a limit, as proved in Theorem 3. Its numerical

value can be determined by means of the recurrence formula (11):

lim
N→∞

N
∑

n=1

ρn = 1.15247 35251 60637 47956 21404.

Let us also give the respective plots for τn in the case d = 3 (see Figures 4
and 5).
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2000 4000 6000 8000 10000

1.1522

1.1524

1.1526

Figure 3. Plot of the Cesàro means 1
N

∑N
n=1 ρn in the case

d = 2.

200 400 600 800 1000

0.75

0.76

0.77

0.78

0.79

0.81

Figure 4. Plot of τn in the case d = 3.

However, the constants β(d)d−1 and δ(d)d−1 are far more relevant for the
growth of σ(Xn) and Z(Xn). From general considerations, it is clear that

β(d)d−1 lies between 1+
√

5
2 and 2 (since the absolute minimum and maximum

number of independent vertex subsets in a tree on n vertices are given by Fn+2

and 2n−1 + 1 for the path and star respectively), and that β(d)d−1 increases
with d (since the restriction becomes weaker for increasing d) and tends to

2. Similarly, δ(d)d−1 lies between 1 and 1+
√

5
2 , is decreasing and tends to 1.

Some numerical values are given in the following table—it is not difficult to
achieve a considerable precision for these constants.
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2000 4000 6000 8000 10000

0.777

0.778

0.779

Figure 5. Plot of the Cesàro means 1
N

∑N
n=1 τn in the case

d = 3.

d β(d)d−1 δ(d)d−1

2 1.66345 83970 72426 71400 29341 1.53717 67171 82357 94959 01403
3 1.71104 77168 65854 39252 73758 1.46792 93132 06252 26446 93247
4 1.75277 22835 08758 20411 33753 1.41392 59361 85955 94075 16282
5 1.78663 80672 40820 67508 45428 1.37155 08691 35932 33996 43430
10 1.87794 53843 82516 51109 09164 1.25029 46884 25647 29912 57823
20 1.93506 36009 86574 58856 21997 1.15777 24711 29443 56294 89233
50 1.97300 16421 91753 19422 92396 1.08042 81828 41889 98839 31038
100 1.98632 13043 16506 81563 84834 1.04682 49561 02834 62023 79355

Table 1. Numerical values for β(d) and δ(d) in some special cases
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12. L. A. Székely and Hua Wang, On subtrees of trees, Adv. in Appl. Math. 34 (2005),

no. 1, 138–155.
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