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Effizient lösbare kombinatorische Optimierungsprobleme

Institut für Optimierung und Diskrete Mathematik (Math B)

Report 2007-16, November 2007



Up- and downgrading the 1-median in a

network⋆

Elisabeth Gassner

Technische Universität Graz, Institut für Mathematik B, Steyrergasse 30, 8010 Graz,
Austria, gassner@opt.math.tu-graz.ac.at

Abstract. While classical location problems deal with finding optimal
locations for facilities, the task of the corresponding upgrading (down-
grading) version is to change the underlying network within certain
bounds such that the optimal objective value that can be obtained in
the modified network is as good (bad) as possible. In this paper we al-
low to change the vertex weights within given bounds such that a linear
budget constraint is satisfied. For the upgrading 1-median problem an
O(n2) time algorithm is suggested. The downgrading 1-median problem
is shown to be solvable in polynomial time. For the special case of a tree
a concavity property leads to an O(n log n) time algorithm.

1 Introduction

In this paper we consider a network up- and downgrading problem where the
goal is to change vertex weights within certain limits such that the quality of
the resulting optimal facility location is maximized or minimized.

Assume that a company plans to open a new factory with storage capacity
B. Moreover, assume that warehouses with storage capacity wi for i = 1, . . . , n
already exist and the total demand of raw materials in the factory is

∑n
i=1

wi.
Since the factory can store materials (for which the transportation cost is equal
to 0) the company wants to fix the quantity stored in each warehouse as well as
an optimal location for the factory in order to minimize the total transportation
cost from the warehouses to the factory.

This application can be modeled by the upgrading 1-median problem where
the task is to change the vertex weights (here storage capacity) within certain
limits (the factory takes at most B units) such that the total transportation cost
for an optimal location of the factory is minimized.

Observe that we do not fix a location and maximally improve its quality by
changing the vertex weights but we change the vertex weights in a first step
and in a second step an optimal location with respect to the new weights is
determined.

Up- and downgrading problems are special network modification problems.
In the upgrading 1-median we have to change the parameters of the network
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within certain limits such that the optimal objective value in respect to the
modified parameters is minimized. For the downgrading version the task is to
change the parameters in order to maximize the optimal objective value in the
modified network. Both, the up- and downgrading version are applied to the
1-median problem which belongs to the most important basic models of location
problems. For an introduction to location problems the reader is referred to Kariv
and Hakimi [18], Mirchandani and Francis [21] and Drezner and Hamacher [9]).

1.1 Related Problems

A general variant of up- and downgrading problems is of the following form:
Given an (minimization) optimization problem with optimal objective value
z(w) where w is a vector of parameters. The task of the corresponding upgrading
problem is to modify the parameters within certain bounds such that z(w̃) is
minimized. The downgrading version is to maximize z(w̃). This concept was ap-
plied to several classical combinatorial optimization problems, e. g., shortest and
longest path (Fulkerson and Harding [11] and Hambrusch and Tu [16]), network
flows (Phillips [22]), minimum spanning trees and Steiner trees (Frederickson
and Solis-Oba [10], Drangmeister et al. [8] and Krumke et al. [19]). A general
framework for up- and downgrading versions of 0/1-combinatorial optimization
problems was investigated by Burkard, Klinz and Zhang [4] and Burkard, Lin
and Zhang [5]. Moreover, up- and downgrading versions for the 1-center problem
on networks were investigated (Gassner [13]).

Upgrading problems are closely related to reverse problems where a feasible
solution is given and the task is to modify parameters within certain limits in
order to maximally improve the objective value of the given feasible solution.
In case of location problems the reader is referred to Burkard, Gassner and
Hatzl [2, 3] and Zhang, Yang and Cai [23, 24].

Moreover, inverse problems are also network modification problems where a
feasible solution is given. But here the task is to modify parameters within certain
bounds and at minimum cost such that the given solution becomes optimal with
respect to the modified parameters. Inverse location problems were investigated
in [6, 7, 12].

1.2 Problem definition and organization of the paper

This paper is dedicated to up- and downgrading versions of the 1-median prob-
lem.

The 1-median problem is to locate a facility in a network such that the sum
of weighted shortest distances from the vertices to the facility is minimized, i. e.,
given a graph G = (V, E) with edge lengths ℓe ∈ R+ for e ∈ E and vertex
weights wv ∈ R+ for v ∈ V the task is to find a vertex x ∈ V in the graph which
minimizes

f(x) =
∑

v∈V

wvd(v, x)
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where d(v, x) denotes the shortest distance in G from v to x.
The 1-median problem is a generalization of the p-median problem where the

task is to find a subset X ⊆ V of p vertices such that

f(X) =
∑

v∈V

wv min
x∈X

d(v, x)

is minimized.
Instead of restricting the potential set of locations to the set of vertices, one

may consider the problem where it is allowed to place the facilities on every
point on the graph, i. e., the set of vertices and all points in the interior of edges.
The corresponding problem is called absolute p-median problem. However, if all
vertex weights wv are nonnegative then the absolute p-median and the p-median
problem coincide. Hakimi [15] proved the so-called vertex-optimality property of
the p-median problem: Given an instance of the absolute p-median problem with
nonnegative vertex weights, then there exists an absolute p-median consisting
only of vertices. This property immediately leads to a polynomial time algorithm
for the p-median if p is fixed since there exists an optimal solution among

(

n
p

)

alternatives. Moreover, the objective value of each subset can be determined in
polynomial time. Hence, the 1-median problem can be solved in polynomial time
by determining the objective value of every vertex and finally taking the best
one. If p is part of the input then the p-median problem is in general NP-hard
(Kariv and Hakimi [18]). However, for the special case on trees the problem is
again solvable in polynomial time. Kariv and Hakimi suggested a O(n2p2) time
algorithm for the p-median problem on trees. The 1-median problem on a tree
can even be solved in linear time due the convexity of the objective value along
a path (Goldman [14]).

In this paper we consider a variant of the 1-median problem where the net-
work is modified before the facility is located on the network. Up- and down-
grading problems can be seen as bilevel problems where one decision maker
(the actor) changes the vertex weights within certain limits and another deci-
sion maker (the location planner or reactor) locates the facility optimally with
respect to the new vertex weights. The goal of the location planner is to min-
imize the 1-median objective value. Depending on whether the goals of actor
and reactor are the same or are conflicting we speak about up- or downgrading
problems. In the upgrading version the actor wants to minimize the 1-median
objective value (i. e., actor and reactor have the same goal) while in the down-
grading version the actor seeks to maximize the 1-median objective value while
the location planner wants to minimize this value. Hence, the downgrading ver-
sion is a max-min-problem.

Denote the optimal 1-median objective value with respect to vertex weights
w by z(w). Then the task of the upgrading 1-median problem is to increase the
weights by δ = (δv)v∈V such that δ is a feasible vertex weight modification and
z(w − δ) is minimized. Analogously, the downgrading 1-median problem is to
find a feasible weight modification δ such that z(w + δ) is maximized.

A vertex weight modification δ = (δv)v∈V is called feasible if a budget con-
straint is met and the modifications are within certain bounds: Let cv ∈ R+ for
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v ∈ V denote the cost of changing the weight of vertex v by one unit and let
uv ∈ R+ for v ∈ V be an upper bound for the modification of the weight of
vertex v. Moreover, we are given a total budget B. Then δ is feasible if δ ∈ ∆
with

∆ =

{

δ

∣

∣

∣

∣

∑

v∈V

cvδv ≤ B and 0 ≤ δv ≤ uv for all v ∈ V

}

.

Hence, we can define the upgrading and downgrading problems: Let G =
(V, E) be a graph with vertex weights wv ∈ R+, cost coefficients cv ∈ R+ and
bounds uv ∈ R+ for all v ∈ V , edge lengths ℓe ∈ R+ for all e ∈ E and a total
budget B.

Then the upgrading 1-median problem, Up1Median for short, is to solve

min
δ∈∆

z(w − δ) = min
δ∈∆

min
x∈V

∑

v∈V

(wv − δv)d(v, x).

And the downgrading 1-median problem, Down1Median for short, is to solve

max
δ∈∆

z(w + δ) = max
δ∈∆

min
x∈V

∑

v∈V

(wv + δv)d(v, x).

In this paper we will present an O(n2) time algorithm for Up1Median pro-
vided that the distance matrix is given. For Down1Median a linear programming
formulation is given. Hence, Down1Median can be solved in polynomial time. If
the underlying graph is a tree, a type of concavity property can be shown for
Down1Median which leads to an O(n log n) time algorithm.

1.3 Notation

Throughout this paper we will use the following notation: Let G = (V, E) be a
graph. Then n = |V | is the number of vertices and m = |E| is the number of
edges.

Let G = (V, E) be a graph with vertex weights wv ∈ R+ and let X ⊆ V be a
subset of vertices. Then w(X) =

∑

v∈X wv denotes the total weight of vertices in
X . Let δv ∈ R+ be additional vertex weights then (w+δ)(X) =

∑

v∈X(wv +δv).

If no ambiguity is possible then we write w(H) instead of w(Ṽ ) for H = (Ṽ , Ẽ)
is a subgraph of G.

Let x ∈ V then the neighbourhood of x is denoted by Γ (x) = {y ∈ V |
(x, y) ∈ E}.

Let T = (V, E) be a tree and v ∈ V then T (v) denotes the set of subtrees
of T that arise if vertex v is deleted. Let T ′ = (V ′, E′) and T ′′ = (V ′′, E′′) be
two vertex disjoint subtrees of T then T ′ + T ′′ = (V ′ ∪ V ′′, E′ ∪ E′′) denotes
the union of both subtrees which is again a subtree of T . And finally, T − T ′ =
(V − V ′, {(i, j) ∈ E | i, j ∈ V \ V ′}) is a subgraph of T which is induced by the
vertex set V \ V ′.



Up- and downgrading the 1-median in a network 5

2 Upgrading the 1-median

This section is dedicated to upgrading the 1-median in a graph. Given a graph
G = (V, E), vertex weights wv ∈ R+, cost coefficients cv ∈ R+ and bounds
uv ≤ wv ∈ R+ for all v ∈ V , edge lengths ℓe ∈ R+ for all edges e ∈ E and a
budget B, the task is to solve

min
δ∈∆

min
x∈V

∑

v∈V

(wv − δv)d(v, x).

Since we can interchange the first two minimum-operations, Down1Median
is equivalent to

min
x∈V

min
δ∈∆

∑

v∈V

(wv − δv)d(v, x)

which leads to n reverse 1-median problems. For each vertex x ∈ V the
corresponding 1-median objective value has to be maximally improved by a
feasible weight modification. Finally, the best upgraded objective value is equal
to the optimal objective value of Up1Median. Each reverse 1-median problem is a
continuous knapsack problem which can be solved in O(n) time (Balas and Zemel
[1]). Hence, Up1Median can be solved by solving n continuous knapsack problems
and finally comparing the obtained maximally improved objective values.

Theorem 1. Upgrading the 1-median by vertex weight modifications can be solved

in O(n2) time provided that the distance matrix is given.

We conclude this section with an example which shows some properties of
Up1Median.

In general the 1-median changes after an optimal weight modification. Con-
sider the following instance of Up1Median given in Figure 1 with B = 2.

1

4

1

2

2

1

1

2

3

4

1

2

wv

cv

uv

1 1

Fig. 1. Instance of Up1Median.

The objective values with respect to the original weights are f(1) = f(3) = 9
and f(2) = 8. Hence, vertex 2 is the unique 1-median. Now fix vertex 1 and
maximally improve its objective value. Then δ1 = δ2 = 0 and δ3 = 2 is an
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optimal improvement and hence the new objective value of vertex 1 is equal to
f̃(1) = 5. Due to symmetry δ1 = 2 and δ2 = δ3 = 0 is an optimal improvement
of vertex 3 with improved objective value f̃(3) = 5. If vertex 2 is maximally
improved then δ1 = δ3 = 1 and δ2 = 0 and hence the improved objective value
of vertex 2 is f̃(2) = 6. Hence, either vertex 1 or vertex 3 are 1-medians after an
optimal weight modification and hence vertex 2 looses its optimality.

Observe, that although the objective values for fixed weights are convex along
a path, the maximally improved objective values do not have to property any
more.

3 Downgrading the 1-median on general graphs

In this section we investigate the problem of downgrading the 1-median on
graphs. Down1Median is shown to be solvable in polynomial time since it can
be written as linear programming problem.

Let us recall the definition of Down1Median: Given a graph G = (V, E)
with vertex weights wv ∈ R+, cost coefficients cv ∈ R+ and bounds uv ∈ R+

for all vertices v ∈ V , edge lengths ℓe ∈ R+ for e ∈ E and a total budget B.
Down1Median is to

max
δ∈∆

min
x∈V

∑

v∈V

(wv + δv)d(v, x).

Observe that maximally downgrading the objective value of each vertex
and finally taking the best solution does not lead to an optimal solution of
Down1Center in general. Consider the following example with G = (V, E) as
given in Figure 2.

1 1

1

1

2 3

1

2

2

Fig. 2. Instance of Down1Median with wv = cv = 1 and uv = 2 for all v ∈ V and
B = 2.

Before any weight modification we have f(1) = f(2) = 3 and f(3) = 4, i. e.,
vertex 1 and vertex 2 are 1-medians. Now fix vertex 1 and maximally degrade
the objective value of vertex 1. Then δ1 = δ2 = 0 and δ3 = 2 and the new
objective values are f̃(1) = f̃(3) = 7 and f̃(2) = 4. Hence, the new optimal
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objective value is equal to 4. Due to symmetry we get the same result for vertex
3. If we fix vertex 2 then vertex 1 and vertex 3 have the same efficiency. Let
δ1 = λ and δ2 = 2− λ then f̃(1) = 5− λ, f̃(2) = 3 + λ and f̃(3) = 8. Hence, the
1-median objective value is maximal for λ = 1 and the corresponding optimal
objective value is equal to 4. We conclude that this procedure yields the optimal
objective value 4. Observe that if vertex x ∈ V is fixed and its objective value
is maximized, then in general vertex x is not a 1-median with respect to the
new vertex weights. Moreover, the unique optimal solution of Down1Median is
δ1 = δ3 = 3

7
and δ2 = 8

7
with objective value 40

7
which is strictly greater than the

maximum value we got if we fix each vertex separately. In addition this example
shows that in general every weight - even the weight of the vertex which will
be the 1-median after an optimal weight modification - has to be changed in an
optimal solution.

However, Down1Median can be solved in polynomial time since it can be
formulated by the following linear program:

max
δ,L

L

s.t.
∑

v∈V

(wv + δv)d(v, x) ≥ L for all x ∈ V

∑

v∈V

cvδv ≤ B

0 ≤ δv ≤ uv for all v ∈ V

Theorem 2. The problem of downgrading the 1-median can be solved in poly-

nomial time.

4 Downgrading the 1-median in a tree

In this section we consider the problem of maximally downgrading the 1-median
in a tree. As main theorem we show a concavity property which leads to an
O(n log n) time algorithm for Down1Median on trees.

Observe that there exists an optimality criterion for the 1-median problem
on a tree which is independent of the edge lengths:

Theorem 3 (Goldman [14]). Let T = (V, E) be a tree, wv ∈ R+ for v ∈ V be

vertex weights and ℓe ∈ R+ for e ∈ E be edge lengths. Then vertex x ∈ V is a

1-median if and only if

w(T ′) ≤
1

2
w(T ) for all T ′ ∈ T (x).

Let g(x) for x ∈ V denote the maximal objective value of vertex x which
can be obtained by modifying the weights by a feasible δ and simultaneously
making sure that x is a 1-median with respect to the new weights. Using the
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above optimality criterion for the 1-median problem we can define g(x) in the
following way:

(P(x)) g(x) = max
∑

v∈V

(wv + δv)d(v, x)

s.t.
∑

v∈V

cvδv ≤ B (1)

0 ≤ δv ≤ uv for all v ∈ V (2)

(w + δ)(T ′) ≤
1

2
(w + δ)(T ) for all T ′ ∈ T (x) (3)

Obviously, maxx∈V g(x) is equal to the optimal objective value of Down1Median
on a tree. Before investigating P(x) we turn our attention to the corresponding
relaxed problem P′(x):

(P′(x)) max
∑

v∈V

(wv + δv)d(v, x)

s.t.
∑

v∈V

cvδv ≤ B (4)

0 ≤ δv ≤ uv for all v ∈ V (5)

Observe that P′(x) is a continuous knapsack problem. Therefore, we define
the efficiency of a vertex v ∈ V with respect to x by

effx(v) =
d(v, x)

cv

.

Let us call a solution ξ = (ξi)i∈V to be an efficient solution for x if ξ is a
feasible solution of P′(x), the budget constraint (1) is met with equality and
whenever ξi < ui and ξj > 0 (i 6= j) holds then effx(i) ≤ effx(j). Clearly,
an optimal solution of P′(x) is an efficient solution for x. Moreover, an optimal
solution of P(x) such that all constraints of type (3) are met with strict inequality
is optimal for P′(x) and therefore an efficient solution for x.

The goal of the following investigations is to compare the optimal objective
values of two adjacent vertices. In order to do this, we first compare efficient
solutions for adjacent vertices and then optimal solutions for P(x) and P′(x).

For the proofs of the following lemmata we will often make use of the following
technical lemma:

Lemma 1. Let I be a set of elements and ci > 0 for i ∈ I. Assume that

∑

i∈I

ciξi ≥
∑

i∈I

ciηi (6)

∑

i∈I

ξi <
∑

i∈I

ηi (7)



Up- and downgrading the 1-median in a network 9

then there exist two elements j and k such that ξj < ηj and ξk > ηk and cj < ck

holds.

Proof. The existence of element j is guaranteed by (7). Assume that ξi ≤ ηi for
all i ∈ I and ξj < ηj . Then we get a contradiction to (6). Therefore, there exists
an element k with ξk > ηk. It remains to show that cj < ck. Let

A = {i ∈ I | ξi < ηi}, B = {i ∈ I | ξi > ηi}

Both sets are known to be non-empty. Let

cmin = min
i∈A

ci, cmax = max
i∈B

ci

and assume that cmin ≥ cmax holds. Then,

0 ≤
∑

i∈A

ci(ξi − ηi) +
∑

i∈B

ci(ξi − ηi)

≤ cmin

∑

i∈A

(ξi − ηi) + cmax

∑

i∈B

(ξi − ηi)

≤ cmin

(

∑

i∈A

(ξi − ηi) +
∑

i∈B

(ξi − ηi)

)

= cmin

(

∑

i∈I

ξi −
∑

i∈I

ηi

)

< 0

which leads to a contradiction. Hence, cmin < cmax and therefore there exist
elements j ∈ A and k ∈ B with cj < ck.

The following lemma compares efficient solutions of adjacent vertices: Let
(x, y) ∈ E and let λ be an efficient solution for x. Moreover, let vertex y lie in
subtree T ′ ∈ T (x). We prove that if the weight of T ′ with respect to λ is small
then there exists an efficient solution λ̃ for y such that the weight of T ′ is also
small. The intuition behind this lemma is, that if we move from x to y then
the efficiencies of the elements in T ′ decrease while the remaining efficiencies
increase. Therefore, λ̃ tends to take less elements out of T ′. Formally, we prove
the following result:

Lemma 2. Let (x, y) ∈ E and let λ be an efficient solution of x with

(w + λ)(T ′) <
1

2
(w + λ)(T ) (8)

for T ′ ∈ T (x) with y ∈ T ′. Then there exists an efficient solution λ̃ for y with

(w + λ̃)(T ′) ≤
1

2
(w + λ̃)(T ).
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T ′′ T ′

x y

Fig. 3. Illustration for the proof of Lemma 2.

Proof. Let T ′′ = T −T ′, i. e., T ′′ ∈ T (y) with x ∈ T ′′ (see Figure 3) and assume
that every efficient solution λ̃ for y satisfies

(w + λ̃)(T ′) > (w + λ̃)(T ′′).

The proof is split into three subcases:

1. λ̃i ≤ λi for all i ∈ T ′:

Then (w+λ̃)(T ′) ≤ (w+λ)(T ′) holds. Together with (8) we get (w+λ̃)(T ′′) <
(w + λ)(T ′′) and hence

∑

j∈T ′′

λ̃j <
∑

j∈T ′′

λj .

Since λ̃ is efficient and therefore uses the whole budget we get
∑

j∈T ′′

cj λ̃j = B −
∑

i∈T ′

ciλ̃i ≥ B −
∑

i∈T ′

ciλi ≥
∑

j∈T ′′

cjλj .

Lemma 1 implies that there exist two vertices j, k ∈ T ′′ with λ̃j < λj and

λ̃k > λk and cj < ck. Observe that λj > 0 and λk < uk. Since λ is an
efficient solution for x, we have effx(j) ≥ effx(k) and

effx(j) − effx(k) =effy(j) −
ℓ(x, y)

cj

− effy(k) +
ℓ(x, y)

ck

≥ 0

effy(j) − effy(k) ≥ ℓ(x, y)

(

1

cj

−
1

ck

)

> 0

Hence, effy(j) > effy(k) and therefore the efficiency of λ̃ implies either λ̃j =

uj or λ̃k = 0 which contradicts λ̃j < λj ≤ uj and λ̃k > λk ≥ 0.
2. Let i ∈ T ′ with λ̃i > λi and assume that there exists a vertex j ∈ T ′′ with

λ̃j < λj :

Then λi < ui and λj > 0 and therefore the efficiency of λ implies effx(i) ≤
effy(j). But

effx(j) − effx(i) = effy(j) −
ℓ(x, y)

cj

− effy(i) −
ℓ(x, y)

ci

≥ 0

effy(j) − effy(i) ≥ ℓ(x, y)

(

1

cj

+
1

ck

)

> 0
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Again effy(j) > effy(i) leads to a contradiction to the efficiency of λ̃.

3. Assume that λ̃j ≥ λj for all j ∈ T ′′ and there exists a vertex i ∈ T ′ with

λ̃i > λi:

Observe that since λ is an efficient solution, it uses the whole budget. We
use the same ideas as for the first case to show that

∑

k∈T ′

λ̃k >
∑

k∈T ′

λk

and
∑

k∈T ′

ckλ̃k = B −
∑

j∈T ′′

cj λ̃j ≤ B −
∑

j∈T ′′

cjλj =
∑

i∈T ′

ciλi.

Lemma 1 implies the existence of j, k ∈ T ′ with λ̃j > λj , λ̃k < λk and
ck > cj . Due to the efficiency of λ we have effx(j) ≤ effx(k) and

effx(k) − effx(j) = effy(k) +
ℓ(x, y)

ck

− effy(j) −
ℓ(x, y)

cj

≥ 0

effy(k) − effy(j) ≥ ℓ(x, y)

(

1

cj

−
1

ck

)

> 0

Again we get a contradiction to the efficiency of λ̃.

In a next step we are interested in the relationship between an optimal so-
lution of P(x) and an optimal solution of P′(x). Since P′(x) is a continuous
knapsack problem, we prefer solving P′(x) instead of P(x). If P′(x) has an opti-
mal solution λ that is feasible for P(x) then λ is optimal for P(x). However, if
λ is infeasible for P(x) then we have still enough information about an optimal
solution P(x).

Lemma 3. Let λ be an optimal solution of P′(x) and T ′ ∈ T (x). If

(w + λ)(T ′) ≥
1

2
(w + λ)(T )

holds then there exists an optimal solution δ of P(x) with

(w + δ)(T ′) =
1

2
(w + δ)(T ).

Proof. If (w+λ)(T ′) = 1

2
(w+λ)(T ) then (w+λ)(T̃ ) ≤ (w+λ)(T ′) = 1

2
(w+λ)(T )

holds for all T̃ ∈ T (x). Hence, λ is a feasible solution of P(x) and therefore
optimal and has the required equality-property.

Assume that (w + λ)(T ′) > 1

2
(w + λ)(T ) and (w + δ)(T ′) < 1

2
(w + δ)(T ) for

all optimal solutions δ of P(x). We distinguish two types of solutions:

1. Type: There exists a subtree T ′′ ∈ T (x) with (w + δ)(T ′′) = 1

2
(w + δ)(T ).

2. Type: (w + δ)(T ′′) < 1

2
(w + δ)(T ) for all T ′′ ∈ T (x).
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T ′′ T ′

x y

Fig. 4. Illustration for the proof of Lemma 3.

Assume that we are given a solution δ of the 1. Type (see Figure 4):

– If λi ≤ δi for all i ∈ T − T ′′ then (w + λ)(T − T ′′) ≤ (w + δ)(T − T ′′) and
therefore

(w + δ)(T ′′) = (w + δ)(T − T ′′) ≥ (w + λ)(T − T ′′)

> (w + λ)(T ′) > (w + λ)(T − T ′) > (w + λ)(T ′′).

On the other hand, we have

∑

i∈T ′′

ciλi = B −
∑

j∈T−T ′′

cjλj ≥ B −
∑

j∈T−T ′′

cjδj ≥
∑

i∈T ′′

ciδi.

Due to Lemma 1 there are two vertices j, k ∈ T ′′ with δj > λj and δk < λk

and cj < ck. The optimality of λ implies effx(j) ≤ effx(k). There exists an

ǫ > 0 such that the solution δ̂ obtained by δ where δj is decreased by ǫ
cj

and

δk increased by ǫ
ck

satisfies the bound and budget constraints. Moreover, the

weight of subtree T ′′ increases by ε
(

1

ck
− 1

cj

)

< 0, i. e., the weight of subtree

T ′′ decreases while the weight of T −T ′′ remains unchanged. Therefore, there
exists an ǫ > 0 such that δ̂ is feasible for P(x). If effx(j) < effx(k) we would
get a contradiction to the optimality of δ. Therefore, effx(j) = effx(k) and

we get a solution δ̂ of the 2. Type.
– Assume that there exists a vertex i ∈ T − T ′′ with λi > δi and a vertex

j ∈ T ′′ with λj < δj . Then the optimality of λ implies effx(j) ≤ effx(i). We
can define a new solution where δj is decreased and δi is increased by some
small amount (analogue to the previous discussion). Hence, either we get a
contradiction to the optimality of δ or we get a new solution of the 2. Type.

– And finally, assume that there exists a vertex i ∈ T − T ′′ with λi > δi

and λj ≥ δj for all j ∈ T ′′. Observe that since δi < ui and i ∈ T − T ′′, we
know that δ uses the whole budget (because otherwise δi could be increased).
Moreover, we have

(w + λ)(T − T ′′) > (w + λ)(T ′) > (w + λ)(T − T ′)

> (w + λ)(T ′′) ≥ (w + δ)(T ′′) = (w + δ)(T − T ′′).
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On the other hand, we have

∑

j∈T−T ′′

cjλj = B −
∑

i∈T ′′

ciλi ≤ B −
∑

i∈T ′′

ciδi =
∑

j∈T−T ′′

cjδj.

We use again Lemma 1 to show that there are two vertices j, k ∈ T − T ′′

with λj > δj and λk < δk and cj < ck. Due to the optimality of λ we have

effx(j) ≥ effx(k). Now define a new solution δ̂ which is based on δ but δj is
increased by ε

cj
and δk is decreased by ε

ck
. Obviously, there exists a value

ε > 0 such that δ̂ is feasible for P′(x). Moreover, the weight in T − T ′′ is

increased by ε
(

1

cj
− 1

ck

)

> 0 while the weight of T ′′ remains unchanged.

Hence, we get a solution of the 2. Type.

The previous discussion implies that there exists a solution of 2. Type. Let δ
be a solution of the second type which minimizes (w+δ)(T−T ′)−(w+δ)(T ′) > 0.
This condition is called gap minimality.

– If λi ≤ δi for all i ∈ T ′ then

(w + λ)(T − T ′) < (w + λ)(T ′) ≤ (w + δ)(T ′) < (w + δ)(T − T ′)

and
∑

i∈T−T ′ ciλi ≥
∑

i∈T−T ′ ciδi. Then there are two vertices j, k ∈ T −T ′

with λj < δj and λk > δk and cj < ck. The optimality of λ implies effx(j) ≤
effx(k). Then δ can be modified in such a way that δj is decreased, δk is

increased and the weight of T−T ′ changes by ε
(

1

ck
− 1

cj

)

< 0 for some ε > 0

while the weight of T ′ remains unchanged. This leads to a contradiction to
the gap minimality of δ.

– If there exists a vertex i ∈ T ′ with λi > δi and a vertex j ∈ T − T ′ with
λj < δj then effx(i) ≥ effx(j) and δi can be increased while δj can be
decreased. Again we get a contradiction to the gap minimality of δ.

– And finally, if there exists a vertex i ∈ T ′ with λi > δi and λj ≥ δj for all
j ∈ T − T ′. Then

(w + δ)(T ′) < (w + δ)(T − T ′) ≤ (w + λ)(T − T ′) < (w + λ)(T ′)

holds. Since δi < λi ≤ ui and i ∈ T ′, we know that δ uses the whole budget
(otherwise δi could be increased). Therefore,

∑

i∈T ′

ciλi = B −
∑

j∈T−T ′

cjλj ≤ B −
∑

j∈T−T ′

cjδj =
∑

i∈T ′

ciδi.

Hence, we have two vertices j, k ∈ T ′ with δj < λj and δk > λk and cj < ck.
The optimality of λ implies effx(j) ≥ effx(k). Then δj can be increased and

δk can be decreased. The weight of T ′ increases by ε
(

1

cj
− 1

ck

)

> 0 while

the weight of T − T ′ remains unchanged. This leads to a contradiction to
the gap minimality of δ.
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The two previous lemmata are now used to compare optimal solutions of
P(x) and P′(y) for (x, y) ∈ E. Given an optimal solution δ of P(x) we have to
distinguish whether constraint (3) for T ′ ∈ T (x) with y ∈ T ′ is satisfied with
equality or strict inequality. We start our investigations with the case of equality
in constraint (3):

Lemma 4. Let δ be an optimal solution of P(x), (x, y) ∈ E and y ∈ T ′ with

T ′ ∈ T (x) such that

(w + δ)(T ′) =
1

2
(w + δ)(T )

holds. Then g(x) < g(y) or δ is optimal for P(y) and g(x) = g(y).

Proof. Since subtree T ′ has exactly half of the total weight of T with respect to
w + δ we conclude that δ is feasible for P(x) and for P(y). The objective value
of P(y) is then

∑

v∈V

(wv + δv)d(v, y) =
∑

v∈T ′

(wv + δv)d(v, y) +
∑

v∈T−\T ′

(wv + δv)d(v, y)

=
∑

v∈T ′

(wv + δv)(d(v, x) − ℓ(x, y))

+
∑

v∈T\T ′

(wv + δv)(d(v, x) + ℓ(x, y))

=g(x) + ℓ(x, y) ((w + δ)(T − \T ′) − (w + δ)(T ′))

=g(x) + ℓ(x, y) ((w + δ)(T ) − 2(w + δ)(T ′)) = g(x)

Hence, δ is feasible for P(y) with objective value g(x). If δ is optimal for P(y)
then g(x) = g(y) otherwise g(x) < g(y).

Now we are interested in a neighbour of x ∈ V such that constraint (3) is
met with strict inequality.

Lemma 5. Let δ be an optimal solution of P(x) such that

(w + δ)(T ′) <
1

2
(w + δ)(T )

for all T ′ ∈ T (x). Then g(x) ≥ g(y) holds for all y ∈ V with (x, y) ∈ E.

Proof. Let (x, y) ∈ E and let T ′ ∈ T (x) with y ∈ T ′. Moreover, T ′′ = T − T ′.
Since all weight constraints are met with strict inequality, δ is an efficient solution
for x. According to Lemma 2 there exists an optimal solution λ̃ of P′(y) with
(w + λ̃)(T ′) ≤ (w + λ̃)(T ′′). Then Lemma 3 implies that there exists an optimal
solution δ̃ of P(y) with (w + δ̃)(T ′) = (w + δ̃)(T ′′). And finally, Lemma 4 implies
g(x) ≥ g(y).

Lemma 6. Let (x, y) ∈ E and T ′ ∈ T (x) with y ∈ T ′. If we have

(w + δ)(T ′) <
1

2
(w + δ)(T )

for every optimal solution δ of P(x) then g(x) > g(y).
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Proof. Lemma 3 implies that (w+λ)(T ′) < (w+λ)(T ′′) for all optimal solutions
λ of P′(x). Since λ is an efficient solution for x, Lemma 2 implies that there
exists an optimal solution λ̃ of P′(y) with (w + λ̃)(T ′) ≤ (w + λ̃)(T ′′). According
to Lemma 3 there exists an optimal solution δ̃ of P(y) with (w + δ̃)(T ′) =
(w + δ̃)(T ′′). And finally, Lemma 4 implies that either g(x) > g(y) or there
exists an optimal solution with equality which is forbidden by assumption.

We are now in the position to prove the following concavity property:

Lemma 7. Let (x, y), (y, z) ∈ E with x 6= z. If g(x) ≥ g(y) then we have

g(y) ≥ g(z).

Proof. Let Tx, Tz ∈ T (y) with x ∈ Tx, z ∈ Tz and Ty = T − (Tx + Tz). The
situation is pictured in Figure 5.

Tx Ty Tz

x y z

Fig. 5. Illustration for the proof of Lemma 7.

If there exists an optimal solution δ of P(y) with (w + δ)(T ′) < 1

2
(w + δ)(T )

for all T ′ ∈ T (y) then g(y) ≥ g(z) holds (Lemma 5). And if for every optimal
solution δ of P(y) we have (w + δ)(Tx + Ty) > (w + δ)(Tz) then g(y) > g(z)
(Lemma 6).

Hence, it remains to show that the lemma is true even if for every optimal
solution of P(y) there is one constraint of type (3) which is met with equality and
in addition there exists an optimal solution δ of P′(y) with (w + δ)(Tx + Ty) =
(w + δ)(Tz).

Observe that there exists an optimal solution δ̂ of P′(y) with (w + δ̂)(Tx) =

(w + δ̂)(Ty + Tz) (because otherwise Lemma 6 would lead to a contradiction to
g(x) ≥ g(y)).

Our goal is to construct a new optimal solution such that no constraint of

type (3) is met with equality (which leads to a contradiction): Let ξi = δi+δ̂i

2

(for i ∈ V ). Clearly, ξ satisfies the bound and budget constraints. Moreover,

(w + ξ)(Tx) =
1

2
(w + δ)(Tx) +

1

2
(w + δ̂)(Tx)

<
1

2
(w + δ)(Tz) +

1

2
(w + δ̂)(Ty + Tz)

<
1

2
(w + δ)(Ty + Tz) +

1

2
(w + δ̂)(Ty + Tz)

= (w + ξ)(Ty + Tz)
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In an analogue way we can show that (w + ξ)(Tz) < (w + ξ)(Tx + Ty).

Finally, we have to consider subtrees T̃ ∈ T (y) with T̃ /∈ {Tx, Tz}:

(w + ξ)(T̃ ) < (w + ξ)(Ty)

=
1

2
(w + δ)(Ty) +

1

2
(w + δ̂)(Ty)

≤
1

2
(w + δ)(Tz) +

1

2
(w + δ̂)(Tx)

≤
1

2
(w + δ)(Tx + Tz) +

1

2
(w + δ̂)(Tx + Tz)

= (w + ξ)(Tx + Tz) < (w + ξ)(T − T̃ )

We have shown that ξ is an optimal solution of P(y) with

(w + ξ)(T̃ ) <
1

2
(w + ξ)(T )

for all T̃ ∈ T (y) which contradicts the assumption that no such optimal solution
exists.

Lemma 7 implies that a local optimum among the function values g(x) for
x ∈ V is also globally optimal. Moreover, we get the following main theorem:

Theorem 4. Let T = (V, E) be a tree with vertex weights wv ∈ R+, cost coeffi-

cients cv ∈ R+ and bounds uv ∈ R+ for v ∈ V , edge lengths ℓe ∈ R+ for e ∈ E
and budget B. Let x ∈ V and let λ be an optimal solution of P′(x).

– If (w + λ)(T ′) < 1

2
(w + λ)(T ) for all T ′ ∈ T (x) then g(x) is the optimal

objective value of Down1Median and vertex x is the 1-median with respect

to an optimal weight modification.

– If there exists a subtree T ′ ∈ T (x) with (w + λ)(T ′) ≥ 1

2
(w + λ)(T ) then

there exists a 1-median x∗ ∈ V with respect to optimal weight modifications

such that x∗ ∈ T ′.

Proof. If (w + λ)(T ′) < 1

2
(w + λ)(T ) for all T ′ ∈ T (x) then λ is an optimal

solution of P (x). According to Lemma 5 we have g(x) ≥ g(y) for all y ∈ Γ (x).
The result follows together with Lemma 7.

If there exists a subtree T ′ ∈ T (x) with (w+λ)(T ′) ≥ 1

2
(w+λ)(T ) then there

exists an optimal solution δ of P(x) with (w + λ)(T ′) = 1

2
(w + λ)(T ) (Lemma

(3)). According to Lemma 4 we know that g(x) ≤ g(y) for (x, y) ∈ E and y ∈ T ′.
Then Lemma 7 implies g(x) ≥ g(z) for all z ∈ Γ (x) \ {y} and herewith for all
z ∈ T − ({x} ∪ T ′). Hence, there exists an optimal solution in T ′.

Observe that Theorem 4 immediately implies the following algorithm for
Down1Median on trees:

– Step 1 (Initialization): Let T̃ = (Ṽ , Ẽ) = (V, E).
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– Step 2 (Binary search): If Ṽ = {x, y} and both vertices are already inves-
tigated then go to Step 5. Else, let x ∈ Ṽ be a centroid of T̃ that was not
already investigated, i. e., x is a vertex such that |V ′| ≤ 1

2
|Ṽ | for all subtrees

T ′ in T̃ that arise if x is deleted.
– Step 3 (Investigation of x): Solve P′(x). Let λ be an optimal solution of

P′(x). If (w + λ)(T ′) < 1

2
(w + λ)(T ) for all T ′ ∈ T (x) then x is an optimal

vertex and λ is an optimal solution for Down1Median in T . If Ṽ = {x} then
go to Step 5, otherwise go to Step 4.

– Step 4 (Reduction of search space): Let T ′ = (V ′, E′) ∈ T (x) such that
(w + λ)(T ′) ≥ 1

2
(w + λ)(T ). Set Ṽ = V ′ and Ẽ = E′ with y ∈ V ′. Go to

Step 2.
– Step 5 (Determine solution for optimal vertex): An optimal solution of P(x)

is optimal for Down1Median on T .

Theorem 4 implies the correctness of this algorithm. Observe that a centroid
can be found in linear time (Handler and Mirchandani [17]). Moreover, since
we delete approximately half of the vertices in every iteration, we have O(log n)
iterations. In fact we do a binary search on the tree. Instead of solving P(x) to
optimality in every iteration we solve only the relaxed version P′(x) which still
gives enough information on an optimal solution of P(x).

If we get an optimal solution λ of P′(x) which is also feasible for P(x) and
satisfies all constraints of type (3) with strict inequality, then λ is an optimal
solution of Down1Median. However, if we end up with two vertices x, y ∈ V with

(w + λx)(T ′) ≥ (w + λx)(T ′′)

(w + λy)(T ′) ≤ (w + λy)(T ′′)

where λx (λy) is an optimal solution of P′(x) (P′(y)) and T ′ ∈ T (x) with y ∈ T ′

and T ′′ ∈ T (y) with x ∈ T ′′ then Lemmata 3 and 4 imply g(x) = g(y). Together
with Lemma 7 we know that g(x) = g(y) is the optimal objective value of
Down1Median of T . If λx is not feasible for P(x) then there exists a subtree
T ′ ∈ T (x) whose weight is strictly greater than one half of the total weight.
Hence, there exists an optimal solution δ of P(x) such that the weight of T ′ is
exactly half of the total weight. Let δ be an optimal solution of P′(x) with the
additional constraint that (w+δ)(T ′) = 1

2
(w+δ)(T ) then δ is an optimal solution

of P(x). Observe that this new problem has two constraints in addition to the
upper bound constraints and can therefore be solved in linear time (Megiddo
and Tamir [20]).

Theorem 5. Downgrading the 1-median on a tree with vertex weight modifica-

tions can be solved in O(n log n) time.

Proof. The correctness of the above algorithm was already shown before. It re-
mains to analyze the running time. There are O(log n) iterations and in each
iteration we have to find a centroid and an optimal solution of a continuous
knapsack problem. Both subproblems can be solved in linear time. Hence, an
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optimal vertex can be found in O(n log n) time. As soon as an optimal vertex
is found the corresponding optimal vertex weight modification has to be deter-
mined in Step 5. Solve P′(x) together with one weight constraint in order to
get an optimal solution. This last linear programming problem can be solved in
linear time. Therefore, the whole algorithm takes O(n log n) time.

5 Conclusion

This paper deals with changing parameters of a network such that the optimal
objective value of the 1-median problem in the modified network is minimized
(upgrading) and maximized (downgrading), respectively. In many cases upgrad-
ing problems can be lead back to reverse problems. In contrast, downgrading
problems have a min-max-structure and therefore need a different approach. In
case of the 1-median problem the downgrading version can be written als lin-
ear programming problem and for the special case of a tree an O(n log n) time
algorithm is developed. It seems to be interesting to apply up- and downgrad-
ing versions to different underlying location problems like p-median or p-center
problems. Another direction of future research is the investigation of up- and
downgrading problems with variable edge lengths.
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