GENERATING NORMAL NUMBERS OVER GAUSSIAN INTEGERS

MANFRED G. MADRITSCH

ABSTRACT. In this paper we consider normal numbers over Gaussian integers generated by
polynomials. This corresponds to results by Nakai and Shiokawa in the case of real numbers.
A generalization of normal numbers to Gaussian integers and their canonical number systems,
which were characterized by Katai and Szabé, is given. With help of this we construct normal
numbers of the form

0. 1f(z0)] Lf(22)) Lf (z3)] Lf(za)) Lf (z5)) L (26)] - -

Here we denote by |z] the expansion of the integer part of x with respect to a given number
system in Z[i], by f we denote a polynomial with complex coefficients, and by z; we denote a
numbering of the Gaussian integers. We are able to show, that a number, which is constructed
in this way, is normal to the given number system.

1. INTRODUCTION

When considering number systems one is interested, especially in uniqueness, periodicity and
randomness properties of representations. In this paper we deal with the last property, in par-
ticular, we are concerned with the distribution of blocks in an expansion. We will call a number
normal in a number system if every possible block of finite size occurs asymptotically with the
same frequency.

For number systems over the reals this has been studied for a very long time. The quantitative
aspect is that almost every real number is normal with respect to the Lebesgue measure. But we
still do not know whether 7 or log 2 is normal in a given base ¢ > 2.

On the other hand we know how to construct normal numbers. This started with the construc-
tion of Champernowne who was able to show that

0.123456789101112...

is normal in the decimals. This idea was successively extended to the integer part of polynomials
over the positive integers by Davenport and Erdés [3] (polynomials with integer coefficients),
Schiffer [24] (polynomials with rational coefficients), and Nakai and Shiokawa [22] (polynomials
with real coefficients). Finally it was shown by Madritsch et al. [20] that

0. LA L@ L@ LI LG LF6)] -

is normal if f is an entire function of bounded logarithmic order and |z| denotes the expansion
of the integer part of x with respect to a given base q > 2.

In this paper our aim is to generalize the above mentioned construction of normal numbers
to number systems for Gaussian integers. The properties of these number systems have been
investigated for instance by Kdatai and Szabé [14] as well as Grabner et al. [7].

2. DEFINITIONS OF NUMBER SYSTEMS AND NORMALITY

We start by defining a number system which will give us the background throughout the whole
paper. These definitions are well-known in this area and we recall them mainly following [6].
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Let b € Z[i] and let D be a complete set of residue classes modulo b. Then we call (b,D) a
number system (NS), if every z € Z[i] has a unique and finite representation

-1
(2.1) 2= dp(2)bF,
k=0

where di(z) =0 for k > £. We call di(z) € D the digits of z.

Furthermore b is called the base and D the set of digits of the NS. By £(z) := max{k : dp_1(z) #
0} we denote the length of the expansion. If D = {0,1,...,|N(b)| — 1} where N(b) denotes the
norm of b over Q then we call (b, D) a canonical number system (CNS).

One of the first who considered the possible bases for a CNS was Knuth [15], who was able to
show, that b = —1 £ i is a base. Later this was generalized by Kéatai and Szabé [14] who proved
that b = —n + ¢ with n € N is the set of all possible bases for the Gaussian integers. This was
further generalized to algebraic number fields and matrix number systems in a series of papers,
¢f. for instance [1, 8, 12, 13, 14, 17, 18, 21, 23].

In order to define uniform distribution and normal numbers we need an equivalent for the
“reals”. Therefore we will extend our number system onto C. By Theorem 2 in [14] we get that
every v € C has a (not necessarily unique) representation of the shape

£(v)
y= D d(M* (di(y) € D).

k=—o00

Then we denote by

£(7)
7]y = 1y) =D de(0)bF,
k=0

the integer with respect to base b.

We fix a base b and are left with the definition of normal numbers. Therefore let d; ...d; € D!
be a block of digits of length [. We denote by N'(0;d; ...d;; N) the number of occurrences of the
block d; ...d; in the first N digits of 8. Thus

N@;dy...d;N)=#{1<n<N:dy =dn0),...,d =dni1—1(0)}.
Now we call § normal in (b, D) if for every | > 1 we have that
1
2.2 RN () =Rpn(0) := sup | =N(6;dy...d;; N)— —| =01
(2.2) N(0) = Rnu(0) Sw |y (0;dy...di;N) D (1)

where the supremum is taken over all possible blocks d; ...d; € D' of length .
By our competion of Q(i) to C we get that there can be more than one representation for a
v € C (¢f. [10, 11, 21]). We call a v € C ambiguous if

() 2(7)
v= ) mdb =) bt
k=—oc0 k=—o0

with zj # yi for at least one k < £(y). We deal with these numbers in the following lemma.

Lemma 2.1 ([19, Proposition]). Let (b, D) be a CNS. Then every number with an ambiguous
representation is not normal.

As we want to construct a normal number as a concatenation of digital expansions of a certain
sequence of numbers we have to give an ordering for the Gaussian integers which will fit our
purpose. Therefore we set ¢ := N(b) where N denotes the Norm of b over Q and let 7 be a
bijection between D and {0,1,...,q — 1} with 7(0) = 0. Then we extend 7 to the Gaussian
integers by setting 7(dg + dib + dob?® + - - + dpb*) = 7(do) + T(d1)q + 7(d2)g* + - - + 7(dr)q".
Furthermore we pull back the relation < from N to Z[i] by

a<b:&71(a) <7(b), a,bell.

By this we define a sequence {z, },,>1 of elements of Z[i] such that z, := 77 *(n — 1).
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For a function f : Z[i] — C we define

0u(f) :==0(f) = | f(z1)] g =) |f(22)] g {FE)=f (=) 4 ..

This is simply the concatenation of the integer parts of the function values evaluated on the
sequence {z, }n>1 of Gaussian integers. We are now in a position to state our main theorem.

Theorem 2.2. Let f(2) = agz?+---+a1z+ag be a polynomial with coefficients in C. Let (b, D)
be a CNS in the Gaussian integers. Then for every l > 1

1 1
sup |—=N(Oy(f);dy...dj; N) — —| = (logN)™*,
Swp 1y (0u(f);dy...di;N) o (log V)

where the supremum is taken over all blocks of length I.

3. PRELIMINARY LEMMATA
The first lemma will help us to rewrite the asymptotics.

Lemma 3.1 ([20, Lemma 3.4]). Let {an}n>1 and {b,}n>1 be two sequences with 0 < a,, < b, for
all n and

Then

As we deal with blocks of a certain length we need information about the connection of the
norm of a Gaussian integer and the length of its expansion. This connection is described by the
following lemma.

Lemma 3.2 ([7, Proposition 2.6]). Let (b,D) be a number system in the Gaussian integers and
q:= N(b). Then the estimate

() — log, || < .
where log,, is the logarithm in base q, holds for a certain constant ¢, depending only on the base b.

In the proof of our main result we will need the discrepancy (see [5, p.5] for a definition) Dy ()
of the first N elements of a sequence {z,, },>1 of elements in R?. The following result will provide
us with an estimation of the discrepancy.

Lemma 3.3 (Erdos-Turan-Koksma inequality, [5, Theorem 1.21]). Let xy,...,zx be points in R?
and T an arbitrary positive integer. Then

3\" 2 1
o< (3) (v T

0<|lll o <V

where r(v) = (max{1, |[v1|}) - (max{1,|va|}) for v = (v1,v2) € Z2.

For the transformation of an exponential sum into an integral we will apply the two following
lemmata.

Lemma 3.4 ([2, Lemma 5.4]). Suppose that F(x1,...,x,) is a real differentiable function for
0<z; <P, <P (j=1,...,r), inside the interval of variation of the variables, the function
OF (z1,...,2,)/0x; is piecewise monotone and of constant sign in each of the variables x; (j =
1,...,7) for any fized values of the other variables, and the number of intervals of monotonicity
and constant sign does not exceed s. Next, let the inequalities

OF (x1,...,x,)

<9d, j=1,...,m
8(Ej - J
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hold for 0 < 6 < 1. Then

Py
Z Z e(F(z1,...,2))
z1=0 x,=0

P P 20
:/ / e(F(xy,...,2z.))dey ... da, + OyrsP™ (3 + ),
0 o 1-9
where |61] < 1.

Lemma 3.5 ([25, Lemma 4.2]). Let F(x) be a real differentiable function such that F'(x) is
monotonic, and F'(z) > m >0, or F'(z) < —m < 0, throughout the interval [a,b]. Then

4
< —.
m

/ab e(F(x))dx

In the next lemma we give an application of the preceding ones.

Lemma 3.6. Let M and N be positive integers with M < N. Let F': C — C be a function such
that the conditions of Lemma 3.4 and Lemma 3.5 are fulfilled. Then

Z e(tr F'(z)) <<\{nj+ N +8<3_6) N(log N)°

o/2 —_
Ml (log N) 1-9

holds for any positive real number o. Here tr(x) denotes the trace of an element x € 7Z][i].

Proof. This is a generalization of [6, Lemma 2.1 and 2.2]. In order to apply the two lemmas
above we start considering squares in the annulus M < \z|2 < M + N. Therefore we denote by
D, ={z=x+iy € Z[i]: —v < z,y < v}. Now we get by an application of Lemma 3.4 that

Z (tr F(z Z Z (tr F(z +iy))

zeD, T=—VYy=—v

= / / e(tr F(x + iy))dzdy + 201 sv (?:?)

We take the modulus in order to apply Lemma 3.5. Thus
3-96
dy + 26 —
Y + 2018V (1 — 6)

D e(tr F(z)) </_
+291sy<i’_§>

z€D,
< 2rv max
—v<y<v

/V e(tr F(z + iy))dx

-V

/V e(tr F(z + iy))dx

bt %4

< 8+291su<1_§>

Secondly we tessellate the annulus M < |z|> < M + N by squares of side length /N/(log N)°.
We define two sets I and B containing the squares which are completely inside the annulus and
those which intersect the boundary, respectively. Then we denote by C; and Cp their contribution
to the sum, respectively. There are O((log N)?) squares in I and together with our considerations
above we get that

N 3-9§

For the boundary we get that there are two annuli of width O(y/M/(log M)?) and O(\/(M + N)/(log M + N)7)
that cover the boundary. By noting that M < N we get that

N
C —s.
B K (log N)7/2

This together with the estimation above yields the result. O
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Finally we need an estimation for a complete exponential sum in the Gaussian rationals.

Lemma 3.7 ([9, Theorem 1]). Let f be a k-th degree polynomial with coefficients in Q(i) and q
be the least common multiple of its coefficients. If A(q) is a complete set of residues modulo g,
then, for any e > 0,

Z €(tr(f()\))) < (N(q))1*%+€
AEA(9)

holds, where the implied constant depends only on f and ¢.

4. PROPERTIES OF THE FUNDAMENTAL DOMAIN

In this section we mainly follow the paper of Gittenberger and Thuswaldner [6]. Let b = —n+1
be a base of a CNS in Z[i]. Then every v € C has a unique representation of the shape v = o+ b
with a, 3 € R. Thus we define the mapping

¢:C—R? a+pb— (a,f).

As (1,b) is an integral basis we get that (Z[i]) = Z>.
We define the fundamental domain F' to consist of all numbers with zero in the integer part
of their b-ary representation. Thus

Fli=_ye c’v => db* dp €D
E>1

As it is more easy to consider the properties in R? we use our embedding from above to switch
from C to R2. Then we get

Fi=o(F)=8veRy=> dB " dy € o(D)

k>1

where B is the matrix corresponding to the multiplication by b in R? given by

0 —1—n?
B<1 —2n >

(We refer the reader to [23] for more details).
Now we define for every a € Z[i] the domain corresponding to the elements of F whose digit
representation after the comma starts with the digits of the expansion of a. In particular, we set

(4.1) Fa =B U (F + o(a)).

As in the case of normal numbers in the reals we need an Urysohn-function for this fundamental
domain of numbers starting with a. In the reals we use a lemma due to Vinogradov (cf. Lemma
2 of [26, p.196]), in C, however, we have to construct a corresponding version of this lemma.

For a € D this has been done by Gittenberger and Thuswaldner in section 3 of [6]. As the
generalization of their construction to the case of a € Z[i] runs along the same lines we only state
the corresponding results and leave their proofs to the reader.

Lemma 4.1 ([6, Lemma 3.1]). For all a € Z[i] and all k € N there exists an aze-parallel tube Py, ,
with the following properties:
(1) 0F, C Py for allk € N,
(2) Aa(Pra) = O/ o),
(3) Pyq consists of O(u*) aze-parallel rectangles with 1 < p < b|?, each of which has Lebesque
measure O(|b] ).

Here we denote by Ay the usual Lebesgue measure of R?.



6 M. G. MADRITSCH

In the proof of Gittenberger and Thuswaldner [6] they define for every pair (k,a) suitable axe-

parallel polygons IIj ,. Then they get that d(Ilj ., 0F,) < c|b|_k7 for a constant ¢ > 0, where
d(-,-) denotes the Hausdorff metric, and

(4.2) Pro = {z € R?

o = Ml < 261t

As in [6] we denote by I, o the interior of IIj , and define f, by

1 AJ2 pA)2

(4.3) falz,y) = F/ / Ya(x + T,y + §)dTdy,
—A/2J-A)2

where

(4.4) A :=2ca |b] 7"

with ca > 0 a constant and

if (z,9) € Ir.a
if (:177 y) € Hkﬂ
otherwise.

%(%y) =

O = =

Now f, is the desired Urysohn function for F, in R2. We perform Fourier analysis of this
function and get the following results for its coefficients.

Lemma 4.2 (6, Lemma 3.2]). Let fo(z,y) =, , C(m,n)e(mx + ny) be the Fourier expansion
of fo. Then for the Fourier coefficients C'(m,n) we get the estimates

|p| ~24) m=n=0,

(4.5) Clm,m) = {ukC(m)C(n) otherwise,
where
o o) < {1 t=0,

min([t| ™", A 7% otherwise.

As the proof of this lemma runs along the same lines as that of [6, Lemma 3.2] we omit it.
The coefficient C(0,0) will correspond to the main term and all others contribute to the error
term. One of our main tools will be Weyl sums which will be discussed in the next section.

5. THE WEYL SuM

This estimation will play a crucial role in the proof of the Theorem.
Throughout this section we denote by f a polynomial with coefficients in C. Thus

f(2) = gz + g1z + -+ a2
In order to establish an upper bound we will generalize Lemma 2 of Nakai and Shiokawa [22].

Proposition 5.1. Let G > 0 be any constant and N > 2. Let s be an integer with 1 < s < d, let
Hi,K; i=s4+1,s+2,...,d—1,d) be any positive constants, and let HX, K¥ be constants such
that

d
H: > 2362 4L 9543(G 4 max H;) + s Z K,

s<i<d .
1=s+1
d
£ S 03(s+2) | os+3 , ,
K;>2 +2 (G+3r2?§dHl)+28.ZHKZ.
1=S8

Suppose that there are Gaussian integers a; and q; (s < i < d) such that

o (log N):
N2

a;
qi

1< |l < (log N5 and

Q; —
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and that there exist no Gaussian integers as and qs with (as,qs) =1 such that

as
Qg — —
s

_ (logN)™:

2 K:
(5.1) 1< Jg,f? < (log N)S? and < R

Then

Z e(tr(f(2)))| < N(log N)~¢

|z]<N

holds.

Before we start proving the proposition we need two lemmata. The first deals with approxima-
tion by Gaussian integers.

Lemma 5.2 ([4, Theorem 4.5]). Given any z = x +1iy € C and N € N, there exist Gaussian
integers a and q with 0 < |q|*> < N such that

a
z——1 <
q

lg| VN

Furthermore we need a lemma which considers the case that s = d, the degree of the polynomial
f, i.e., that the leading coefficient is already well approximable.

Lemma 5.3 ([6, Proposition 2.1]). Let (h,q) =1 and
h
g(x) = El‘d + ad—lxdil + -+ a1+

where (log N)H < |¢|* < N(log N)~H. Then we have

Z e (tr(g(2)))| < N(log N)~=¢
|z|2<N

with H > 2972G + 23(d+2)
In order recursively apply the Lemma 5.3 we need a tool to rewrite it.

Lemma 5.4 ([16, Lemma 26)). Let functions fi(x) and fa(x) be defined for x € M. Then

Y elhi@) + fa(x) = Y e(fil@) +2760 > | fal(@)],

zeEM xeM rzeM

where |0] < 1.

Corollary 5.5. Let g(z) = agr? + ag_12¢ 1 + -+ a1z + ag € C[X]. If there exist h,q € Z[X]
such that (h,q) =1 and

h’
ag— —| <
q

(log )™
lg| N2

(log N)~H and H > 291G 4 234+2)=1  then we have

d
2

with (log N) < |q| < N

Z e(tr(g9(2)))| < N(log N)=¢.
|z|2<N

Proof. This easily follows from

(log N)
g N2

< < N~%

g — —
q

:
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together with an application of Lemma 5.4. Thus we get by Lemma 5.3 that

Y elu(g(2))

|z|2<N

< Z e(tr<sz+ad_1zd_1+--~+ao>) + Z

|z]><N |z|2<N

< N(logN)"¢ + Nz.

()

Now we can start the proof of Proposition 5.1.

Proof of Proposition 5.1. This proof mainly follows the ideas of Nakai and Shiokawa for their proof
of Lemma 2 in [22].

We consider the different possibilities for s. If s = d nothing is to show as this is exactly the
case of Corollary 5.5.

Let s < d. We denote by k the least common multiple of ¢4 t1,...,qs. We have k € Z[i] because
the Gaussian integers are a unique factorization domain. We denote by ) the integer such that
k°Q < N < |k|>(Q + 1). By our assumptions we have that

d
1< [B? < (log N)X with K = ) K;
i1=s+1
and
N(logN) % <« Q < N/ |k|*.

Now we use the fact that Z[i] is an Euclidean domain. From this we get that for every s € Z[i]
there exist unique ¢, € Z[i] with |r|> < |k|* such that s = gk 4+ r. Thus we get that there exists
a complete residue system R modulo k£ with

R cC{ze€Z[i:|z| <|k|}.
We use this residue system to tessellate the open disc D := {z : |z|> < N} with translates of
R. Let T be these translates, i.e.,
T:={te€Z[i]:(R+tk)ND#0}.
Now we define I to be the translates which are completely contained in D, i.e.,
I.={teT:(R+tk)C D}.
As there are O(v/N) points on the circumference and there are O(|k|) points in R we get that
D eltr(f(2)) =Y D elte(f(tk + 1) + O(VN |k]).
|2]><N tel reR

As in the proof of Lemma 2 of Nakai and Shiokawa in [22] we want to do Abel Summation.
Therefore we need an ordering on I. Let x,y € I, then define

e <yio |z| < |y| or
' (Jz] = ly| and arg(z) < arg(y))

By the polar representation of every complex number we get that this ordering is well defined.
Furthermore we set o : N — I a bijection such that (1) =0, o(|I|) = max I, and

olx) <o(y) &z <y,

where the maximum is with respect to <. Let M = |I| then we have

M
(5:2) Y eltr(f(2) =Y ) eltr(flo(n)k + 1)) + O(VN |k|)

|z|2<N n=1reR
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Now we are ready to do Abel Summation and define for short
d

Yol@) = Y ilak+r), i = a; — Z—
i=s+1 v
pol@) = 3 aslak + 1, T,(0) = 3 eltr(pr (o(n))).
=1 n=1
By the linearity of the trace tr we get that
Z > e(tr(f(o(n)k + 1))
n=1reR
= Z Z tr Z ai(o(n)k +1)%)
reRn=1
M s d
= Z Z e(tr(z ai(o(n)k+r) 4+ Z a(c(n)k+ 1))
reRn=1 1=1 1=s+1
M d aJ-r
=D eltrlpr(om) + Y (vi+ j)(a(n)k +7)"))
reRn=1 i=s+1 z
d M
(5.3) =Y e (tr < > a?‘)) Y eltr(pr(o(n) + (0 (n))))
reR i=s+1 ** n=1
d+ a M
=Y"e (tr < > w)) > e(tr(¥r(o(n)))) (Tr(n) — Tp(n — 1))
reR i=s+1 ° n=1
d
—ZeG(EZ?ﬂ>HmwwM+mmmm
recR i=s+1 i
M

<>

reR

T (M) + Y le(tr(@r(0(n)))) = elte(vr(o(n + D) T3 (n)]

As the trace is a linear functional we get

) =u ().

Noting that for a € C we have tr(a) < |a| and that for 1 < n < M we get |o(n) — o(n+1)| < N2,
we apply the mean-value of calculus theorem to get

d

o H
eltr(is(o(n)))) — eltr((oln + D)) < k| 3 Pl N2~ < i (BN
1=s+1
where H = max{H, :i=1,...,s}.
Thus
o} H M
(5.4) ZZ (tr(f(o(n)k +1)) < Y |ITo(M)] + k] a g]ffv) ST )|
n=1reR reR n=1

If we can show that

(5.5) T, (n)] <

|| (log N)&+H
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then we are done. We may assume that

> N
K] (log )&+

We split the estimation of T).(n) up, according to whether there exist a and ¢ with (a,q) =1
such that

(5.7) (log N)" < |¢]> < N*(log N)~

(5.6)

and

2
<lql”,

a
Koas — —
q

with H' = 23(+2) 4 25+3(G + H) + sK, or not.

e Suppose there exist such a and g. Then by the definition of H' together with (5.6) we get
that

(logn)" < |q|* < n*(logn) ™",
where b/ = 23(5%2) 4 25+2(G + H). Thus an application of Lemma 5.3 yields
N
k] (log N) G+
e On the contrary if there are no such a and ¢ then we get by Lemma 5.2 that there must
exist a and ¢ with (a,¢) = 1 and |¢|* < N*(log N)~#'. Thus we get by (5.7) that
a

poe, @] o (ogN)~ V2
° = JqINe/?

T, (n)| < n(logn)~ ¢+ «

1< gl < (ogN) " and

Then, however, we get
[k*g|® < (log N5 < (log N)
and thus
a (log N)H:
keq| = [k[”lg| N*”
which contradicts the assumption on .
Therefore we have shown (5.5). Thus we get together with (5.2) and (5.4) that

Qs

(1 N
S e ) < ST (M)] + |k 2 Og Z\T 1| + VN |k|
|2P<N reR
N 1

M N |k

<2 s N * e VN
< L
(log V)¢

and the proposition is proven. O

Now we have enough tools to proceed to the proof of the main theorem.

6. PROOF OF THEOREM 2.2

In the rest of the paper we will consider the proof of Theorem 2.2. The proof will split up into
several parts.

(1) We start in Section 6.1 with a definition of several parameters which will be useful in the
proof. Furthermore we show some connections between them.

(2) Then in Section 6.2 we rewrite the problem into one of an estimation of an exponential
sum. This sum is finally transfered into one of type as in Proposition 5.1 or Lemma 5.3.
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(3) We consider these sums according to the b-adic length of their arguments. There will be
no problem when considering the middle ones in Section 6.3. By middle we mean that
there exists a upper and lower bound for the b-adic length of the expansion. For those
arguments with a long or short expansion we have to use different methods in Sections 6.4
and 6.5, respectively.

(4) Finally we put everything together and get the result.

Throughout the proof we will fix N and the block d; ...d; under consideration. Furthermore
we set

l
(6.1) a:=Y db™
i=1

for abbreviation.

6.1. Defining parameters and explaining relations between them. Let m be the unique
positive integer such that

(6.2) > Uf(zn) <N < UF(zn)),

n<m-—1 n<m

where 2z, := 771(n — 1) with n > 1. Furthermore we denote by M the maximum norm and by .J
the maximum length of the (b, D)-ary expansion of | f(z,)] for 1 <n <m, i.e.,

Pp— 2 Pp—
M = inga%(|zn| , J= Lnganfﬂ(f(zn)).

These will be of central interest for us.
Now we will use Lemma 3.2 to connect m and M. We get

logp2 max 2] — é(m<ax zZn)| = ‘IOg\bP M — Z(zm)‘ = ‘1og‘b|2 M — Png\? mJ ‘ <cg,
M <> m,

where <>> means both < and >.
For the connection of M and J we note that |f(z)] <> |z|d Thus we get by Lemma 3.2 that

log‘b|2 rn<ax |f(2n)|2 - J‘ <>

log;,2 max e J‘ = ‘loglblz Mt — g,
(6.3) n<m

M <> b <
Finally we get the following relation between M and N.
N =mJ +0O(m) = cgMlog, M + O(M),

where ¢ is a positive constant depending on d and b.
Next we want to split the sum on the right of (6.2) up into parts where f(z,) has the same
b-ary length. Therefore let I}, I; 41, I112,...,1; C {1,...,m} be such that

n €l <= Uf(zn)) > J.

In order to estimate the size of these subsets we define M; (j =[,1+1,...,J) to be the least
integers such that any z € C of norm greater or equal M; has at least length j, i.e.,

M; := max 2= max |z)°.
£(2)<j n<|b[2U-1

By the same arguments as in (6.3) we get that M; <> |b\2%. Furthermore we set
(64) Xj Z:MfMj.
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6.2. Rewriting the problem. With the help of the parameters defined above we can easily
rewrite our problem. Therefore we set N(f(2,)) the number of occurrences of the block d . ..d,
in the b-ary expansion of the integer part of | f(z,)]. Then we get that

NOg(f)idr - de, N) =Y N(f(z0))| < 2lm.

n<m

Thus it suffices to show that

N N
(6.5) > N(f(zn)) = D|l+0(1ogN>.

n<m

In order to count the occurrences of the block d; ... d; in | f(z,)] properly we define the indicator
function of F, (where a is as in (6.1) and F, is defined in (4.1))

T,(2) = {1 z € Fq,

0 otherwise.
Indeed, writing f(z,) in (b, D)-ary expansion for a fixed n € {1,...,m}, i.e.,
f(z)=ab" +ar 0" '+ tabtagta b4
with a; € D for i =r,r —1,..., we see that the function Z(z,) is defined such that
IO 7 f(z)=1<=di...di=aj_1...aj_.

As every I; (I < j < J) consists of exactly those f(z,) whose (b, D)-ary expansion has at least

length j, we get that
S e = Y T r(4).

n<m 1<j<Jnel;

For every j there can be elements z € Z[i] with l2)* < M; but {(z) > j. By Lemma 3.2 we get
that there are only finitely many with this property. Now by Lemma 3.1 we get that

1= > 1+ Y 1~ > L

nel; |20 |<M; M;<|zn|2<M M;<|zn|?<M

Therefore we can assume that there are no z with £(z) > j and |2|*> < M;.

In order to estimate Z(z) we use our considerations of Section 4. Noting that F, can be covered
by a set I, and an axe parallel tube Py , (¢f. (4.2)), we have to consider how often the sequence
{b‘j_lf(zn)}nelj hits each of these sets. The first one, Ij 4, is characterized by the Urysohn

function f,(z,y) (¢f. (4.3)) and for the axe-parallel tube we define

£ = #{n €lj:p (‘7;5’1"1)) c kaa}.

Thus we get for every j € {I,1+1,...,J} that

(6:6) Sr(5e) - (o (52) roe,

nel; nel;

We consider both terms on the right hand side of (6.6) separately starting with f, and get by
Lemma 4.2 that

(o (55)) —pree s 3 cnme (oo ().

0AvEeZ?

where v = (v1,v2) and C(-,-) is defined as in (4.5).
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By the estimations of the Fourier coefficients in (4.6) we can split the sum up into those v with
lvll,, < A~ and the rest. For [jv||_, > A~! we apply our estimate for the coefficients in (4.6)
and estimate the e(-) function trivially to get

R R e ()}

nel; 0<lofl <At nel;

To estimate &; we use the Erdos-Turan-Koksma inequality (Lemma 3.3). By Lemma 4.1 we can
split the tube Py, into a family of u* rectangles R;. As the discrepancy is defined on a rectangle
(¢f. [5, p.5]) we get by an application of Lemma 3.3 that

£ <> XjM(R)+ X;Dx, ({zn})
R,

<<XZ Xo(R +ﬁ+ Z_ @;Ze@@(ﬁiﬁ))) ,

0<||h|| <H ) nel;

(6.8)

where the sum is extended over all rectangles R comprising the tube Py , can be split into.
By the property (3) of Py, described in Lemma 4.1 and possible overlappings of the rectangles

in R; we get that
k
Ao (R —
Z <|bl )
Thus (6.8) simplifies to

k
k k
_ _ % % 0 1
(6.9) & <X <|b|2> +H+1+X E H—( EI (v,5)

7 0<|lv|

As both exponential sums in (6.7) and (6.8) are of the same shape, we define for short
, f(zn)
(6.10) S(w,j) = Z e (v e (bﬁl .
nel;
Plugging (6.7), (6.9), and (6.10) in (6.6) and subtracting the mayor part we get

Zn X]‘
(6.11) ZI(‘ZH)> ~ <

nel;

k § k k
X; kA2+HQi+1+ <|£T ) + Z %S(v,jﬂ— Z %S(v,j).

0< v <At 0<lofl o <H

In order to transfer the exponential sum from Z? to Z[i] we use the same idea as Gittenberger
and Thuswaldner in [6, p.335]. Thus let

7(2) := (trz, trbz)" = Zp(2),

where = = VV? an V is the Vandermonde matrix

()

() () -o)

-1

By this we get that

where (01, v3) := vE
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Thus we get that (6.10) transfers to

Swi)= e (tr ((171 +b@)€§jﬂl))>

nel;

< > e (tr ((171 + b@)g}ﬁ)) ,

M7§|Z|2<M7+Xj

(6.12)

where we have used that |I;| <> X together with the definition of X, in (6.4).

We assume that we take k and H such that A~!, H < (log N), which is possible since A
depends on k (cf. (4.4)). The value of k and H is chosen later depending on j.

In the following subsections we want to consider the different sums S(v, j) according to the size
of j. We therefore split the area into three intervals as follows

(6.13) 1 <j<l+CiloglogN,
(6.14) I+ Ciloglog N <j < J—C,loglog N,
(6.15) J—Cyloglog N <j < J,

where C; and C, are sufficiently large constants.

6.3. A first estimation of S(v,j). We will start with the j satisfying (6.14).
Assume first that there are two Gaussian integers a and ¢ such that

01 + bug a

2 2y — 2

1 2 -
5 p < — and (logX;) <|q SX;l(long) L

 qf?
with G = 3 and H = 2%+2G + 23(4+2) | Then we apply Lemma 5.3 and get
S(v,5) < X;(log X;)~¢.

Now we will show that (6.16) holds for all j satisfying (6.14).
If (6.16) does not hold, then we get by an application of Lemma 5.2 that there are a,q € Z][i]
such that

(6.16)

01 + bua a

(log X ;) 1
d S— < —
b q 5

(aq) =1, 1<lgf < X¥(logX;)"#, and .

la| X ldl

We distinguish two cases for the size of |g|>. Assume first that 2 < |g|* < (log X;)H. Thus we
get
1

01+ bug 11 1
lal  |q* ~ 2lal

" > (log X;) 7

Qg

and therefore ‘
b7 < |(61 4 biz)aql (log X;)7 < (log N)(log X;)*,
which contradicts (6.14) for C; sufficiently large.
We will denote by ||z|| the distance of the norm of z over Q to the nearest integer, i.e.,

2]l := min ’|z|2 - n‘ .
neZ

Now if |g|> = 1 then ¢ = 1 and H(v~1 + b@)(b‘j)adH < Xj‘-i(long)_ZH. If ’(171 + bﬁ’g)(b‘j)ad|2 >
g then
[b]* < |(01 + b03) | < log N,
which contradicts (6.14) for C; sufficiently large.
On the other hand if ’(171 + bﬁé)b_jad| < g we get that

|(01 + 5172)17_]4%’2 = ||(01 + bo)b g < X (log X;) 21,
which implies that
B > [(91 + biz)aal” X (log X;) 2"
contradicting our assumption on C,, in (6.14).
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Thus for j such that (6.14) holds we get
(6.17) S(v,j) < X;(log X;)~C.
Plugging this into (6.11) we get that

k
f(zn) X , kA2 Nk I3
ZI(le o <X | AT+ g+ e

nel;

p 1
- (log X;)3 2t D r(v)

0<lvf <A~ O<|vf <V

Now we can choose k and H under the assumption that both are < (log N). Thus we set for
j as in (6.14) together with the definition of A in (4.4) that

log X . C log]b|
6.19 ko= Culoglog X;. H = iFlog X, A-1— 108X 0
J J

)

2ca
for C} an arbitrary constant. Furthermore we define C,, > 1 to be such that
2
Cupr = [b]".

By our setting we get for j as in (6.14) that

f(zn) X; — _ X,
(6.20) Yz ( ) ﬁ < X; ((log X;)™* + (log X;) ~2(loglog X;)?) < 7J
TLEI]‘
for j as in (6.14).
Now we will show, that we get the same estimate for the other smaller and larger j.

6.4. Estimating the exponential sum for long b-ary expansion. In view of (6.14) we now
concentrate on values for j satisfying (6.15).

In this case we start with the same assumptions for A~' and H as above, i.e. A7 H <«
(log N).. Thus for every j such that (6.16) holds we get by an application of Lemma 5.3

S(v,j) < X;(log X;)~C.

Otherwise, if (6.16) does not hold we get for every j in (6.15) together with |b|é < X; < |b|%
that

(6.21)  0< |01 + bia| [b] 73 < |f/(2)] < |07 + boa| [b]” 772 < |57 + bo| [b] 72 (log N)©2.
Now we use the inequalities (6.21) to apply Lemma 3.6 with

f(zn)>,

F=tr ((171 + bua) R

m = |01 + big| \b|_%7 and § = |03 —|—bv~2||b\_% (logN)ag. Thus for j as in (6.15) we get with

o = 2G that
VX X; 3-6
] . X;(log X;)°
S |57 + bGa| [b] "7 " Togxyye Y (1—5) illog X;)

X |4 X,
VK x

|01+ bva| - (log X;)C

(6.22)
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Plugging this into (6.11) yields

(6.23)
k
f(zn) X; _ kA2 2p" I
,;,I<bj+1 o <X; | uFA tgT T o

K 1 X b4 X,
S XD YNEEDS L ety
X r(v) \ |o1 + b0z (log X;)

7 lo<lvl=amt o<l <H
Now we set k and H and get together with (4.4) that

k= max ( 1log X; + log4C3 — %log D]

k
1 2 |b‘
’ log C,

2ca’

), H::uklong7 ATl =

This yields

log|b|

K Tog C)p k A
ka2 _ b7 k 2k X ' © 1 ]
[TAVANSES , pt <Pt < - , — | =< .
VX; 16| |b] Ci VX
Furthermore we get that
|01 + boa| = |(1,b)(v1,v2) E7Y > [(v1,v2)"] > Vorva.
Putting all this in (6.23) yields

log|b|

(6.24) | > Z(J;gi’;)) _ A e U+ % + ( Xj,) o (V7 bl + X (108 X;)~?)

21 25
’nEI]' |b| |b| B

for j as in (6.15).
6.5. Iterative estimation for short b-ary expansion. We finally consider the case of j satis-
fying (6.13). This will be the hardest part as by our assumptions on H and A~! we have
|61 + bia| <> b .
In order to cope with this we adopt the idea of Nakai and Shiokawa [22, p.278ff] applying Propo-
sition 5.1 iteratively. If there is no such s as assumed in that proposition, we will apply Lemma
3.6 and Lemma 3.7.
By the assumption j <1+ Cjloglog N we get
(6.25) ‘b|j < (log N)Cz log[b]+o(1)
Furthermore we define g to be the polynomial
01 + bip

9(2) = L2 4(2),

and §; for i = 0,1,...,d its coefficients,
U1 + by

(6.26) go= Db,
Now we start with the application of Proposition 5.1. We assume first that 1 < s < d. Then
we set
Hy=H; +Cilog|b| +1, Hj =234+ 4 od+3q
and define H?, H,, and h, (1 <r < d) inductively by
d
Hy =2%02) 4 9 ¥3(G 4 Hyop) +2r Y | H,,
1=r+1
H,.=H!+2(Cilog|b|+1) and
hyr = H} 4+ Cylog |b| + 1.
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Let j be such that | < j <[+ Cjloglog N and that there are coprime pairs of Gaussian integers
(adyqd)s - - - (@s4+1,gs+1) such that

.| (log X;)
1< Jg? < (log X, and o, — 4| < W8 X)™ gy,
ar ‘Q’r| Xj2
but there is no pair (as, gs) such that
log X"
1< g < (log X;)?"=  and  |o — s < M
ds ‘QS| ij
We denote the set of all j with that property by Js.
For every j € Js we have
. -~ b~ . 1 X. H,
1< |Vgr| < (log X;)*" and |6, — (0 & bia)ay | (log X;)
biq, ‘qur| ij
for s < r < d, and, however, there is no pair of coprime Gaussian integers (As, @5) such that
. A, log X ;)¢
1< 1Qu] < (log X)) and |5, — 42| < (0B R)ST
QS |QS| ij

since, if there were such A and @, we would get that
L<|(01 +b52)Qs[* < (log X;)*+ 4 < (log X;)*"
and together with (6.25) that
_ VA, | (log Xp)TirCilestirl - (log X;)
GHbRQ T |G +05)Qu X (0 + b32)Qu] X

Qs )

which contradicts the assumption that j € J.
Thus an application of Proposition 5.1 with H;, HY and K; = 2H;, K} = 2H yields
S(v,j) < X;j(log X;)~¢
forall j€ JyU---UJg.
Now we denote by Jy all positive integers j with [ < j <1+ Cyloglog N and j ¢ J; U---UJ,.
Thus it remains to estimate S(v, j) for these j. Therefore we will apply Lemma 3.6 and the Lemma

3.7.
For j € Jo we get that there exist coprime pairs (a., ¢;) of Gaussian integers such that

log X ;)
1< |qr|2 < (long)QhT and |ay, — ar < M 1<r<d).
ar g0 X7
We set Q, = a,. — % for r =1,...,d. Furthermore we denote by a the greatest common divisor
of ay,...,aq and by g the least common multiple of ¢1, ..., qs. Furthermore we define ¢, by
dr _ gcr (r=1,...,d).
qr q
Then we can rewrite the exponential sum as follows:
. ~ o flza)
S(’Uaj) = Z € (tr <(U1 + bvg) bj+n1
TIEIJ'
ba & T
_ k k
- T <tr (WZCM >> T <tr <Wzgk(ﬂq“> ))
Acr(b7ta) k=1 HnGIj:,ulfﬁ»)\:zn k=1

where 7(b"T1q) denotes a complete system of residues modulo ¥ *1q and © := v7 + buy.
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We first consider the second sum. Let Ry = Z[i] N (¥ T1q) - {a+ Bi: 0 < o, 3 < 1} and let Ty
the set of translates such that Ry tiles Z?. Furthermore we set T the set of all t € Ty that do not
have empty intersection with I;, thus

(6.27) T:={teTy:(Ro+t)N{z,:nel;j} #0}.

Then it is clear that |T| < X; |b7+1q|_2. Furthermore let 7 denote the area covered by the
translates of T, i.e.,

T:=|JRo+1)
teT
Thus we fix a A € Ry and get that

R S )

I eT
In€lj:ug+i=z, H

Now we want to apply Lemma 3.5 together with the idea in the proof of Lemma 3.6. Therefore

we set
A d
b (o S}
k=1

Then we get for the derivatives

d
OF(x,y) OF\(x,y) _ © (log X;)fk
— k 7X. T —X 5 log X ;
o <, < o & E || X7 <<HJ lq| (log X;) "
As in the proof of Lemma 3.6 we first consider a single square. We denote by D, := {z =

x+iy € Z[i] : —v < z,y < wv}. Thus an application of Lemma 3.5 yields

Z Fy(z,y) = Z ZF,\xy /_/_F,\xydxdy-i-(’)()

z+iyeD, T=—V Yy=—v
Now we again want to split 7 up into squares. Therefore we note that we had assumed that
|I;] = X; and thus we can consider I; as an annulus, i.e. as set {z € C: M; < |z|° < M}. Thus

we choose a o > 0 and tessellate 7 by squares of side length /|| /(log |T'|)°. Then we can glue
all squares in the interior of 7 together and estimating their contribution on the boundary to the
error term. Thus we get

Z Fy(z,y) = //T Fy(z,y)dzdy + O ((log|§||)‘7/2> .

z+iyeT

Putting everything together yields

Swi) =Y e <tr <<v~1 b )J;ﬁ)))

nel;
S (“ (mZA» U o (s )

d
va 1 X
el|tr| — e \F : // GZdZJrO(J)’
Z‘ ( (b]qI; ’ )) bi+1q)* J Jaay <2< ) (log X)°

Aer(biq)
o d
— k
G(z):=e <tr (bﬁ‘l Zﬂkz )) .
k=1

Finally we define rationals R;/Q € Q(i) fori =1,...,d by

R; v ac;

where

Q W q°
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Thus estimating the integral trivially and noting that
N(HQ) = N(WT' Riq;/a;) <> NV T Ria; ') <> N R;) > N 1)
we get by an application of Lemma 3.7

(6.28) S(v.j)=) e (tr ((171 + b@)é&i’?))

nel;

|qu‘2 -1y X X;
N N @ g X

< X; ((N(fflbj“))’%“ + (log Xj)*a) .

<

Plugging this into (6.11) yields
(6.29)

k
f(zn) X; kA2 2p" H k

nel; 0<lvll <A™t O<|jv| <H

o () 4 og ) )

Now we set o, k, and H with the same values as in (6.19) and get together with (4.4) that

log X )Cr log|b|
o= G, k= CklOgIOgX], H = MklOgXL A_l :%
A

for C}, an arbitrary constant.
We note that

|01 + b | = [(1,0)(v1,v2) E7H| < (01, v2)| < 1(v).
At this point we have to distinguish two cases according to the size of d.

e d = 1: By noting that A=!, H < (log N) we get that

1 . o e 1 N4
Z T(N(,{}—lb]-&-l))—l-&-a < Z |01 + bua| < (log N) ]

; ot 7
0<|lv||_<log N 0<|lv]|_<log N |D] a |b]

~—

e d > 2: In this case get that
~ - ~ =2
r(v) ™" < |01 + bog| '« |01 + bug| 9.

This together with A™!, H < log N yields

3 L (N (5~ 1pi+1))—i+e < 1 - (log 5)2.
2_g)itl 25
e AC) o<liof _<tog v [0]Z7 7 |b] 4
Therefore we get in any case that
1 N TUTE Tt (log N)*
—— (N@ ) mate « =
Z r(v) |b\27

0<|jv|| . <log N

Putting this all in (6.29) yields

f (zn)> X; _1, (log N)*log X X; (log N)®
6.30 T\ -2l < X;[(QogX;) '+ ——— | <« L+ X;——.
. ; ( it ) g < e ) ks i
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Putting all together. Now we have reached the final state of the proof. In order to finish

we will put (6.20), (6.24), and (6.30) together and consider the corresponding intervals, which are
described in (6.14), (6.15), and (6.13), respectively. Thus

(6.31) > ZI(MH —b—;l < 81+ So + Ss,
I<j<J |n€l; | |
where
X,
Sl - 7~]7
1<5<0 7
log N)?
=y xted
I<j<I+C; loglog N |b]
log|b|
; log Cy j
Ss= Y. VKl (VX5 bl + X;(10g X;) ) .
J—Cy log log N<j<J |b]

We estimate each sum and easily get for the first one

S1 < M.

The second one is a bit more delicate and simplifies to

Se K

)3 (log N)® (logN)® M,

M % <M b%(clloglogN)
1<j<I+C;loglog N |b| | ‘

where we have assumed that C; > 5. For the third sum we have to do a little more work to get

log|b|
log Cy

Sy < 3 VM |b7 + |bj}{ (\/M|b\%+M)

J—Cyloglog N<j<J

log|b|
log Cy

2z M 2z
< VM + | 5 (VA Jel# + )
d

< M.

Putting this in (6.31) yields

f)\ X N
> ZI(MH TE CM <oy

1<j<J |nel,

and the main theorem is proven.
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