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Redundant τ -adic Expansions II:
Non-Optimality and Chaotic Behaviour

Clemens Heuberger

Abstract. When computing scalar multiples on Koblitz curves, the Frobenius endomorphism
can be used to replace the usual doublings on the curve. This involves digital expansions of the
scalar to the complex base τ = (±1 ±

√
−7)/2 instead of binary expansions. As in the binary

case, this method can be sped up by enlarging the set of valid digits at the cost of precomputing
some points on the curve. In the binary case, it is known that a simple syntactical condition
(the so-called w-NAF-condition) on the expansion ensures that the number of curve additions
is minimised. The purpose of this paper is to show that this is not longer true for the base
τ and w ∈ {4, 5, 6}. Even worse, it is shown that there is no longer an online algorithm to
compute an optimal expansion from the digits of some standard expansion from the least to
the most significant digit, which can be interpreted as chaotic behaviour. The proofs heavily
depend on symbolic computations involving transducer automata.

Mathematics Subject Classification (2000). 11A63, 68W13, 68Q45, 94A60, 90C27.

1. Introduction

The principle of elliptic curve cryptography is that scalar multiples of a point can be computed
quickly, whereas the inverse operation, the discrete logarithm problem, is believed to be hard. It
is a natural aim to optimise the scalar multiplication.

In [15], Koblitz discussed the curves (since then associated with his name)

Ea : Y 2 + XY = X3 + aX2 + 1, with a ∈ {0, 1},
which are defined over F2 and whose point group Ea(F2n) over F2n is considered. The Frobenius
automorphism τ : F2n → F2n , which sends an element to its square, can be extended to an
endomorphism of Ea(F2n). It turns out [15] that τ satisfies the equation

τ2 − µτ + 2 = 0 (1)

where µ = (−1)1−a. This implies that τ can be identified with the complex number

µ +
√
−7

2
.

According to the classification of Kátai and Kovács [12], the imaginary quadratic number τ
is the basis of a canonical number system (cf. Kátai and Szabó [13]) in Z[τ ], i.e., every element

z ∈ Z[τ ] can be represented as z =
∑ℓ

j=0 ηjτ
j for digits ηj ∈ {0, 1}. Using this representation, a

scalar multiple n · P with n ∈ Z (or even n ∈ Z[τ ]) and P ∈ Ea(F2n) can be computed as

n · P =

ℓ∑

j=0

ηjτ
j(P ). (2)
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The latter sum can be evaluated efficiently using Horner’s scheme. This is a generalisation of the
double-and-add scheme (cf. Knuth [14]) on arbitrary elliptic curves, where a digit expansion to
the base of 2 is used. The attractive feature is that an application of the Frobenius endomorphism
is much cheaper (or even almost free when normal bases are used) than doubling.

The number of elliptic curve additions required to calculate n · P using (2) almost (i.e., one
addition less is required) equals the Hamming weight of (ηℓ . . . η0), i.e., the number of nonzero
digits ηj .

On an elliptic curve, subtraction of a point is (almost) as cheap as addition of a point.
Therefore, Morain and Olivos [17] proposed (in the binary case) to allow digits −1, too. This

can be carried over to Koblitz curves. Since there are many representations z =
∑ℓ

j=0 ηjτ
j with

digits ηj ∈ {0, 1,−1}, one can choose a representation that minimises the Hamming weight. It
turns out that every z ∈ Z[τ ] has a unique representation such that ηj · ηj+1 = 0 for all j (cf.
Solinas [23, 24]), called the τ -Non-Adjacent Form (or τ -NAF)1, and that the τ -NAF minimises
the Hamming weight (cf. Gordon [7] and Avanzi, Heuberger and Prodinger [3, 4]). In the binary
case, the same has already be shown by Reitwiesner [22].

If one allows still larger digit sets, the Hamming weight can be further decreased. This comes
at the cost of precomputing and storing ηj ·P for all digits ηj . Solinas [24] proposed the following
set of digits: Fix a positive integer w and for each residue class modulo τw coprime to τ , choose the
element of minimal norm to be a digit. Furthermore, 0 is a digit. This construction is called the
digit set of minimal norm representatives modulo τw. Solinas proved that every element z ∈ Z[τ ]

admits a unique representation z =
∑ℓ

j=0 ηjτ
j such that among every w consecutive digits, there

is at most one non-zero digit. This representation is called the τ -w-NAF of z. For w = 1, this
corresponds to the canonical number system representation with digits from {0, 1}. The τ -2-NAF
is just the τ -NAF described above.

This paper deals with the question whether the τ -w-NAF of an element z ∈ Z[τ ] minimises
the Hamming weight over all representations of z with the same digits, but without the non-
adjacency condition. For w = 1, this is trivially true. As mentioned above, for w = 2, optimality
has been shown in [7, 3, 4]. For w = 3, optimality has been shown in Avanzi, Heuberger and
Prodinger [3, 4] in a slightly different language. In this paper, we show that the τ -w-NAF (with
the minimal norm representatives as digits) is not optimal for w ∈ {4, 5, 6}. This is in sharp
contrast to the binary case, where the digit set of minimal norm representatives simply consists of
zero and all odd integers of absolute value less than 2w−1 and where w-NAFs with this digit set
minimise the Hamming weight, cf. Avanzi [1], Muir and Stinson [19] and Phillips and Burgess [20].

This raises the question whether the concept of the τ -w-NAF is the “right” concept. Is it
possible to choose another syntactic condition which also ensures uniqueness of the representation
and, at the same time, minimises the Hamming weight? On of the attractive features of the τ -w-
NAF is the fact that it can be computed by an online algorithm from any representation with a
pre-specified set of digits from right to left, i.e., starting with the least significant digit. This is
equivalent to the existence of a finite deterministic transducer automaton to compute the τ -w-NAF
from right to left.

The—perhaps surprising—answer given in this paper is that it is impossible to construct
an online algorithm (or, equivalently, a finite deterministic transducer automaton) to compute an
optimal representation from right to left for w ∈ {4, 5, 6}. In particular, we will exhibit examples
of pairs of integers which are congruent modulo arbitrarily high powers of τ , but whose least
significant digits in their optimal expansions have to different. One would conjecture a similar
behaviour for higher values of w, but at present, the required symbolic computations seem to be
out of reach with current computers. We note that a similar behaviour has also been found by
the author [9] for bases of canonical number systems in the Gaussian integers. One may interpret
this as chaotic behaviour, since knowing the input arbitrarily precisely (in a τ -adic sense) does
not allow to determine the least significant digit of optimal expansions.

1This name comes from the fact that ηjηj+1 = 0 implies that a τ -NAF does not have adjacent non-zeros.
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The digit set of minimal norm representatives is not the only useful one, cf. Avanzi, Heuberger
and Prodinger [5, 2]. We also provide examples of chaos for other digit sets considered in that
paper.

In some cryptosystems, e.g., ECDSA, it is required to compute linear combinations m·P+n·Q
for integers m and n and points P , Q ∈ Ea(F2n). As remarked by Straus [26], one can do better
than simply adding the results of the scalar multiplications m ·P and n ·Q: Using a joint expansion(

m
n

)
=
∑ℓ

j=0 ηj2
j where ηj ∈ {0, 1}2 are digit vectors and precomputing P +Q, one can compute

the linear combination by ℓ doublings and H(ηℓ, . . . , η0)−1 additions, where H(ηℓ, . . . , η0) denotes
the joint Hamming weight, i.e., the number of nonzero digit vectors. This procedure is also known as
Shamir’s trick. As in the one-dimensional case, one can allow digits −1 to introduce redundancy.
Solinas [25] introduced the Joint Sparse Form by syntactical conditions, which is unique and
minimises the joint Hamming weight. Generalisations have been made in Grabner, Heuberger and
Prodinger [8], Proos [21] and Heuberger and Muir [10].

For the case of base τ , the same syntactical condition can be imposed (cf. Ciet, Lange, Sica
and Quisquater [6]). Uniqueness is preserved, but minimality is not. In fact, more complicated
syntactical properties have been proposed by Zhu, Kuang and Zhang [27], where the average joint
Hamming weight could be reduced, but which are still non-optimal. After the above announced
results on chaotic behaviour of τ -w-NAF, one may wonder whether the same is true for joint
expansions in base τ . The answer is affirmative and is proved in Theorem 3.

We now turn to the methods employed in this paper. At first glance, computing optimal
expansions of an element seems to be a difficult task with exponential running time, because for
each digit, one has a certain number of choices. A closer analysis, however, shows that only a finite
number of carries can actually occur, which is encoded by the transducer automaton translating
any expansion with the given digit set to the “canonical” representation, i.e., the τ -w-NAF or the
τ -JSF. This results in an algorithm to compute optimal expansions which is linear in the length
of the expansions—but beware, the implicit constant (depending on w and the digit set) is huge.

A computer search exhibits candidates for pairs of integers which are arbitrarily close, but
whose least significant digits in their optimal expansions are different. The above mentioned lin-
ear time algorithm is then tweaked to deal with those candidates, which is possible due to the
essentially periodic patterns in their canonical representations. This leads to heavy symbolic com-
putations with transducer automata. These result in a shortest path calculation in a large directed
graph. All shortest paths correspond to all optimal expansions of the given integers.

The remaining paper is structured as follows: In Section 2, we fix the notations and introduce
the digit sets used in this paper. The following Section 3 collects all results in the one-dimensional
case. The transducer automata forming the base of the remaining proofs are introduced in Sec-
tion 4. Section 5 is devoted to the asymptotically efficient computation of optimal expansions of
single elements of Z[τ ], whereas Section 6 deals with the computation of optimal expansions of
families of integers given by essentially periodic D-w-NAFs, which leads to the proof of the results
in the one-dimensional case. Finally, Section 7 discusses the case of higher dimensions.

2. D-expansions

Let µ ∈ {±1} and τ be a root of the equation (1). It is well known that Z[τ ] is an Euclidean
domain and that τ is a prime element in this ring. For w ≥ 1, the prime residue classes modulo
τw are those residue classes modulo τw that are relatively prime to τ .

We now collect the basic definitions and notations used in the first part of this paper. We
use standard notations for finite and infinite words, automata and transducer automata, cf. for
instance Lothaire [16]. However, our infinite words will be left-infinite, i.e., . . . η3η2η1η0, and all
automata will process their arguments from right to left. The length of a finite word will be denoted
by length(ηℓ−1 . . . η0) := ℓ. In order to avoid any confusion, we write

w(ℓ) = w . . . w︸ ︷︷ ︸
ℓ repetitions
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for the ℓth power of the finite word w with respect to concatenation and reserve superscripts
without parentheses for powers of complex numbers with respect to the usual multiplication in C.

Definition 2.1. Let D be a (finite) subset of Z[τ ] containing 0. A D-expansion of z ∈ Z[τ ] is a left
infinite word η = . . . η2η1η0 ∈ Dω over the alphabet D such that

1. only a finite number of the digits ηj is nonzero,
2. value(η) :=

∑
j≥0 ηjτ

j = z, i.e., η is indeed an expansion of z.

The Hamming weight weight(η) of η is the number of nonzero digits ηj .

The length of the expansion2 η is defined as

length(η) := 1 + max{j : ηj 6= 0}.

A D-expansion η of z is called an optimal D-expansion of z if its Hamming weight is minimum
amongst all D-expansions of z. The set of optimal D-expansions of z is denoted by

opt(z) := {η ∈ Dω : η is an optimal D-expansion of z}.

Let w ≥ 1 be an integer. A D-expansion of z is called a D-w-Non-Adjacent-Form (D-w-NAF)
of z, if

3. each factor ηj+w−1 . . . ηj of length w, i.e., each block of w consecutive digits, contains at most
one nonzero digit ηk, j ≤ k ≤ j + w − 1.

A {0,±1}-2-NAF is also called a τ-NAF.

A set D which consists of zero and exactly one representative of every prime residue class
modulo τw and such that each z ∈ Z[τ ] admits a D-w-NAF is called a w-Non-Adjacent-Digit-Set
(w-NADS).

It is easily seen that if D is a w-NADS, then each z ∈ Z[τ ] has a unique D-w-NAF, which
will be denoted by

NAF(z).

Furthermore, if z ≡ z′ (mod τk+w) for some integer k, then the k least significant digits of their
D-w-NAFs agree.

The following families of digit sets D will be considered in this paper.

2.1. Minimal Norm Representatives modulo τw

In Avanzi, Heuberger and Prodinger [5], it has been shown that every prime residue class modulo
τw indeed contains exactly one element of minimal norm.

Definition 2.2. Let w ≥ 2. Then the set MNR(w) consisting of 0 and the unique element of minimal
norm for every prime residue class modulo τw is called the set of minimal norm representatives
modulo τw .

Solinas [24] proved that for w ≥ 1, MNR(w) is indeed a w-NADS.

2.2. Short τ -NAF Representatives

Definition 2.3. Let w ≥ 2. Then the set SNR(w) is defined as

SNR(w) = {0} ∪ {value(η) : η is a τ -NAF of length at most w with η0 6= 0 and ηw−1 ∈ {0, η0}}
and is called the set of short τ-NAF representatives.

In [2] it is shown that SNR(w) is a w-NADS for all w ≥ 2. In fact, SNR(w) = MNR(w) for
w ∈ {2, 3} as well as for (w, µ) = (4, 1). For w ≥ 4, the rule ηw−1 ∈ {0, η0} is somewhat arbitrary
(cf. [2]), but in this paper, we stick to this definition.

2We use the same notation as for the length of finite words, where we also count leading zeros, which would be

meaningless in the case of an infinite word.
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2.3. Powers of τ̄

Definition 2.4. Let w ≥ 2. Then the set Pτ̄ (w) is defined as

Pτ̄ (w) = {0} ∪ {±τ̄k : 0 ≤ k < 2w−2}
and is called the set of powers of τ̄ .

For w ≥ 2, Pτ̄ (w) contains exactly one representative of every prime residue class modulo
τw, cf. [2]. For w ∈ {2, 3, 4, 5, 6}, Pτ̄(w) is even a w-NADS, for w ∈ {7, 8, 9, 10, 11, 12} it is not a
w-NADS, cf. [2]. It turns out that MNR(w) = Pτ̄(w) for w ∈ {2, 3, 4}. As explained in [2], this
digit set can be used for a sub-linear scalar multiplication algorithm on Koblitz curves, the key
ingredient is a relation between multiplication by τ̄ and point halving on the curve.

3. Results in the one-dimensional case

Avanzi, Heuberger and Prodinger [3, 4] showed that for w ∈ {2, 3} a D-w-NAF with D being the
set of minimal norm representatives modulo τw is actually always an optimal D-expansion. The
same result is also trivially true for w = 1.

In the binary case (where τ is replaced by 2), it turns out that the analogous result is true
for all positive w, cf. Avanzi [1] and Muir and Stinson [18]. So one might conjecture that the same
is also true for our choice of τ .

We show that this conjecture is false by considering the following example.

Example 3.1. Consider µ = −1, w = 4, and the set D = MNR(4), i.e., D = {0,±1,±1±τ,±(3+τ)}
(all signs are independent). We note that

value(0ω1000(−1− τ)000(1 − τ)) = −9 = value(0ω(−3 − τ)00(−1)).

The first expansion is the D-w-NAF and has Hamming weight 3, whereas the second expansion
does not satisfy the D-w-NAF-condition, has Hamming weight 2 and is even shorter.

Examples for other values of w and D can easily be extracted from Table 1.

Even worse, we exhibit chaotic behaviour in the following sense: for every positive integer ℓ,
we exhibit a pair of numbers which are congruent modulo τ ℓ, but whose optimal D-expansions
must differ even at the least significant position. Thus it is impossible to compute an optimal
D-expansion of z by a deterministic transducer automaton or an online algorithm.

We remark that such chaotic behaviour has previously been found to occur in {0,±1}-
expansions in Z[i], cf. Heuberger [9].

Theorem 1. Let

• w = 4 and D ∈ {MNR(4), SNR(4), Pτ̄(4)} or
• w = 5 and D ∈ {MNR(5), SNR(5), Pτ̄(5)} or
• w = 6 and D ∈ {MNR(6), SNR(6)}.

For every positive integer ℓ, there exist elements zℓ, z′ℓ ∈ Z[τ ] given in Table 1 with the following
two properties:

1. The numbers zℓ and z′ℓ are congruent modulo τ ℓ.
2. For all optimal D-expansions η and η′ of zℓ and z′ℓ, respectively, the least significant digits

η0 and η′
0 differ.

For clarity, we state the result for w = 4 explicitly:

Example 3.2. Let w = 4 and D = MNR(4) = {0,±1,±1 ± τ,±(3 − µτ)}. For every nonnegative
integer ℓ, we define

zℓ := value
(

0ω(µ − τ)(000(−3µ + τ))(ℓ)0000(1− µτ)000(−1)
)
,

z′ℓ := value
(
0ω(−µ)000(µ − τ)(000(−3µ + τ))(ℓ)0000(1− µτ)000(−1)

)
,

(3)

where (000(−3µ + τ))(ℓ) means that this 4 digit block is repeated ℓ times.
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Then zℓ ≡ z′ℓ (mod τ4ℓ+13). All D-optimal expansions of zℓ are given by

0ω(000(3 − µτ))(ℓ2)00(µ − τ)(000(−3µ + τ))(ℓ1)0000(1− µτ)000(−1), (4)

where ℓ1 and ℓ2 are nonnegative integers summing up to ℓ. There is only one D-optimal expansion
of z′ℓ, it is given by

0ω(000(−3 + µτ))(ℓ+1)0000(−3µ + τ)00(1 + µτ). (5)

In particular, the least significant digit of all optimal expansions of zℓ is −1, whereas the unique
optimal expansion of z′ℓ has least significant digit (1 + µτ).

Note that the D-optimal expansion of z′ℓ has Hamming weight ℓ + 3, whereas the D-w-NAF
of z′ℓ given in (3) has Hamming weight ℓ + 4.

w µ D
4 µ MNR NAF(zℓ) = 0ω(µ − τ) (000(−3µ + τ))

(ℓ)
0000(1− µτ)000(−1)

(ℓ ≥ 0) opt(zℓ) = {0ω (000(3 − µτ))(ℓ2) 00(µ − τ) (000(−3µ + τ))(ℓ1)

0000(1 − µτ)000(−1) | ℓ1, ℓ2 ≥ 0 and ℓ1 + ℓ2 = ℓ}
NAF(z′ℓ) = 0ω(−µ)000(µ− τ) (000(−3µ + τ))

(ℓ)
0000(1 − µτ)000(−1)

opt(zℓ) = {0ω (000(−3 + µτ))(ℓ+1) 0000(−3µ + τ)00(1 + µτ)}
4 −1 SNR NAF(zℓ) = 0ω(−1) (0000(−3 + τ)0)

(ℓ)
00(3 − τ)

(ℓ ≥ 0) opt(zℓ) = 0ω (00000(−3 + τ))
(ℓ)

001

NAF(z′ℓ) = 0ω (00000(−3 + τ))(ℓ) 000(3 − τ)

opt(zℓ) = 0ω (00000(−3 + τ))
(ℓ)

000(3 − τ)

5 −1 MNR NAF(zℓ) = 0ω(1 − 2τ) (00000(−3− τ))
(ℓ)

0000(1 + 3τ)

(ℓ ≥ 1) opt(zℓ) = {0ω(1 − 2τ) (00000(−3− τ))(ℓ) 0000(1 + 3τ)}
NAF(z′ℓ) = 0ω(−1) (0000(−3− τ)0)(ℓ) 000(1 + 3τ)

opt(z′ℓ) = {0ω (00000(1 + 3τ))
(ℓ)

000(−1)}
5 1 MNR NAF(zℓ) = 0ω(−1 + 2τ)00 (00000(3− τ))(ℓ) 0000(1− 3τ)

(ℓ ≥ 1) opt(zℓ) = {0ω(−1 + 2τ)00 (00000(3− τ))(ℓ) 0000(1 − 3τ)}
NAF(z′ℓ) = 0ω(−1) (0000(3 − τ)0)

(ℓ)
000(1 − 3τ)

opt(z′ℓ) = {0ω (00000(1− 3τ))
(ℓ)

000(−1)}
5 −1 SNR NAF(zℓ) = 0ω(−1 − τ) (0000(−5− 4τ)000000(−5− 4τ))(ℓ)

(ℓ ≥ 0) 0000(−5− 4τ)0000(3 + 3τ)

opt(zℓ) = {0ω (000000(−5− 4τ)0000(−5− 4τ))(ℓ) 000000(−3− 3τ)0001}
NAF(z′ℓ) = 0ω (0000(−5− 4τ)000000(−5− 4τ))(ℓ) 0000(−5− 4τ)0000(3 + 3τ)

opt(z′ℓ) = {0ω (0000(−5− 4τ)000000(−5− 4τ))
(ℓ)

0000(−5− 4τ)0000(3 + 3τ)}
5 1 SNR NAF(zℓ) = 0ω1 (000000(5− 4τ)0000(−5 + 4τ))

(ℓ)
0000(−3 + τ)0000(3 − 3τ)

(ℓ ≥ 1) opt(zℓ) = {0ω (0000000(−5 + 4τ)000(−5 + 4τ))
(ℓ)

0000000(−5 + 4τ)00(3 + τ)}
NAF(z′ℓ) = 0ω(−1 + τ) (0000(5 − 4τ)0000(−5 + 4τ)00)

(ℓ)

00(−3 + τ)0000(3 − 3τ)

opt(z′ℓ) = {0ω(1 − τ) (0000000(−5 + 4τ)000(−5 + 4τ))
(ℓ)

0000(3 − 3τ)}
5 −1 Pτ̄ NAF(zℓ) = 0ω(1 + τ) (00000(5− τ))

(ℓ)
0000(−1− 3τ)

(ℓ ≥ 0) opt(zℓ) = {0ω (00000(−1− 3τ))
(ℓ2) 000(1 + τ) (00000(5− τ))

(ℓ1)

0000(−1− 3τ) | ℓ1, ℓ2 ≥ 0 and ℓ1 + ℓ2 = ℓ}
NAF(z′ℓ) = 0ω(1 + τ)0000(1 + τ) (00000(5− τ))

(ℓ)
0000(−1− 3τ)

opt(z′ℓ) = {0ω (00000(−3 + 7τ))
(ℓ)

00000(−3 + 7τ)00(−1 + τ)}

Table 1. Explicit elements zℓ and z′ℓ for Theorem 1. For w = 4, µ = 1 we have
SNR(4) = MNR(4). For w = 5, µ = 1, D = Pτ̄ (5), opt(zℓ) is given by a regular
expression, where “‖” denotes alternatives and ∗ denotes the Kleene star.
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w µ D
5 1 Pτ̄ NAF(zℓ) = 0ω(−1) (000000(−7 + 5τ))

(ℓ+1)
00000(−3 + τ)0000(−1 + 3τ)

(ℓ ≥ 0) opt(zℓ) = {η ∈ 0ω
(
0000000000(5 + τ)00(3 − τ)

‖ 000000000(3− τ)000(−5 − τ)

‖ 000000000000(−3+ τ)(−3 − 7τ) ‖ 000000(−1 + τ)
)∗

0000000000000(−3− 7τ)00000(−3− 7τ)(−1)
| length(η) = 23 + 7ℓ}

NAF(z′ℓ) = 0ω (000000(−7 + 5τ))(ℓ) 00000(−3 + τ)0000(−1 + 3τ)

opt(z′ℓ) = {0ω (000000(−7 + 5τ))(ℓ) 000000000(3 + 7τ)(−3 + τ),

0ω (000000(−7 + 5τ))
(ℓ)

00000(−3 + τ)0000(−1 + 3τ)}
6 −1 MNR NAF(zℓ) = 0ω100000(1 + 3τ) (00000(5 + 3τ))

(ℓ)
00000(3 + 4τ)

(ℓ ≥ 1) opt(zℓ) = {0ω(3 + 4τ) (00000(5 + 3τ))(ℓ) 0000(−1− 2τ)}
NAF(z′ℓ) = 0ω(1 + 3τ) (00000(5 + 3τ))

(ℓ)
00000(3 + 4τ)

opt(z′ℓ) = {0ω(1 + 3τ) (00000(5 + 3τ))
(ℓ)

00000(3 + 4τ)}
6 1 MNR NAF(zℓ) = 0ω(1 − 3τ) (00000(5− 3τ))(ℓ) 00000(3− 4τ)

(ℓ ≥ 1) opt(zℓ) = {0ω(1 − 3τ) (00000(5− 3τ))
(ℓ)

00000(3− 4τ)}
NAF(z′ℓ) = 0ω100000(1− 3τ) (00000(5− 3τ))

(ℓ)
00000(3− 4τ)

opt(z′ℓ) = {0ω(−3 + 4τ) (00000(−5 + 3τ))
(ℓ)

0000(−1 + 2τ)}
6 −1 SNR NAF(zℓ) = 0ω (000000(1− 2τ))

(ℓ)
00000(−5− τ)

(ℓ ≥ 1) opt(zℓ) = {0ω (000000(1− 2τ))
(ℓ)

00000(−5− τ)}
NAF(z′ℓ) = 0ω(−1)(00000(1− 2τ)0)(ℓ)0000(−5− τ)

opt(z′ℓ) = {0ω (000000(−5− 4τ))
(ℓ)

00001}
6 1 SNR NAF(zℓ) = 0ω(3 − τ) (00000000900000000(−9))

(ℓ)

(ℓ ≥ 1) 000000(1− 3τ)00000(7− τ)

opt(zℓ) = {0ω(3 − τ) (00000000900000000(−9))
(ℓ)

000000(1− 3τ)00000(7− τ)}
NAF(z′ℓ) = 0ω100000(1− 3τ) (0000000900000000(−9)0)

(ℓ+1)

00000(1− 3τ)00000(7− τ)

opt(z′ℓ) = {0ω(−9) (00000000(9− 2τ)00000000(−9 + 2τ))
(ℓ)

00000000(9− 2τ)000000(3 + τ)0000000(−9 + 2τ)000(−1 + 3τ)}

Table 1. Explicit elements zℓ and z′ℓ for Theorem 1 (continued).

4. Computing D-w-NAFs by Transducer Automata

As an auxiliary result, we show that it is possible to compute a D-w-NAF by a transducer au-
tomaton. This result is similar to Heuberger and Prodinger [11, Section 3].

Lemma 4.1. Let w ≥ 1 and D be a w-NADS. Then there is a transducer T on the alphabet D
transforming an arbitrary D-expansion 0ω

d to NAF(value(0ω
d)) from right to left.

More precisely, there is a constant c depending on D such that for any finite words d, η over
the alphabet D, the words 0(c)

d and η are the input and output labels of a successful path in T if
and only if 0ωη = NAF(value(0ω

d)).

The number of states for this transducer T in the case of the digits sets introduced in Section 2
are shown in Table 2.

Proof. We first define a possibly larger transducer T̃ and remove unnecessary states and transitions
afterwards.
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w µ #V (T ) for D = MNR(w) #V (T ) for D = SNR(w) #V (T ) for D = Pτ̄(w)
2 ±1 13 13 13
3 ±1 89 89 89
4 ±1 575 575 575
5 ±1 2469 4609 17051
6 −1 10191 15309
6 1 10191 21159

Table 2. Size of the transducer automaton constructed in Lemma 4.1

Set M := max{|d| : d ∈ D} and

C := M

(
1√

2 − 1
+

1

2w/2 − 1

)
.

The sets Ṽ of states and Ẽ of transitions of T̃ are defined to be

Ṽ :=

{
(z, ℓ) : ℓ ∈ {0, . . . , w − 1}, z ∈ Z[τ ], |z| ≤ C + M

2ℓ/2 − 1√
2 − 1

, ℓ = 0 or τ does not divide z

}

and Ẽ := Ẽ1 ∪ Ẽ2 ∪ Ẽ3 ∪ Ẽ4 with

Ẽ1 := {(z, 0)
d|0−−→ ((z + d)/τ, 0) : (z, 0) ∈ Ṽ , d ∈ D and τ divides (z + d)},

Ẽ2 := {(z, 0)
d|ε−−→ (z + d, 1) : (z, 0) ∈ Ṽ , d ∈ D, and τ does not divide (z + d)},

Ẽ3 := {(z, ℓ)
d|ε−−→ (z + dτ ℓ, ℓ + 1) : (z, ℓ) ∈ Ṽ , d ∈ D, 0 < ℓ < w − 1},

Ẽ4 := {(z, w − 1)
d|0(w−1)η−−−−−−→ ((z + dτw−1 − η)/τw , 0) : (z, w − 1) ∈ Ṽ , d ∈ D,

η ∈ D with z + dτw−1 ≡ η (mod τw)}

(6)

respectively. Here, the symbol ε stands for the empty word. The set of initial states and the set of
terminal states are both defined to consist of state (0, 0) only.

A routine verification shows that for all (z, ℓ)
d|η−−→ (z′, ℓ′) ∈ Ẽ, the pair (z′, ℓ′) is indeed an

element of Ṽ and the invariants

z + dτ ℓ = value(η) + z′τ length(η),

ℓ + 1 = length(η) + ℓ′

hold for finite words η ∈ D∗.

By induction, these invariants extend to paths in T̃ , too: For a path from (z, ℓ) to (z′, ℓ′)
with input and output labels d and η, respectively, we have

z + value(d)τ ℓ = value(η) + z′τ length(η), (7a)

ℓ + length(d) = length(η) + ℓ′. (7b)

The labels of the path are concatenated from right to left. We note that by construction, η satisfies
the w-NAF condition.

Consider a successful path (i.e., a path from the unique initial state (0, 0) to the unique
terminal state (0, 0)) with input and output labels d and η, respectively. Then (7a) simply states
that 0ωη = NAF(value(0ω

d)).

We also claim that for each (z, ℓ) ∈ Ṽ , there is a path from (z, ℓ) to the terminal state (0, 0)
whose input label is a word consisting of zeros only. This can be proved by induction on the length3

of the D-w-NAF θ of z which has been assumed to exist. The main fact is that transitions in Ẽ1

output the least significant digit of θ, whereas transitions in Ẽ4 output the w least significant
digits of θ.

3The length in the sense of Definition 2.1.
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Thus for any D-expansion 0ω
d of some z ∈ Z[τ ], there is a successful path with input label

0(c)
d for a suitable number c of leading zeros. The exact number of leading zeros is irrelevant since

there is a transition (0, 0)
0|0−−→ (0, 0). The output label is then—up to leading zeros—NAF(z).

Finally we define T with sets V and E of states and transitions, respectively, to be the

sub-transducer of T̃ spanned by the states which are actually reachable from the initial state
(0, 0). �

5. Computing Optimal D-Expansions

It is conceptually easy to compute an optimal D-expansion of some y ∈ Z[τ ] recursively: If τ divides
y, the least significant digit of any D-expansion of y equals 0. Otherwise, we consider an optimal
expansion (calculated recursively) of (y − d)/τ for all d ∈ D \ {0} and choose d ∈ D such that
the Hamming weight of an optimal expansion is minimum. Termination of this procedure can be
enforced by pruning all expansions with Hamming weight larger than the Hamming weight of the
corresponding D-w-NAF. From the description of the algorithm, we expect it to have exponential
running time.

However, this can be improved:

Theorem 2. Let w ≥ 1 and D be a w-NADS. Then there is an algorithm to compute a D-optimal
expansion of y ∈ Z[τ ] in O(log |y|) time, where the implicit constant depends on D.

We remark that the implicit O-constant depends on the size of the transducer T described
in Lemma 4.1, so one cannot expect miracles from this result. However, the idea will be used to
prove Theorem 1.

Proof. Let y ∈ Z[τ ], θ = NAF(y) and K := length(θ). Note that K ∼ 2 log2 |y| by an estimate of
Solinas [24, Equation (53)].

We construct a new transducer Ty from the transducer defined in Lemma 4.1 whose un-
derlying input automaton only accepts D-expansions of y. This can be done by restricting the
output of T : we only allow output which agrees with the D-w-NAF θ of y. This corresponds to
the concatenation of T with the automaton accepting the word θ only, i.e., the output of T is used
as input to this second automaton. In order to achieve this explicitly, we must manage a pointer
describing the number of output digits already verified.

More precisely, we define the transducer Ty as follows. The set of states Vy is defined to be

Vy := {(z, ℓ, k) : (z, ℓ) ∈ V, 0 ≤ k ≤ K}.
The only initial state is (0, 0, 0), the only terminal state is (0, 0, K).

The set of transitions Ey is defined to be

Ey :=
{
(z, ℓ, k)

d|ηm−1...η0−−−−−−−→ (z′, ℓ′, min{k + m, K}) : m ≥ 0, 0 ≤ k ≤ K,

(z, ℓ)
d|ηm−1...η0−−−−−−−→ (z′, ℓ′) ∈ E, (ηm−1, . . . , η0) = (θk+m−1, . . . , θk)

}
. (8)

The crucial invariant in this transducer is the following: There is a path from (0, 0, 0) to
(z, ℓ, k) in Ty with input and output labels d and η, respectively, if and only if there is a path
from (0, 0) to (z, ℓ) with the same labels in T , k = min(K, length(η)), and η is a suffix of θ, i.e.,
ηj = θj for 0 ≤ j < length(η). This can easily be proved by induction on the length of d.

At this point, a comment on the rôle of K seems to be adequate: intuitively, the argument
would be simpler if min{k + m, K} in the definition of Ey would be replaced with k + m. Then
we would have k = length(η) in the above invariant. However, this would construct infinitely
many states (z, ℓ, K + j), j ≥ 0, which are all equivalent, since θK+j vanishes anyway. Therefore,
the truncation at K has been chosen in order to avoid equivalent states and to obtain a finite
transducer.

The above invariant states that there is a successful path in Ty with input label 0(c)
d if and

only if value(0ω
d) = value(θ) = y. Here, c is the constant from Lemma 4.1. In this case, the output

label is a suffix of θ.
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The cost of a transition is defined as the Hamming weight of its input label. Thus the optimal
D-expansions of y are exactly the input labels of shortest successful paths. From (8) and (6) we
deduce that if there is a transition from (z, ℓ, k) to (z′, ℓ′, k′) with k < K, the pair (k, ℓ) is
lexicographically smaller than (k′, ℓ′). This implies that the transducer is (w ·K + 1)-partite with
node classes Vy,k,ℓ = {(z, k, ℓ) ∈ Vy}, 0 ≤ k < K, 0 ≤ ℓ < w, and Vy,K = {(z, K, ℓ) ∈ Vy}. Thus the
shortest paths can be computed with a running time which is linear in K. For instance, a variant
of the Ford-Bellman algorithm which processes the edges in lexicographically increasing order of
(k, ℓ) for the start node (z, k, ℓ) (k < K) does only need one loop for the transitions starting at a
vertex (z, k, ℓ) with k < K. Only the final component Vy,K (which is independent of y) requires a
full shortest path search. �

6. Proof of Theorem 1

We present the details of the proof of Theorem 1 for the case w = 4 and D = MNR(4) = Pτ̄ (4).
All other cases listed in Theorem 1 and Table 1 are proved analogously, cf. the remarks at the end
of this section.

We first consider zℓ. We construct an auxiliary transducer which is similar to that in the
proof of Theorem 2. The difference is that we deal with all values of ℓ simultaneously. So we are
not storing a pointer k to the given D-w-NAF, but we store the whole language which is still
expected. This corresponds to the concatenation of T with the automaton accepting the regular
language corresponding to (3).

Let L be the language given by the regular expression 0∗000(µ− τ)(000(−3µ + τ))∗0000(1−
µτ)000(−1) over the alphabet D. Here, (−3µ+τ) is a literal (as a digit in D), and not an alternation.
The Kleene star (finite repetition) is denoted by (. . .)∗, as usual. Obviously, the language L has
been chosen to correspond with the D-w-NAF of zℓ given in (3). We set

M := {0∗000(µ − τ)(000(−3µ + τ))∗0000(1− µτ)000(−1),

0∗000(µ − τ)(000(−3µ + τ))∗0000(1− µτ),

0∗000(µ − τ)(000(−3µ + τ))∗0,

0∗000(µ − τ)(000(−3µ + τ))∗,

0∗}.
The reason for this choice is that output labels of transitions in T are either empty words, a single
0, or w-digit words with (w − 1) leading zeros.

The auxiliary transducer TL is defined by its set of states VL with

VL := {(z, ℓ, M) : (z, ℓ) ∈ T , M ∈ M},
its set of transitions

EL :=
{
(z, ℓ, M)

d|ηm−1...η0−−−−−−−→ (z′, ℓ′, M ′) : m ≥ 0, M, M ′ ∈ M,

(z, ℓ)
d|ηm−1...η0−−−−−−−→ (z′, ℓ′) ∈ E, M ′ηm−1 . . . η0 ⊆ M

}
,

its unique initial state (0, 0,L) and its unique terminal state (0, 0, 0∗).
The following invariant holds: There is a path from the initial state (0, 0,L) to a state (z, ℓ, M)

with input and output labels d and η, respectively, if and only if there is path from (0, 0) to (z, ℓ)
with the same labels such that Mη ⊆ L.

Thus there is a successful path in TL with input and output labels 0(c)
d and η if and only if

d is a D-expansion of some zℓ which is given by its D-w-NAF η.
We computed the transducer T for µ = −1 and for µ = 1 separately; in both cases, there are

2003 states reachable from the initial state. From 608 of those, the terminal state is reachable.
We intend to compute shortest paths in TL. In contrast to Theorem 2, we cannot use the

same cost function, since this would mask out zℓ for ℓ > 0. Therefore, we define the cost of a
transition to be the Hamming weight of its input label minus the Hamming weight of its output
label. Using the Ford-Bellman algorithm shows that the shortest path from the initial state to the
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0000(1−µτ)000(−1)
0000(1−µτ)000(−1)

00(µ−τ)
ε

000(−3µ+τ)
000(−3µ+τ)

0
000(µ−τ)

000(3−µτ)
000(−3µ+τ)

0
0

Figure 1. Transducer transforming all optimal D-expansions of zℓ to its D-w-
NAF, where w = 4 and D is the set of minimal norm representatives modulo
τw.

000(−3+µτ)0000(−3µ+τ)00(1+µτ)
0000(1−µτ)000(−1)

000(−3+µτ)
000(−3µ+τ)

00000
000(−µ)000(µ−τ)

0
0

Figure 2. Transducer transforming all optimal D-expansions of z′ℓ to its D-w-
NAF, where w = 4 and D is the set of minimal norm representatives modulo
τw.

terminal state has cost 0 (for both choices of µ). This means that there is no ℓ ≥ 0 such that zℓ

admits a D-expansion of Hamming weight less than the Hamming weight of its D-w-NAF. This
immediately shows that a D-expansion of some zℓ is an optimal D-expansion if and only if it has
the same Hamming weight as the corresponding D-w-NAF. This is the case if and only if there is
a successful path in TL with input label 0(c)

d of total cost 0.
Furthermore, the Ford-Bellman algorithm also yields the vertex potentials π(s), s ∈ VL,

defined to be the shortest distance between the initial state and s. We call a transition s
d|η−−→ s′

optimal if π(s′) = π(s) + weight(d) − weight(η). A successful path is a shortest path in TL if and
only if it only uses optimal transitions. We now drop all non-optimal transitions of TL. Then,
we consider the sub-transducer spanned by the states from which the terminal state is reachable.
The result is shown in Figure 1, where independent paths have been contracted to transitions for
graphical reasons. In fact, the results for µ = ±1 are very similar and can be uniformly shown in
the same figure. Thus the transducer in Figure 1 transforms all optimal D-expansions of some zℓ

to its D-w-NAF. It is now easy to read off the optimal D-expansions. These are indeed shown in
(4).

Now, we turn to z′ℓ. We use the same ideas as for zℓ. The corresponding regular language is
denoted by L′. The corresponding transducer TL′ has 2495 states reachable from the initial state,
from 855 of those, the terminal state is reachable. Using the Ford-Bellman algorithm shows that
the shortest path in TL′ from the initial to the terminal state has length −1. Thus there is a
nonnegative ℓ such that z′ℓ admits a D-expansion whose Hamming weight is the Hamming weight
of the corresponding D-w-NAF decreased by 1. Since the D-w-NAF has Hamming weight ℓ + 4,
the minimum Hamming weight of a D-expansion of zℓ is at least ℓ + 3.

An expansion d of zℓ has Hamming weight ℓ + 3 if and only if the corresponding successful
path with input label d in TL′ has total cost −1. Thus we apply the above reduction process
again. This yields the transducer in Figure 2. From this transducer, we immediately see that there
is indeed a D-expansion of zℓ of Hamming weight ℓ+3 for every nonnegative integer ℓ. Obviously,
there is only one such expansion, and this expansion is shown in (5). This concludes the proof of
the Theorem for w = 4.
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As stated in the introductory remarks of this section, the proof of Theorem 1 for the other
values of w and D is analogous. The number of states of the various transducers is given in
Table 3. The computation of opt(z′ℓ) in the largest case (w = 6, µ = 1, D = SNR(6)) took 65

w µ D #V (T ) #V (TL) V (T ∗
L ) V (TL′) V (T ∗

L′)
4 −1 MNR = Pτ̄ 575 2003 608 2495 855
4 −1 SNR 575 3465 1076 3465 767
4 1 MNR = SNR = Pτ̄ 575 2003 608 2495 855
5 −1 MNR 2469 7841 1630 7770 1753
5 1 MNR 2469 12275 2031 7770 1753
5 −1 SNR 4609 22990 4555 23177 3783
5 1 SNR 4609 26570 5584 26581 5844
5 −1 Pτ̄ 17051 51647 7616 67470 12596
5 1 Pτ̄ 17051 79914 13142 80075 12162
6 −1 MNR 10191 34964 5531 25145 3657
6 1 MNR 10191 25145 3657 34964 5531
6 −1 SNR 15309 52344 4600 52203 6904
6 1 SNR 21159 214609 19278 235138 23785

Table 3. Number of states in the transducers used in the proof of Theorem 1

days on a Intel R© CoreTM 2 Duo CPU E6850 at 3.00 GHz running Mathematica R© 5.2 under Linux
2.6.22. In most cases, the transducers describing optimal expansions were of the same shape as
the transducer in Figure 2. In some cases, however, the transducers were slightly more complex.
As representative examples, we show the transducers for opt(z′ℓ) for (w, µ,D) = (6, 1, SNR(6)) in
Figure 3 and for opt(zℓ) for (w, µ,D) = (5, 1, Pτ̄(5)) in Figure 4. The latter case is the one leading
to the regular expression in Table 1.

7. Joint τ -Expansions

In this second part of the paper, we turn our attention to joint τ -expansions of pairs of integers
in Z[τ ].

Definition 7.1. A joint expansion of z ∈ Z[τ ]2 is a left infinite word H = . . . η2η1η0 over the
alphabet {0, 1,−1}2 such that

1. only a finite number of the digit vectors ηj is nonzero,

2. value(H) :=
∑

j≥0 ηjτ
j = z, i.e., H is indeed an expansion of z.

The digit vectors ηj , j ≥ 0 will also called the columns of H.

The joint Hamming weight weight(H) of H is the number of nonzero digit vectors ηj .
A joint expansion H of z is called an optimal joint expansion of z if its Hamming weight is

minimum amongst all joint expansions of z.

We again need a “canonical” joint expansion as point of reference for the transducer au-
tomata. We choose the generalisation of Solinas’ [25] Joint Sparse Form (JSF) to base τ as proposed
by Ciet, Lange, Sica and Quisquater [6].

Definition 7.2. An expansion H is called a τ -JSF if it fulfils the following conditions:

1. Among three consecutive columns, at least one is a zero column.
2. For all j ≥ 0 and i ∈ {1, 2}, we have ηi,j+1 · ηi,j 6= µ.
3. If ηi,j+1 · ηi,j 6= 0 for some j ≥ 0 and some i ∈ {1, 2}, then ηi′,j+1 ∈ {±1} and ηi′,j = 0,

where i′ = 3 − i is the other row index.

Here, the components of the jth column ηj are denoted by
(

η1j

η2j

)
.
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00
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τ)
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τ)

000000000000(−3+4τ)00000(−5)00001
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3τ)

00
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00

00
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00
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00
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)

00000000(9−2τ)000000(3+τ)
00000900000000(−9)0

00
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0
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0
0
0
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0
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0
0
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0
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9
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0
0

Figure 3. Transducer describing opt(z′ℓ) in the case w = 6, µ = 1, D = SNR(6).

As stated in [6], every z ∈ Z[τ ]2 admits exactly one τ -JSF. The proof of this fact is promised
to appear in the journal version of [6], which is not yet available at the time of this writing.
However, it can be proved independently.

There is a transducer automaton translating joint expansions to the τ -JSF representing the
same integer vector. This transducer has 289 states whence it is not shown here.

Theorem 3. For every nonnegative integer ℓ, we consider the integer vectors zℓ, z
′
ℓ ∈ Z[τ ]2 given

by

zℓ := value

((
0

0

)ω
0

µ

(
0

0

0

µ

0

0

0

0

0

1̄

0

0

)(ℓ)
0

0

0

µ

1

0

0

0

0

1̄

)
,

z
′
ℓ := value

((
0

0

)ω (
0

0

0

0

0

µ

0

0

0

0

0

1̄

)(ℓ)
0

0

0

0

0

µ

1

0

0

0

0

1̄

)
.

We have

zℓ − z
′
ℓ =

(
0

(6 − µτ)τ6ℓ

)
,

in particular, zℓ ≡ z
′
ℓ (mod τ6ℓ).
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Figure 4. Transducer describing opt(zℓ) in the case w = 5, µ = 1, D = Pτ̄(5).

The only optimal joint expansions of zℓ and z
′
ℓ are given by

(
0

0

)ω (
0

0

0

0

0

1̄

0

0

0

0

0

µ

)(ℓ)
0

0

0

0

1

1̄

0

µ̄

0

1

and (
0

0

)ω (
0

0

0

0

0

µ

0

0

0

0

0

1̄

)(ℓ)
0

0

0

0

0

µ

1

0

0

0

0

1̄
,

respectively. In particular, the least significant digit vector of the optimal joint expansions of zℓ

and z
′
ℓ differ.

Proof. The proof runs along the same lines as the proof of Theorem 1. The transducers TL and
TL′ have 1048 states in both cases for µ, the reduced transducers T ∗

L and T ∗
L′ have 225 and 197

states, respectively. The transducers describing the optimal expansions of z
′ and z

′
ℓ are given in

Figures 5 and 6, respectively. �

Corollary 7.3. It is impossible to compute an optimal joint expansion of a digit vector z by a
deterministic transducer automaton or an online algorithm from right to left.

Remark 7.4. This result can immediately be generalised to higher dimensions d > 2 by filling up
the additional rows by zeros.

Remark 7.5. Instead of using the τ -JSF, one could also use a generalisation of the Simple Joint
Sparse Form (SJSF) proposed by Grabner, Heuberger and Prodinger [8] to the base of τ . The only
difficulty is that the τ -SJSF of the two vectors zℓ and z

′
ℓ given in Theorem 3 have a Hamming
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µ
| 00 0
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0
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0 | 00 0
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Figure 5. Transducer transforming all optimal joint τ -expansions of zℓ to its
τ -JSF.

0
0

0
0

0
µ

1
0

0
0

0
1̄ | 00 0

0
0
µ

1
0

0
0

0
1̄

0
0
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0
1̄ | 00 0
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0

0
0

0
1̄

0
0 | 00

0
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Figure 6. Transducer transforming all optimal joint τ -expansions of z
′
ℓ to its

τ -JSF.

weight which exceeds that of their optimal expansion by an amount which is linear in ℓ. This
complicates the argument in the proof somewhat and motivated our decision to take the τ -JSF as
“standard-representation” in this case.
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