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Abstract

Under which conditions can one permute the rows and columns in an instance of
the transportation problem, such that the Northwest corner rule solves the resulting
permuted instance to optimality? And under which conditions will the Northwest
corner rule find the optimal solution for every possible permutation of the instance?

We show that the first question touches the area of NP-completeness, and we
answer the second question by a simple characterization of such instances.

Keywords: Transportation problem; basic feasible solution; computational complex-
ity; sum matrix.

1 Introduction

The transportation problem is an important and well-investigated problem in operations
research: There are m sources s1, . . . , sm with a supply of ai > 0 units at the ith source
(i = 1, . . . ,m), and there are n sinks t1, . . . , tn with a demand of bj > 0 units at the
jth sink (j = 1, . . . , n). These supplies and demands satisfy

∑m
i=1 ai =

∑n
j=1 bj. The

cost for transporting one unit from the ith source to the jth sink is ci,j ≥ 0. The m × n
cost matrix C = (ci,j), the m-dimensional supply vector a = (ai), and the n-dimensional
demand vector b = (bj) form an instance of the transportation problem. The goal is to
find a transportation plan that satisfies all the demand and that minimizes the overall
transportation cost:

min
∑m

i=1

∑n
j=1 ci,j xi,j

s.t.
∑n

j=1 xi,j = ai for i = 1, . . . ,m
∑m

i=1 xi,j = bj for j = 1, . . . , n

xi,j ≥ 0 for i = 1, . . . ,m, j = 1, . . . , n.
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1. Initialize the Northwest corner (i, j) with i := 1 and j := 1.

2. Send as many units as possible from i to j by setting xi,j := min{ai, bj}.

3. Adjust the supply ai := ai − xi,j and the demand bj := bj − xi,j.
If ai = 0 then i := i + 1, and if bj = 0 then j := j + 1.

4. If there still is unsatisfied demand, go back to Step 2.

Figure 1: The Northwest corner rule.

Here xi,j denotes the quantity shipped from source i to sink j. We refer the reader to the
book by Ahuja, Magnanti & Orlin [1] for a wealth of information on the transportation
problem and its applications.

The co-called Northwest corner rule appears in virtually every text-book chapter
on the transportation problem. It is a standard method for computing a basic feasible
solution (which will be denoted BFSNW in the following), and it does so by fixing the
values of the basic variables one by one and starting from the Northwest corner of matrix
C; see Figure 1 for a short description.

Since the Northwest corner rule does not even look at the cost matrix C, the objective
value of BFSNW can be very bad. Thus the solution BFSNW usually just serves as a
starting point for the simplex algorithm or for some other LP solving approach. But
sometimes we are lucky and it happens that the starting solution BFSNW itself is an
optimal solution, in which case the simplex algorithm terminates right away. That is, for
instance, the case whenever the cost matrix C is a Monge matrix (see Hoffman [6], and
Burkard, Klinz & Rudolf [3]). Are there other (non-Monge) cases where the Northwest
corner rule hits the optimal solution? The answer is yes. And the combinatorial structure
of these YES-cases can be quite chaotic, as demonstrated by the following example.

Example 1.1 We apply the Northwest corner rule to an arbitrary cost matrix. Then we
raise all costs that are not used by BFSNW to sufficiently large values, so that BFSNW

becomes an optimal solution. The resulting cost matrix can almost be arbitrary, and it
carries very little combinatorial structure.

The following facts are straightforward: By renumbering the sources and the sinks
in the transportation problem, one does not change the optimal objective value; the
renumbering just yields an equivalent permuted instance. But by renumbering the sources
and the sinks in the transportation problem, one may drastically change the behavior of
the Northwest corner rule.

Is it always possible to renumber an instance, such that the resulting permuted in-
stance is solved to optimality by the Northwest corner rule? The following example
provides a negative answer.
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Example 1.2 Consider an instance with three sources s1, s2, s3 and four sinks t1, . . . , t4.
Every source has a supply of 2, sinks t1, t2, t3 have a demand of 1, and sink t4 has a
demand of 3. Transportation is cheap between si and ti for 1 ≤ i ≤ 3, is cheap between
si and t4 for 1 ≤ i ≤ 3, and is expensive otherwise; see Figure 2.

The optimal solution has cost 0; it sends one unit from si to ti for 1 ≤ i ≤ 3, and one
unit from si to t4 for 1 ≤ i ≤ 3. It is easily verified that there is no way of permuting the
rows and columns such that the Northwest corner rule would find a solution of cost 0.

a\b 1 1 1 3

2 0 1 1 0
2 1 0 1 0
2 1 1 0 0

Figure 2: Costs, supplies, and demands for the instance discussed in Example 1.2.

Actually, if there are (1) at most two sources, or if there are (2) at most two sinks,
or if there are (3) exactly three sources and exactly three sinks, then the instance can
always be permuted so that the Northwest corner rule detects an optimal solution. For
all other combinations of m and n, there exist instances for which no such permutation
is possible. How hard is it to recognize such an instance?

Problem: Good Permutation

Instance: An instance (C, a, b) of the transportation problem.

Question: Can the instance be permuted, so that the Northwest corner rule
finds an optimal solution?

We will show in Section 2 that problem Good Permutation is NP-complete, which
means that its combinatorial behavior is quite messy. How hard is it to recognize the
diametrical type of instance? How hard is it to recognize instances that do not possess a
single row/column permutation that could prevent the Northwest corner rule from hitting
an optimal solution?

Problem: Bad Permutation

Instance: An instance (C, a, b) of the transportation problem.

Question: Can the instance be permuted, so that the Northwest corner rule
does not find an optimal solution?

We provide a complete answer to this question in Section 3: If the cost matrix C is
a sum matrix, then all feasible solutions have the same objective value; hence in such
a case the answer to Bad Permutation must be negative. It turns out that in all
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remaining cases, the answer to Bad Permutation is positive. Note that the exact
values of the supplies and demands do not play any role in this. Since sum matrices are
straightforward to recognize, this yields that problem Bad Permutation can be solved
in polynomial time.

2 The intractability result

In this section we discuss the behavior of the Good Permutation problem. We start
with some technical preliminaries.

We recall that a caterpillar graph is a tree that turns into a path (the so-called spine
of the caterpillar) if all its leaves are removed. An equivalent definition (see Arnborg,
Proskurowski & Seese [2]) is that caterpillars are the connected graphs of path-width
one. Yet another equivalent characterization says that caterpillars are precisely those
trees that do not contain the forbidden seven-vertex sub-tree T7 that results from the
star K1,3 by subdividing every edge. Note that in Example 1.2 the edges of cost 0 induce
this forbidden sub-tree T7 with the three subdividing vertices in the three sources.

Every basic feasible solution of the transportation problem has m + n − 1 variables
xi,j in the basis, and if it is non-degenerate then all these variables take non-zero values.
Every basic feasible solution BFS corresponds to a graph G(BFS) whose vertex set are
the sources and sinks, and whose edges connect a source i to a sink j if and only if xi,j

is in the basis; in fact G(BFS) is always a tree. The following observation is folklore.

Observation 2.1 Let BFS be a basic feasible solution for an instance of the transporta-
tion problem. Then the instance can be permuted so that the Northwest corner rule
computes BFS if and only if the graph G(BFS) is a caterpillar graph.

We now turn to the NP-completeness proof for the Good Permutation problem.
Our reduction is done from the following version of the Hamiltonian path problem in
bipartite graphs; see Garey & Johnson [4].

Problem: Hamiltonian Path

Instance: A bipartite graph G = (X∪Y,E) with bipartition X = {x1, . . . , xk}
and Y = {y1, . . . , yk}, and with edge set E ⊆ X × Y .

Question: Does G have a Hamiltonian path that starts in x1 and ends in
some vertex in Y ?

Consider an instance of Hamiltonian Path with k ≥ 10. We construct the following
instance of the transportation problem with m = 2k sources and n = 2k sinks:

• For every vertex x ∈ X, we create a corresponding main source s(x) and a corre-
sponding dummy sink t′(x). For every vertex y ∈ Y , we create a corresponding
main sink t(y) and a corresponding dummy source s′(y).
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• The main source s(x1) that corresponds to vertex x1 has supply k2 − k + 2, and
the remaining k − 1 main sources all have supply k2 + 2. All dummy sources have
supply 1. All main sinks have demand k2 +1, and all dummy sinks have demand 1.

• For every vertex x ∈ X the transportation cost between s(x) and t′(x) is 0, and
for every vertex y ∈ Y the transportation cost between s′(y) and t(y) is 0. All
the other transportation costs between main sources and dummy sinks, between
dummy sources and main sinks, and between dummy sources and dummy sinks
are 1.
Whenever [x, y] ∈ E then the cost between main source s(x) and main sink t(y)
is 0. All other costs between main sources and main sinks are 1.

This completes the construction. The correctness argument in the following para-
graphs is slightly non-standard, since it does not directly establish a bijection between
the YES-instances of the two problems, but is also built around the optimal objective
value of the transportation instance: We will show that the instance of Hamiltonian

Path has answer YES, if and only if the instance of the transportation problem (i) has
optimal objective value 0 and (ii) forms a YES-instance of the Good Permutation

problem.

Lemma 2.2 If the constructed instance of the transportation problem has optimal ob-
jective value 0 and forms a YES-instance of Good Permutation, then the underlying
instance of Hamiltonian Path has answer YES.

Proof. Observation 2.1 yields that there is a basic feasible solution BFS of cost 0, whose
graph G(BFS) is a caterpillar. Our first goal is to show that every edge in G(BFS) has
cost 0. Suppose otherwise, and consider a connected component G∗ of the graph that
results from G(BFS) by removing all edges with strictly positive cost. Then G∗ itself is
a caterpillar. Since at cost 0 a dummy sink t′(x) can only receive units from the main
source s(x) that belongs to the same vertex x ∈ X, component G∗ contains either both
of s(x) and t′(x) or neither of them. Symmetrically, for every vertex y ∈ Y component
G∗ contains either both s′(y) and t(y) or neither of them.

Let X∗ ⊆ X and Y ∗ ⊆ Y respectively denote the sets of vertices for which G∗ contains
both corresponding (source and sink) vertices. Furthermore let α = |X∗| and β = |Y ∗|,
and note that 0 ≤ α, β ≤ k. The total supply in the sources in G∗ equals the total
demand in the sinks of G∗. In case x1 /∈ X∗ holds, this equality yields

(k2 + 3)α = (k2 + 2)β. (1)

Since the numbers k2 + 2 and k2 + 3 are relative prime, (1) implies that α is a multiple
of k2 + 2 and that β is a multiple of k2 + 3. From 0 ≤ α, β ≤ k we then get α = β = 0,
which is impossible. In the only remaining case we have x1 ∈ X∗, which implies

(k2 − k + 3) + (k2 + 3)(α − 1) = (k2 + 2)β. (2)
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By rewriting (2) in the form k−α = (k2+2)(α−β), we see that k−α (which lies between
0 and k) must be a multiple of k2 + 2. This yields α = k and β = k, and hence the
component G∗ coincides with G(BFS). Consequently, every edge in G(BFS) has cost 0.

Since every dummy source and every dummy sink have only a single incident edge
of cost 0, they form 2k leaves in the caterpillar G(BFS). Their neighbors are the main
sources and main sinks, which hence must all lie on the spine of the caterpillar. Since
the spine alternately visits main sources and main sinks, one of its endpoints is a main
source s(xi) next to some main sink t(yj). Then main source s(xi) and dummy source
s′(yj) can only send their supply to dummy sink t′(xi) (with demand 1) and to main sink
t(yj) (with demand k2 + 1). This yields that the supply at s(xi) is at most k2 + 1, which
in turn yields i = 1. All in all, this shows that the spine induces a Hamiltonian path in
the underlying bipartite graph that has vertex x1 as an endpoint. �

Lemma 2.3 If the underlying instance of Hamiltonian Path has answer YES, then
the constructed instance of the transportation problem has optimal objective value 0 and
forms a YES-instance of Good Permutation.

Proof. Without loss of generality we assume that the Hamiltonian path visits the vertices
in X ∪ Y in the order

x1, y1, x2, y2, x3, y3, . . . . . . , xk−1, yk−1, xk, yk.

We define a basic feasible solution BFS: For i = 1, . . . , k−1 we send k2−k+ i units from
main source s(xi) to main sink t(yi), and k − i units from main source s(xi+1) to main
sink t(yi). For i = 1, . . . , k we send 1 unit from main source s(xi) to the corresponding
dummy sink t′(xi), and 1 unit from every dummy source s′(yi) to the corresponding main
sink t(yi).

This defines a basic feasible solution BFS of cost 0 (which of course is optimal).
The underlying graph G(BFS) is a caterpillar whose spine path runs through the main
sources and main sinks corresponding to the vertices along the Hamiltonian path; the
leaves in G(BFS) are the dummy sources and dummy sinks. Finally Observation 2.1
completes the argument. �

Since the optimal objective value for the transportation problem can be computed
in polynomial time, the combination of Lemma 2.2 and Lemma 2.3 yields the following
theorem.

Theorem 2.4 Problem Good Permutation is NP-complete. �

3 The connection to sum matrices

In this section we discuss the behavior of the Bad Permutation problem. We start
with several technical definitions and observations. Unless stated otherwise, all matrices
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in this section have m rows and n columns. Since the cases with a single source or single
sink are trivial, we will throughout assume that m,n ≥ 2. We stress that all supplies and
demands are positive. Recall that a matrix S is a sum matrix, if there exist two vectors
u = (ui) and v = (vj) such that si,j = ui + vj for all i, j.

Observation 3.1 If C is a sum matrix, then any instance (C, a, b) of the transportation
problem forms a NO-instance of problem Bad Permutation.

Proof. If ci,j = ui + vj for all i, j, then the cost of any feasible solution xi,j is

m∑

i=1

n∑

j=1

ci,j xi,j =

m∑

i=1

n∑

j=1

(ui + vj)xi,j =

m∑

i=1

uiai +

n∑

j=1

vjbj.

Hence any feasible solution, and in particular any solution computed by the Northwest
corner rule under any permutation of rows and columns, is optimal. �

The argument in Observation 3.1 also shows that for a sum matrix S, the two instances
(C, a, b) and (C + S, a, b) of the transportation problem have the same set of optimal
solutions. Furthermore, the Northwest corner rule outputs for both instances the same
feasible solution. Thus for our purposes instance (C, a, b) and instance (C + S, a, b) are
equivalent.

For any instance I = (C, a, b) of the transportation problem, the transposed instance
IT = (CT , b, a) has the transposed matrix CT as cost matrix, and essentially switches the
roles of sources and sinks such that all shipments flow into the opposite direction. Then
I and IT have the same optimal objective value. Furthermore, if we apply the Northwest
corner rule to instance IT , then it finds a transposed copy of the feasible solution that it
determines for instance I. So for our purposes these two instances are equivalent.

Observation 3.2 Let C be a matrix that is not a sum matrix. Then there exists a row
p 6= 1, two columns q and r with q 6= r, and a sum matrix S, such that all entries in the
matrix C ′ := C + S are non-negative real numbers, such that c′1,j = 0 for j = 1, . . . , n,
and such that c′p,q 6= c′p,r.

Proof. First suppose for the sake of contradiction that all rows p 6= 1 and all columns
q 6= r satisfy cp,q − c1,q = cp,r − c1,r. Then with ui = ci,1 for i = 1, . . . ,m and with
vj = c1,j − c1,1 for q = 1, . . . , n, we arrive at the contradiction that ci,j = up + vq is a
sum matrix. Hence there are p 6= 1 and q 6= r with cp,q − c1,q 6= cp,r − c1,r. Let u1 = 0,
let ui = maxj c1,j for i = 2, . . . ,m, and let vj = −c1,j for j = 1, . . . , n. Then the sum S
matrix defined by si,j = ui + vj has all desired properties. �

The following lemma proves the matching reverse statement for Observation 3.1.

Lemma 3.3 If C is not a sum matrix, then any instance I = (C, a, b) of the transporta-
tion problem forms a YES-instance of problem Bad Permutation.
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Proof. We assume (by transposing the entire instance if necessary) that the smallest value
among all supplies a1, . . . , am and all demands b1, . . . , bn is the demand b1 in column 1.
Furthermore we assume (by Observation 3.2 and by permuting rows) that in the first
row c1,j = 0 holds for all j, and that there exist columns q and r such that c2,q 6= c2,r

holds in the second row.
Our first goal is to construct a subset J of the columns (sinks) of cardinality t ≥ 2,

and an ordering j(1), j(2), . . . , j(t) of these t columns that has three crucial properties.
The first crucial property is that the corresponding demands satisfy

∑

j∈J

bj ≥ a1 + a2 > (
∑

j∈J

bj) − bj(t). (3)

The second crucial property is that the underlying costs c2,j with j ∈ J take at least two
different values. The third crucial property is that under the ordering j(1), j(2), . . . , j(t)
the corresponding cost coefficients c2,j(k) in the second row are either in non-decreasing
or in non-increasing order. Subsets of the columns that satisfy the left inequality in (3)
are called heavy, and subsets that satisfy the second crucial property are called mixed.

We start our construction with the set {1, . . . , n} of all columns which is mixed and
heavy. We repeatedly remove some column j 6= 1 from this set as long as the resulting
set still is mixed and heavy. When no further removal is possible the process terminates,
the resulting column set is the desired set J with cardinality t ≥ 2; note that 1 ∈ J . Let
j(1), j(2), . . . , j(t) be an enumeration of the columns in J such that

c2,j(1) ≤ c2,j(2) ≤ · · · · · · ≤ c2,j(t). (4)

Then t ≥ 2 implies j(1) 6= 1 or j(t) 6= 1. We only discuss the case where j(t) 6= 1;
the other case can be handled by an analogous symmetric argument. Now why did the
removal process decide to keep this last column j(t) 6= 1 in J? One possible reason is
that J ′ = J −{j(t)} is not heavy. But then we are done, as set J with the ordering in (4)
possesses all three crucial properties. Note that this covers all cases with t = 2: These
cases have j(1) = 1, and then our assumption b1 ≤ a1 and b1 ≤ a2 yields b1 < a1 + a2,
which implies that J ′ is not heavy. From now on we will hence assume t ≥ 3. The other
possible reason is that set J ′ is heavy, but not mixed. This yields

c2,j(1) = c2,j(2) = · · · · · · = c2,j(t−1) < c2,j(t).

In addition, for every k with 1 ≤ k ≤ t − 1 and j(k) 6= 1 we get that J − {j(k)} is
not heavy. Since t ≥ 3 holds, the set J with the following ordering has all three crucial
properties: The ordering starts with column j(t), followed by column 1, followed by the
remaining t− 2 columns in arbitrary order. This completes the construction of J and its
ordering.

Our next goal is to find a permutation of instance I for which the Northwest corner
does not find the optimal solution. We rename the sinks so that the columns in J in the
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ordering j(1), j(2), . . . , j(t) become the first t columns. We assume that the third crucial
property has the corresponding costs c2,1 ≤ c2,2, ≤ · · · ≤ c2,t in non-decreasing order (the
non-increasing case can be settled by a symmetric argument). The resulting instance is
called I+. We then create from I+ another instance I− by switching the positions of
sources 1 and 2 in the first two rows.

How does the Northwest corner rule behave on instance I+? It first assigns the
supplies from source 1 to the first few sinks at a total cost of 0. Then it moves to the
second row, and step by step assigns the supplies from source 2 to the next few sinks.
By (3), there still will be unused supply at source 2 after the Northwest corner rule has
served sink t− 1. Thus it also serves sink t from source 2, then by (3) jumps to the third
row at variable x3,t, and handles the rest of the instance (this also covers the special
case, where the rest of the instance is empty and the third row does not exist). And
how does the Northwest corner rule behave on instance I−? Since source 1 and source 2
have switched places, first the supply of source 2 is assigned to the first few sinks, and
then the supply of source 1 is assigned to the next few sinks (at cost 0). Eventually,
the Northwest corner rule assigns the last supply units from source 1 to sink t. Then it
jumps to the third row at variable x3,t, and handles the rest of instance I− in exactly
the same fashion as it did with the rest of instance I+.

So between the two instances, the only difference in cost arises from assigning the
units from source 2. For I+ these units go to the most expensive sinks in J , whereas
for I− these units go to the cheapest sinks in J . Since by the second crucial property
the costs c2,j with j ∈ J take at least two different values, we get two different objective
values for BFSNW on I+ and on I−. Hence for the permutation I+ of I, the Northwest
corner does not find an optimal solution. �

To summarize our findings in this section: An instance of problem Bad Permuta-

tion has answer NO if and only if the underlying cost matrix is a sum matrix.

Theorem 3.4 Problem Bad Permutation is solvable in polynomial time. �

4 Conclusions

We discussed permutations of the rows and columns in an instance of the transportation
problem that make the Northwest corner rule perform well. We showed that recogniz-
ing the existence of such a good permutation is computationally intractable, and we
characterized the instances for which all permutations are good.

Gilmore, Lawler & Shmoys [5] characterize distance matrices for the traveling sales-
man problem under which all traveling salesman tours have the same length. It turns
out that the class of such distance matrices is exactly the class of sum matrices. The
characterization in [5] and our characterization in Section 3 have a similar flavor, but the
two statements seem to be independent of each other. It would be interesting to unravel
a deeper connection between the two results (if such a connection indeed exists).
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