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Abstract. The ordinary notion of algorithmic randomness of reals can be characterised as Martin-
Löf randomness with respect to the Lebesgue measure or as Kolmogorov randomness with respect
to the binary representation. In this paper we study the question how the notion of algorithmic
randomness induced by the signed-digit representation of the real numbers is related to the ordinary
notion of algorithmic randomness. We first consider the image measure on real numbers induced by
the signed-digit representation. We call this measure the signed-digit measure and using the Fourier
transform of this measure and the Riemann-Lebesgue Lemma we prove that this measure is not
absolutely continuous with respect to the Lebesgue measure. We also show that the signed-digit
measure can be obtained as a weakly convergent convolution of discrete measures and therefore, by
a classical Theorem of Jessen and Wintner the Lebesgue measure is not absolutely continuous with
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respect to the signed-digit measure. Finally, we provide an invariance theorem which shows that
if a computable map preserves Martin-Löf randomness, then its induced image measure has to be
absolutely continuous with respect to the target space measure. This theorem can be considered as a
loose analog for randomness of the Banach-Mazur theorem for computability. Using this Invariance
Theorem we conclude that the notion of randomness induced by the signed-digit representation is
incomparable with the ordinary notion of randomness.

Keywords: Algorithmic randomness, computable analysis, signed-digit representation, Stern-Brocot
tree, Farey fractions, Stern’s diatomic sequence.

1. Introduction

The signed-digit representation is a representation of reals in base 2 with coefficients −1, 0, 1. This
representation, which is obviously redundant due to the extra digit −1, has found a tremendous number
of applications and has at least been studied since Cauchy. It plays, for instance, a crucial role in computer
arithmetic [1, 23], where it is used for fast parallel algorithms, in coding theory [27] and in cryptography
[22], where also the fact is exploited that the representation is balanced, symmetric and redundant. In
computable analysis it turned out to be useful as it is a topologically well-behaved representation that is
suitable for the definition of computational complexity on the reals [28]. In this paper we want to study
the question whether the signed-digit representation is also well-behaved from the measure theoretic
point of view and thus suitable for the study of algorithmic randomness.

It is convenient to consider the signed-digit representation just as a representation of the unit interval
I := [−1, 1]. In the following we will work with the alphabet Σ := {−1, 0, 1} and by Σω we denote
the set of sequences over Σ. We endow Σω with the usual Cantor topology (the product topology of the
discrete topology on Σ) and with the uniform Borel measure γ that is induced by γ(wΣω) = |Σ|−|w| for
all open balls wΣω with w ∈ Σ∗.

Definition 1.1. (Signed-digit representation)
The signed-digit representation is the map ρ : Σω → I , defined by

ρ(p) :=
∞∑

j=0

p(j)2−j−1

for all p ∈ Σω. By µ we denote the image measure induced by the uniform measure γ on Σω, i.e.
µ(A) := γ(ρ−1(A)) for all measurable A ⊆ I .

By a measurable set A ⊆ I we always mean a Borel measurable set here (i.e. a set in the σ–algebra
on I generated by the open intervals). In the following we will call µ the signed-digit measure on I .
The map ρ has a number of important properties. First of all, it is continuous and computable (with
respect to the standard topologies and computability notions on Σω and I , respectively), it is proper (i.e.
preimages of compact sets are compact) and it is a so-called admissible representation (which means that
it is maximal among all continuous representations of I with respect to continuous reducibility, see [28],
essentially this means topological well-behavedness).

The crucial point for this paper is the question how the class of random reals induced by the signed-
digit representation is related to the class of ordinary random reals. It is known that the ordinary random
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reals can either be characterised as Martin-Löf random reals with respect to the Lebesgue measure λ [21]
or as reals that have a random name with respect to the binary representation in the sense of Kolmogorov
randomness [16, 17]. Indeed, the classes of randomness reals induced by different base expansion all
coincide [7, 14] (and see [25] for further properties of Kolmogorov randomness and base expansions).
For background information on algorithmic randomness, see [6, 20].

In the following we will denote by Iλ the set of ordinary random reals (in I). The main question of
this paper is how the classes of ordinary random reals Iλ and Martin-Löf random reals Iµ with respect
to the signed-digit measure µ are related. The main result is that the classes are mutually incomparable.
For completeness, we also study the class Iρ of reals that have a random name with respect to the signed-
digit representation and we show that this class is also incomparable with Iλ. We leave the question open
whether Iρ and Iµ are identical, but we show that Iρ ⊆ Iµ holds.

In the following section 2 we prove that the signed-digit measure µ is not absolutely continuous
with respect to the Lebesgue measure λ and in the following section 3 we conclude with the help of the
Theorem of Jessen-Wintner that also the inverse relation does not hold true. These facts could also be
derived from results in [9, 10], but in order to present the required techniques in a fully self-contained
way, we prefer to include the complete proofs here. In section 4 we prove an Invariance Theorem
that states that under certain mild conditions the inclusion of two Martin-Löf classes of random reals
implies absolute continuity of the corresponding measures. Somewhat more general, the theorem states
that under some conditions any computable map that preserves randomness has the property that its
image measure is absolutely continuous with respect to the target space measure. This statement about
randomness has some loose similarity with the classical Banach-Mazur Theorem [2] that states that
functions, which preserve computable sequences are necessarily continuous on computable inputs (this is
an early version of the Ceitin Theorem, see the discussions in [12, 13]). In both cases the preservation of
a local property, computable sequences on the one hand and random points on the other hand, guarantees
a global property of the function, continuity on the one hand, absolute continuity of related measures
on the other hand. The Invariance Theorem together with the results on absolute continuity of measures
imply that Iµ and Iλ are incomparable with respect to inclusion. Finally, in section 5 we prove that also
the classes Iρ and Iλ are incomparable and we provide some further interesting properties of random reals
with respect to the signed-digit measure. In particular, we prove that Iµ satisfies some natural condition
that any set of random reals should satisfy. For instance, Iµ only contains transcendental numbers.

In order to understand the measure theoretic properties of the signed-digit measure µ it turns out
to be useful to analyse the semantic name space of the signed-digit representation that is illustrated in
Figure 1. Any path in the tree corresponds to a name p ∈ Σω of a real number x = ρ(p) and nodes
from which one can reach exactly the same real numbers are identified. The weight assigned to a node
indicates the number of paths leading to that node. The whole tree can be considered as a ternary version
of Pascal’s triangle and it is also known as Stern-Brocot tree or Farey tree in the literature [18] (in the
Farey tree the nodes typically carry fractions that are closely related to the weights in our nodes). In row
n of the tree the weights fn(x) of nodes that correspond to a number x can be calculated by

fn(x) := |Vn(x)| with Vn(x) :=

⎧⎨⎩v ∈ Σn : x =
n−1∑
j=0

v(j)2−j−1

⎫⎬⎭
for all x ∈ R. We will use the abbreviation

wn,a := fn(a2−n)
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Figure 1. The Stern-Brocot tree

for all n ∈ N := {0, 1, 2, ...} and integers a ∈ Z. For values, other than a in

An := {−(2n − 1), ..., 2n − 1}

one obtains wn,a = 0. Intuitively, the values wn,a correspond to the weights in the tree in Figure 1 in the
n–th row (where the counting starts with 0) and the a–th position (where the middle position has number
0 and starting from there the positions on the left are numbered with negative integers and the positions
on the right with positive integers). The fact that the Stern-Brocot tree is a ternary version of Pascal’s
triangle is reflected in the following lemma, which describes the inductive rule according to which the
weights can be calculated (each weight as the sum of the weights of its predecessors). It is an immediate
consequence that the maximal value on layer n is the Fibonacci number Fn. We recall that F0 := 0,
F1 := 1 and Fn+2 := Fn + Fn+1 for all n ∈ N.

Lemma 1.1. For any n ∈ N and a ∈ Z we obtain wn,a = 0 if a �∈ An and

(1) wn+1,a = wn,a/2, if a is even,

(2) wn+1,a = wn,(a−1)/2 + wn,(a+1)/2 = wn+1,a−1 + wn+1,a+1, if a is odd,

(3) Fn+1 = max{wn,a : a ∈ Z}.
Here the given rule for the odd weights is correct at the boundary (i.e. for minimal and maximal

a ∈ An) as well, as all weights outside the tree are 0. Many other properties of the weights are known
and have already been proved by Stern and others [26, 19]. For instance, Stern proved that the maximal
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multiplicity with which a number k will appear in odd positions of some row of the tree is ϕ(k), where
ϕ denotes Euler’s totient function (and this multiplicity is reached exactly from row n = k onwards).
The weights in the nodes of the Stern-Brocot tree are also know as Stern’s diatomic sequence (see also
A002487 in the On-Line Encyclopedia of Integer Sequences) and the values in nodes in odd positions
correspond to the values of denominators of Farey tree fractions (A007306 in the On-Line Encyclopedia
of Integer Sequences):

1, 2, 3, 3, 4, 5, 5, 4, 5, 7, 8, 7, 7, 8, 7, 5, 6, 9, 11, 10, 11, 13, 12, 9, 9, 12, 13, 11, 10, 11, 9,

6, 7, 11, 14, 13, 15, 18, 17, 13, 14, 19, 21, 18, 17, 19, 16, 11, 11, 16, 19, 17, 18, 21, 19, ...

In some sense our results can also be interpreted as a combinatorial property of this sequence and we
discuss this aspect in an epilogue of the paper.

2. Continuity of the Signed-Digit Measure

The purpose of this section is to prove that the signed-digit measure µ is not absolutely continuous with
respect to the Lebesgue measure λ. Using the above observations on the Stern-Brocot tree we formulate
some straightforward properties of the signed-digit measure µ.

Lemma 2.1. Let n ∈ N and a ∈ Z and consider xn,a := (2a+1)2−(n+1) and In,a := [a2−n, (a+1)2−n].
Then

µ(In,a) =
1

2 · 3n
· fn+1(xn,a).

Proof:
Let v ∈ Vn+1(xn,a). Then v is a path leading to a node in the Stern-Brocot tree in an odd position of
row n + 1 and it is easy to see that ρ(vΣω) = In,a. By Lemma 1.1(2) the weight of any node in an odd
position in the Stern-Brocot tree is the sum of its neighbours, i.e.

fn+1(xn,a) = wn+1,2a+1 = wn+1,2a + wn+1,2a+2.

In order to calculate the measure of the set ρ(vΣω) we also have to take into account all paths in
Vn+1(xn,a), not only v, leading to value xn,a, but also all paths coming through the neighbour nodes.
We obtain

µ(In,a) = γ(ρ−1ρ(vΣω))

=
∞∑
i=1

wn+1,2a

3n+1+i
+

wn+1,2a+1

3n+1
+

∞∑
i=1

wn+1,2a+2

3n+1+i

=
∞∑
i=0

wn+1,2a+1

3n+1+i

=
1

2 · 3n
· fn+1(xn,a).

�
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We recall that a measure µ1 is called absolutely continuous with respect to another measure µ2, in
symbols µ1 � µ2, if µ2(A) = 0 implies µ1(A) = 0 for all measurable sets A. It is known that for a
finite measure µ1 this is equivalent to the condition that for any ε > 0 there exists a δ > 0 such that for
all measurable A

µ2(A) < δ =⇒ µ1(A) < ε

holds true (see Theorem 2.9.6 in [3]). All measures we are interested in here are finite. If the second
measure µ2 is finite (or σ–finite), then by the Radon-Nikodym Theorem (see Theorem 2.9.8 in [3])
µ1 � µ2 holds if and only if µ1 has a density relative to µ2, i.e. if and only if there exists a non-negative
measurable function f : I → R such that µ1 = fµ2, which means µ1(A) =

∫
A f dµ2 for all measurable

A.
In a first step we want to approximate the image measure µ of the signed-digit representation ρ by

simpler measures, using similar techniques as in [11]. Therefore, we use the unit mass δa at a, which is
the measure defined by

δa(A) :=

{
1 if a ∈ A

0 otherwise

for all measurable A ⊆ I . Now we can assign a measure µn to any row n of the Stern-Brocot tree by

µn :=
1

2 · 3n

∑
a∈Z

fn+1(xn,a)δxn,a

(and this actually defines a measure, see Example 1.3.3 in [3]; the sum is in fact finite, as fn+1(xn,a) = 0
for a �∈ {−2n, ..., 2n − 1}). We now show that this sequence of measures weakly converges to µ. We
recall that a sequence (µn)n∈N of finite measures on I is called weakly convergent to some measure µ on
I , if

lim
n→∞

∫
g dµn =

∫
g dµ

for all continuous g : I → R.

Lemma 2.2. The sequence (µn)n∈N of measures converges weakly to µ.

Proof:
Let g : I → R be some continuous function. We consider the intervals In,a := [a2−n, (a + 1)2−n]
for a = −2n, ..., 2n − 1 and n ≥ 0 and their characteristic functions χIn,a : I → R. We obtain with
Lemma 2.1

µ(In,a) =
1

2 · 3n
· fn+1(xn,a).

Now the sequence (gn)n∈N of step functions gn : I → R

gn :=
2n−1∑

a=−2n

g(xn,a)χIn,a
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converges uniformly to g. This implies∫
g dµ = lim

n→∞

∫
gn dµ

= lim
n→∞

2n−1∑
a=−2n

g(xn,a)µ(In,a)

= lim
n→∞

1
2 · 3n

2n−1∑
a=−2n

g(xn,a)fn+1(xn,a)

= lim
n→∞

∫
g dµn,

which was to be proved. �

In the next step we want to determine the characteristic function of the measure µ, that is the Fourier
transform

µ̂ : R → C, t �→
∫

eitxdµ(x).

Lemma 2.3. We obtain for all t ∈ R

µ̂(t) =
∞∏

j=1

(
1 − 4

3
sin2(t2−(j+1))

)
.

Proof:
We first determine the Fourier transforms of the measures µn. As the paths v ∈ Σn+1 leading to xn,a =
(2a + 1)2−(n+1) are necessarily such that v(n) �= 0, i.e. v ∈ Σn{1,−1}, we obtain

µ̂n(t) =
∫

eitxdµn(x)

=
1

2 · 3n

2n−1∑
a=−(2n−1)

exp(itxn,a)fn+1(xn,a)

=
1

2 · 3n

∑
v∈Σn{1,−1}

exp

⎛⎝it
n+1∑
j=1

v(j − 1)2−j

⎞⎠
=

exp(−it2−(n+1)) + exp(it2−(n+1))
2

·
n∏

j=1

exp(−it2−j) + 1 + exp(it2−j)
3

= cos(t2−(n+1)) ·
n∏

j=1

(
1 + 2 cos(t2−j)

3

)

= cos(t2−(n+1)) ·
n∏

j=1

(
1 − 4

3
sin2(t2−(j+1))

)
,
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where we use cos(2x) = cos2(x)−sin2(x) and 1 = cos2(x)+sin2(x) for the last equation. As (µn)n∈N

converges weakly to µ by Lemma 2.2 it follows by the Continuity Theorem for Fourier Transforms (see
Theorem 8.2.7 in [3]) that (µ̂n)n∈N converges uniformly to µ̂ on every compact subset of R and we
obtain

µ̂(t) =
∞∏

j=1

(
1 − 4

3
sin2(t2−(j+1))

)
as claimed. �

Now we are prepared to prove the main result of this section.

Theorem 2.1. The measure µ is not absolutely continuous with respect to the Lebesgue measure λ on I .

Proof:
Let us assume that µ is absolutely continuous with respect to the Lebesgue measure λ on I . Then by
the Radon-Nikodym Theorem µ has a density relatively to λ, i.e. there exists a measurable function
f : I → R such that

µ(A) =
∫

A
f dλ.

Thus we obtain (by Theorem 2.9.3 in [3])

µ̂(t) =
∫

eitxdµ(x) =
∫

eitxf(x) dλ(x) = f̂(t),

i.e. the Fourier transform of µ is just the Fourier transform of its density with respect to the Lebesgue mea-
sure. By the Theorem of Riemann-Lebesgue (see Theorem 8.2.2 in [3]) we obtain that limt→∞ µ̂(t) =
limt→∞ f̂(t) = 0. However, according to Lemma 2.3 we have

µ̂(t) =
∞∏

j=1

(
1 − 4

3
sin2(t2−(j+1))

)

and hence µ̂(2k+1π) = µ̂(2π) since the first k factors of the product with t = 2k+1π are equal to 1 and
the remaining ones are equal to those of the product for t = 2π. That is limt→∞ µ̂(t) = µ̂(2π). As
uj := 4

3 sin2(π2−j) < 1 for j ≥ 2, it follows by Theorem 15.5 in [24] that
∏∞

j=2(1 − uj) > 0 if and
only if

∑∞
j=2 uj < ∞. But sin(x) ≤ x for 0 ≤ x ≤ 1 implies

∞∑
j=2

uj =
∞∑

j=2

4
3

sin2(π2−j) ≤ 4
3
π2

∞∑
j=2

2−2j ≤ π2

3

and, in particular, the series
∑∞

j=2 uj converges and we can conclude that the product
∏∞

j=2(1 − uj) is
positive. Since (1 − u1) = −1

3 it follows that µ̂(2π) is a strictly negative number. Contradiction! Thus,
µ is not absolutely continuous with respect to λ. �

The same technique has been used by other authors to obtain similar results. For instance, we could
also derive Theorem 2.1 as a consequence of Proposition 5.3 of [9] (for q = 3 and d = 2).
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3. Singularity of the Signed-Digit Measure

In this section we prove that the signed-digit measure µ is singular with respect to the Lebesgue measure
λ. We recall that two measures µ1 and µ2 on the same σ–algebra are called singular with respect to
each other, in symbols µ1⊥µ2, if there exists a measurable set A such that µ1(A) = 0 and µ2(Ac) = 0
(see, for instance, [8]). If a measure is singular with respect to the Lebesgue measure λ, then it is simply
called singular. We recall that a probability measure ν on a set X is called purely discontinuous, if its
point spectrum, i.e. the set P of points x ∈ X with positive measure ν(x) > 0 has itself full measure,
i.e. ν(P ) = 1.

By a classical Theorem of Jessen and Wintner (see Theorem 35 in [15]) a measure ν that can be
obtained as a weakly convergent infinite convolution of purely discontinuous measures is either purely
discontinuous, singular or absolutely continuous with respect to the Lebesgue measure. We prove that
the signed-digit measure µ can be obtained as weak limit of a converging infinite convolution of discrete
measures. We recall that the convolution µ1 ∗ µ2 of two finite Borel measures is just defined to be
the image measure of the product measure µ1 ⊗ µ2 under the addition map (see Definition 3.4.1 in
[3]). The convolution operation is known to be associative, commutative and it distributes with sums:
ν ∗ (µ1 + µ2) = ν ∗ µ1 + ν ∗ µ2. Moreover, µ1 ∗ (αµ2) = (αµ1) ∗ µ2 = α(µ1 ∗ µ2) for positive
real numbers α and δa ∗ δb = δa+b for the unit masses (see Section 3.4 in [3]). We directly obtain the
following result.

Proposition 3.1. The signed-digit measure µ is the weak limit of the infinite convolution product of the
discrete measures

νn :=
1
3
(δ−2−n + δ0 + δ2−n)

for n ≥ 1.

Proof:
One easily proves by induction that

µ′
n := ν1 ∗ ν2 ∗ ... ∗ νn =

1
3n

∑
a∈Z

wn,aδa2−n .

For n = 1 this is obviously correct, and in the induction step we obtain with the help of Lemma 1.1

νn+1 ∗ µ′
n =

1
3
(δ−2−n−1 + δ0 + δ2−n−1) ∗ 1

3n

∑
a∈Z

wn,aδa2−n

=
1

3n+1

(∑
a∈Z

wn,a(δ(2a−1)2−n−1 + δ2a2−n−1 + δ(2a+1)2−n−1)

)

=
1

3n+1

( ∑
a∈2Z+1

(wn, a−1
2

+ wn, a+1
2

)δa2−n−1 +
∑
a∈2Z

wn, a
2
δa2−n−1

)

=
1

3n+1

∑
a∈Z

wn+1,aδa2−n−1

= µ′
n+1.
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Almost exactly as in Lemma 2.3 one checks

µ̂′
n(t) =

n∏
j=1

(
1 − 4

3
sin2(t2−(j+1))

)
.

That is, the sequences of Fourier transforms (µ̂n)n∈N and (µ̂′
n)n∈N have the same limit µ̂ and by unique-

ness of the Fourier transforms (see Theorem 8.2.4 in [3]) it follows that (µ′
n)n∈N weakly converges to µ.

�

In the next step we prove that µ is not purely discontinuous.

Lemma 3.1. For any x ∈ I we obtain µ({x}) = 0 and hence the signed-digit measure µ is, in particular,
not purely discontinuous.

Proof:
Any point x ∈ I is included in intervals of the form In,a for all n ∈ N and suitable a ∈ Z. By Lemma 1.1
and Lemma 2.1 we obtain

µ({x}) ≤ µ(In,a) ≤ 1
2 · 3n

Fn+2 ≤
(

2
3

)n

for all those n and a, where the last inequality follows as Fn+1 ≤ 2n holds for the Fibonacci numbers
Fn. As the inequality above holds for all n, it follows that µ({x}) = 0. �

It is clear that the measures νn in Proposition 3.1 are purely discontinuous. As the Theorem of
Jessen and Wintner states that any measure that is the weak limit of an infinite convolution of purely
discontinuous measures and that is neither purely discontinuous, nor absolutely continuous with respect
to Lebesgue measure, has to be singular, we directly obtain the following corollary of Proposition 3.1,
Lemma 3.1 and Theorem 2.1.

Corollary 3.1. The signed-digit measure µ is singular and hence the Lebesgue measure λ restricted to I
is not absolutely continuous with respect to µ.

A measure related to µ has also been studied as so-called (2, 3)–Bernoulli convolution and a result
corresponding to our corollary has also been observed in [10].

4. Randomness Preservation

In this section we will discuss randomness with respect to different measures and we prove a theorem
that formulates a necessary condition in terms of measures that any randomness preserving computable
map has to satisfy. Throughout the remainder of the paper X and Y are both supposed to denote the
Euclidean interval I or the Cantor space Σω. All results formulated for X and Y simultaneously hold
for both cases. We start with recalling the Martin-Löf style definition of randomness with respect to
measures. We will only consider Borel measures, i.e. measures defined on the Borel σ–algebra of X ,
which is the σ–algebra generated by the open subsets.
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Definition 4.1. (Randomness)
Let ν be a Borel measure on X . A point x ∈ X is called non-random (with respect to ν) if it admits a
Martin-Löf test, i.e. if there exists a computable sequence (Un)n∈N of c.e. open sets Un ⊆ X such that
x ∈ ⋂∞

n=0 Un and ν(Un) < 2−n for all n ∈ N. A point x ∈ X is called random (with respect to ν) if it
is not non-random. We denote the set of random points with respect to ν by Xν .

Computability of open subsets is understood as computability in the sense of computable analysis
(see [28]). Roughly speaking, an open subset U ⊆ X is called computably enumerable open (c.e. open
for short) if one can computably enumerate a sequence of basic open sets Bj whose union is U . In
case of X = Σω, the basic open sets are the balls Bj = vΣω with v ∈ Σ∗ and in case of X = I the
basic open balls are the rational intervals Bj = (r, s) ∩ I with r, s ∈ Q. There exists a representation
ϑ :⊆ Σω → O(X) of the setO(X) of open subsets of X which has the property that the operations union
and intersection are computable (see [28, 5], the symbol “⊆” indicates that the map is partial). A name
p ∈ Σω of an open set U is just an enumeration of numbers j such that the union of the corresponding
Bj is U . A computable sequence of c.e. open sets is just a sequence that is computable with respect
to ϑ. From now on we consider (Bj)j∈N as some fixed standard enumeration of the basic open sets of
X . The sequences that are random in Σω with respect to the uniform measure γ are also just called
random sequences (and they are also random in the sense of Kolmogorov, i.e. in terms of Kolmogorov
complexity). The real numbers in I that are random with respect to the Lebesgue measure λ are also just
called the random reals. We say that a measure ν is upper semi-computable, if the set{

(n, k) ∈ N2 : ν

( ⋃
i∈Dn

Bi

)
< 2−k

}

is computably enumerable. Analogously, we say that ν is lower semi-computable, if the set with “>”
instead of “<” is computably enumerable (see [14]). Here DP

k∈A 2k = A for all finite A ⊆ N. We prove
a lemma that shows that the image measure of a lower semi-computable measure under a computable
function is lower semi-computable again.

Lemma 4.1. Let µX be a lower semi-computable measure on X and let the function T : X → Y be
computable. Then the image measure T (µX) is a lower semi-computable measure on Y .

Proof:
For all open sets U ⊆ Y the preimage T−1(U) is open as any computable T is continuous. More than
this, for computable T and given U (with respect to ϑ) we can even effectively determine a sequence
(Bin)n∈N such that T−1(U) =

⋃
n∈N

Bin (see for instance Theorem 6.2.4.1 in [28]). We obtain for all
m ∈ N

T (µX)(U) = µX(T−1(U)) > 2−m

⇐⇒ (∃i1, ..., in) µX(Bi1 ∪ ... ∪ Bin) > 2−m

as any measure µX is continuous from below (see Theorem 1.3.2 in [3]). As µX is lower semi-
computable, the relation µX(Bi1 ∪ ... ∪ Bin) > 2−m is c.e. in i1, ..., in. Altogether, this shows that
the image measure T (µX) is lower semi-computable. �
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Now we are prepared to prove the main result of this section, which shows that if a computable func-
tion preserves randomness on measure spaces, then its image measure has to be absolutely continuous
with respect to the target measure.

Theorem 4.1. (Invariance Theorem)
Let µX and µY be finite Borel measures on X and Y , respectively, that are lower and upper semi-
computable respectively, and let the function T : X → Y be computable Then

T (XµX ) ⊆ YµY =⇒ T (µX) � µY .

Proof:
We consider the contraposition. If T (µX) �� µY , then there exists an ε > 0 such that

(∀δ > 0)(∃ measurable A ⊆ Y ) µY (A) < δ and T (µX)(A) > ε.

Without loss of generality, we can assume that ε has the form ε = 2−m. As Y is a Polish space, every
finite Borel measure µY on Y is outer regular (by Theorem 7.3.3 in [3]). That is

µY (A) = inf{µY (U) : A ⊆ U, U ∈ O(Y )}.
Thus, for any A as above there exists some open subset U with A ⊆ U and µY (U) < δ. By monotonicity,
we obtain T (µX)(U) > ε. That is, we can replace the condition above by

(∀k)(∃U ∈ O(Y )) µY (U) < 2−k and T (µX)(U) > ε.

Any open set U ∈ O(Y ) is a countable union U =
⋃∞

j=0 Bij of basic open sets Bij and if T (µX)(U) >
ε, then there exists an n ∈ N such that T (µX)(

⋃n
j=0 Bij ) > ε since any measure T (µX) is continuous

from below (see Theorem 1.3.2 in [3]). Due to monotonicity of µY it follows that µY (U) < 2−k implies
µY (

⋃n
j=0 Bij ) < 2−k for any n ∈ N. Thus, the conditions above are equivalent to the condition

(∀k)(∃ik,0, ..., ik,nk
) µY

⎛⎝ nk⋃
j=0

Bik,j

⎞⎠ < 2−k and T (µX)

⎛⎝ nk⋃
j=0

Bik,j

⎞⎠ > ε.

Since µX is lower semi-computable and T is computable, it follows by Lemma 4.1 that T (µX) is lower
semi-computable as well. This and the fact that µY is upper semi-computable implies that we can
effectively find corresponding Bik,0

, ..., Bik,nk
as above for any k and we can also compute the union

Um =
∞⋃

k=m+1

nk⋃
j=0

Bik,j
.

We claim that (Um)m∈N is a Martin-Löf test with respect to µY . Due to the algorithm described here, it is
clear that the sequence is a computable sequence of c.e. open sets. Moreover, we obtain by subadditivity
of µY

µY (Um) ≤
∞∑

k=m+1

µY

⎛⎝ nk⋃
j=0

Bik,j

⎞⎠ <
∞∑

k=m+1

2−k = 2−m.
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Let A =
⋂∞

m=1 Um. As µX is finite, it follows that T (µX) is finite and we obtain (by Corollary 2.7.2 in
[3])

µX(T−1(A)) = T (µX)(A) ≥ lim supm→∞T (µX)(Um) ≥ ε > 0.

In particular, T−1(A) is non-empty and T−1(A) ∩ XµX �= ∅ (as the set of non-random elements with
respect to µX has measure 0 by Proposition 3.11.1 in [14]). This implies A∩T (XµX ) �= ∅. On the other
hand, the Martin-Löf test (Um)m∈N is a Martin-Löf test for all points in A with respect to µY . That is
A ∩ YµY = ∅. This implies that T (XµX ) �⊆ YµY . �

This theorem and the previous lemma could easily be extended to the case that T is a partial com-
putable map such that µX(X \ dom(T )) = 0. Applying thy Invariance Theorem 4.1 to the identity,
yields the following corollary.

Corollary 4.1. If µ1 and µ2 are finite Borel measures on X that are lower and upper semi-computable,
respectively, then

Xµ1 ⊆ Xµ2 =⇒ µ1 � µ2.

Now we show that all measures considered here are lower and upper semi-computable.

Lemma 4.2. The measures λ, µ and γ are lower and upper semi-computable.

Proof:
Both properties are easy to prove for λ and γ. Let us consider the case of λ. Given a finite set of rational
intervals Bin = (an, bn) with n = 0, ..., k one can assume without loss of generality that these intervals
are disjoint, as one can easily replace two overlapping intervals by a single one and then one can compute

λ(Bi0 ∪ ... ∪ Bik) = (b0 − a0) + ... + (bn − an).

The proof for γ is similar but with balls wΣω instead of intervals. As the signed-digit representation
ρ : Σω → I is a computable map, it follows with Lemma 4.1 that µ = ρ(γ) is lower semi-computable
as well. It remains to be proved that µ is upper semi-computable. As for Lebesgue measure λ above it is
sufficient to consider one rational interval J = (a, b) and to approximate µ(J) from above. In fact, as µ
is continuous from above (see Theorem 1.3.2 in [3]) we obtain for any m ∈ N

µ(J) < 2−m ⇐⇒ (∃n)(∃A ⊆ An+1)

(
J ⊆

⋃
a∈A

In,a and µ

( ⋃
a∈A

In,a

)
< 2−m

)
and by Lemma 2.1

µ

( ⋃
a∈A

In,a

)
=

∑
a∈A

µ(In,a) =
1

2 · 3n

∑
a∈A

fn+1(xn,a),

which can easily be computed. Thus, µ is also upper semi-computable. �

From this lemma together with Corollary 4.1, Theorem 2.1 and Corollary 3.1 we can directly con-
clude that the the classes Iµ and Iλ of random points with respect to the signed-digit measure and with
respect to the Lebesgue measure (i.e. the ordinary random reals) are mutually incomparable.

Corollary 4.2. There exist random reals with respect to the signed-digit measure that are not random in
the ordinary sense and vice versa. That is, we obtain Iµ �⊆ Iλ and Iλ �⊆ Iµ.
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5. Randomness with respect to the Signed-Digit Representation

In this section we will discuss another way how one can define randomness via the signed-digit repre-
sentation and we will show that the resulting set of random reals is also incomparable with the ordinary
random reals. Usually, a real number x ∈ I is said to be computable with respect to some representation
δ :⊆ Σω → I , if it admits a computable name p ∈ Σω with δ(p) = x. Similarly, one could define a
number x to be non-random with respect to δ, if it admits a non-random name. However, this approach
does not lead to anything useful with respect to the signed-digit representation, as any number admits a
non-random name. We even prove a computable version of this observation that is interesting by itself
and which shows that given an arbitrary signed-digit name of a real number x ∈ I , we can effectively
compute a non-random signed-digit name of the same real number.

Proposition 5.1. There exists a computable function L : Σω → Σω such that range(L) contains only
non-random sequences and ρ(p) = ρL(p) for all p ∈ Σω.

Proof:
We describe a Turing machine M that computes some function L as follows. Upon input p ∈ Σω the
machine inspects the input until it finds a 1 followed by a finite or infinite sequence s of symbols −1.
The machine replaces these symbols by symbols 0 followed by a 1 in case s is finite. All other input
symbols are just copied to the output. More precisely, M replaces finite and infinite sequences

1(−1)na and 1(−1)ω

with a �= −1 and n ≥ 1 by finite and infinite sequences

0n1a and 0ω, respectively.

If a = 1 and the next input symbol is a −1 again, then a is not written on the output, but the replacement
above is applied repeatedly. Obviously, this function L is computable and as

2−k −
n∑

i=1

2−k−i = 2−k−n and 2−k −
∞∑
i=1

2−k−i = 0,

respectively, it is clear that ρ(p) = ρL(p) for all p ∈ Σω. It is clear that by construction all sequences
in the range of L do not contain the consecutive symbols 1,−1. As any non-empty string v ∈ Σ∗

necessarily has to occur infinitely often in any random sequence by Theorem 6.49 in [6], it follows that
the range of L only contains non-random sequences. �

Now we directly obtain the following corollary.

Corollary 5.1. For any x ∈ I there exists a non-random p ∈ Σω such that ρ(p) = x.

The next option is to define a real number x ∈ I to be random with respect to a representation δ if x
admits a random name p ∈ Σω with δ(p) = x. It is known that the set of random numbers with respect
to the ordinary base b representations coincide for all integer b ≥ 2 and, in fact, they are all equal to the
standard set of random numbers Iλ (see Theorem 6.111 in [6], or the original paper [7] and for a shorter
proof [14]).
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Let us denote the set of random numbers with respect to the signed-digit representation by Iρ. We will
show that Iρ is also incomparable with Iλ. From Corollary 4.2 we know that Iµ �⊆ Iλ holds. However,
by applying the Invariance Theorem 4.1 and a related positive result from [4] directly to ρ we even get a
stronger result.

Theorem 5.1. We obtain Iρ ⊆ Iµ and Iρ �⊆ Iλ.

Proof:
In [4] it is proved that any point with a random name p ∈ Σω

γ with respect to some total representation
ρ is also random with respect to the randomness space induced by the representation, i.e. with respect to
the induced image measure ρ(γ) = µ. This implies Iρ ⊆ Iµ.

By applying the Invariance Theorem 4.1 to ρ : Σω → I we can conclude that Iρ �⊆ Iλ as ρ(γ) =
µ �� λ. Here we exploit the fact that ρ is computable in the standard sense (i.e. we use the identity as
representation of Σω and ρ as representation for I). �

Ic Iµ Iλ?

Figure 2. Classes of reals

We leave the question open whether Iρ is equal to Iµ. We close this section by showing that the class
of random reals Iµ (and therefore also Iρ) shares some properties with Iλ. In particular, we prove that
computable reals cannot be in Iµ. Let us denote by Ic the computable numbers in the interval I . Using
the same idea as in Lemma 3.1 we can prove the following result that shows that computable numbers
are not random with respect to both measure that we have considered in this paper.

Proposition 5.2. We obtain Ic ⊆ (I \ Iµ) ∪ (I \ Iλ).

Proof:
Given a computable point x ∈ I , there is a computable sequence (an)n∈N of integers such that x ∈
(In,an ∪ In,an+1)◦. By Lemma 1.1 and Lemma 2.1 we obtain

µ(In,an ∪ In,an+1) ≤ 1
3n

Fn+2 ≤ 2
(

2
3

)n

for all those n. We choose some computable function r : N → N such that (2/3)r(n) < 2−n−1 for all
n ∈ N. Then (Un)n∈N with

Un := (Ir(n),ar(n)
∪ Ir(n),ar(n)+1)

◦

is a computable Martin-Löf test for x and hence x ∈ I \ Iµ. It is known that all computable reals are not
random with respect to the Lebesgue measure (see for instance [14]). �
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As all algebraic numbers are computable (see for instance Corollary 6.3.10 in [28]), the previous
result, in particular, implies that all types of random numbers considered in this paper are necessarily
transcendental.

Corollary 5.2. The set Iµ ∪ Iλ contains only transcendental numbers.

Figure 2 summarises our current knowledge on the classes Ic, Iµ and Iλ and their mutual relation. In
fact, we have not studied the question whether Iµ and Iλ have non-empty intersection at all. The class
Iµ could replace the class Iρ in the figure and we do not know whether the two classes are identical.

6. Epilogue: Stern’s Diatomic Sequence

We close this paper by showing that our main result can also be interpreted as a combinatorial property
of Stern’s diatomic sequence. Our result says that there is some k ∈ N with the following property: if
we calculate the sum of the smallest 2n−k weights in odd positions of row n + 1 of the Stern-Brocot tree
and we divide this sum by 3n, then the resulting fractions will converge to 0 for n → ∞. This is made
precise in the following result.

Proposition 6.1. There exists a k ∈ N such that

lim
n→∞

1
2 · 3n

min

{∑
a∈A

fn+1(xn,a) : A ⊆ An+1, |A| = 2n−k

}
= 0.

Proof:
For any n, k ∈ N and any set A ⊆ An+1 we obtain by Lemma 2.1

1
2 · 3n

∑
a∈A

fn+1(xn,a) =
∑
a∈A

µ(In,a) = µ

( ⋃
a∈A

In,a

)
.

Moreover, as λ(In,a) = 2−n, it follows that

λ

( ⋃
a∈A

In,a

)
= 2−k for |A| = 2n−k.

By Corollary 3.1 λ is not absolutely continuous with respect to µ. Thus, there is some k ∈ N such that
for any δ > 0 there exists some measurable set U ⊆ I with µ(U) < δ and λ(U) > 2−k. As I is a
complete separable metric space and hence a Radon space, the finite Borel measures µ is automatically
outer regular (see Theorem 7.3.3. in [3]). In particular, it suffices to consider open sets U ⊆ I above.
But if U =

⋃∞
i=0 Ui is an arbitrary open set U ⊆ I with intervals Ui, then continuity of λ from below

(see Theorem 1.3.2(b) in [3]) implies that whenever λ(U) > 2−k, then there exists an m ∈ N such that
λ (

⋃m
i=0 Ui) > 2−k. But then we can replace any Ui by a potentially slightly smaller union of intervals

In,a with sufficiently large n, i.e. we can select an n ∈ N and A ⊆ An+1 such that V :=
⋃

a∈A In,a ⊆
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⋃m
i=0 Ui and hence µ(V ) ≤ µ(U) < δ, whereas λ(V ) > 2−k. In other words, we have proved that there

is a k ∈ N such that for any δ > 0 there exists some n ∈ N and A ⊆ An+1 such that

µ

( ⋃
a∈A

In,a

)
< δ and λ

( ⋃
a∈A

In,a

)
> 2−k.

But this obviously implies the claim as we can just choose a subset of A of size 2n−k. �

Figure 3. The values µ(In) in dependency of n

We did not provide any specific such k ∈ N with this property. The following table shows a calcu-
lation of some values for k = 1. We assume that A ⊆ An+1 is a set with |A| = 2n−k such that the sum
sn :=

∑
a∈A fn+1(xn,a) is minimal and that In :=

⋃
a∈A In,a is the corresponding set. Then we obtain

the following values for sn and µ(In) on the rows n = 1, ..., 24 of the Stern-Brocot tree.
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n sn µ(In)

1 1 0.50000

2 2 0.33333

3 6 0.33333

4 18 0.33333

5 54 0.33333

6 154 0.31687

7 458 0.31412

8 1342 0.30681

9 3910 0.29797

10 11522 0.29268

11 33846 0.28659

12 99490 0.28081

13 292854 0.27552

14 862462 0.27047

15 1269145 0.26534

16 7477054 0.26054

17 22031670 0.25590

18 64907818 0.25130

19 191332926 0.24693

20 564119174 0.24268

21 1663395270 0.23852

22 4906147998 0.23451

23 14473205398 0.23060

24 42702260354 0.22679

Obviously, the values are only slowly converging and the calculation allows no clear conjecture
whether the values converge to 0 or not, see Figure 3. However, Proposition 6.1 guarantees that for
sufficiently large k the values will converge to 0.
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