GENERALIZED EUCLIDEAN RINGS (GE-RINGS)

LAURA COSSU AND SOPHIE FRISCH

This project about Generalized Euclidean Rings (GE-rings) uses methods from ring theory, algebraic number theory, linear algebra, and algebraic Ktheory, to study rings satisfying weaker versions of Euclidean algorithm, and matrices over such rings. Following Cohn [4], a GE-ring is a ring in which every invertible matrix is a product of elementary matrices and dilations. Similarly, a ring is an ID-ring if every singular matrix is a product of idempotent matrices. GE_{2}-rings and ID_{2}-rings satisfy the respective properties for 2×2 matrices.

The property GE_{2} can also be expressed as: any unimodular pair (a, b) can be transformed into $(1,0)$ by a finite sequence of elementary operations (adding a scalar multiple of a to b or vice versa). This suggests the stronger property (called a "weak (Euclidean) algorithm"), that any pair (a, b) can be transformed into $(c, 0)$ by a series of elementary operations.

Recent results show relationships between the properties GE and ID [9, 2], in particular, for Bézout-rings (rings in which every finitely generated ideal is principal), the properties $\mathrm{GE}_{2}, \mathrm{GE}, \mathrm{ID}_{2}$, and ID , and the existence of a weak algorithm, are all equivalent [8]. Many questions remain open, however, especially in the case of rings that are not a priori Bézout. For instance, for integral domains, does ID_{2} imply Bézout? Similarly, there are classical sufficient conditions and necessary conditions for both GE and ID [5, 7, 6, 3], but a general characterization remains elusive. It is known which rings of integers in quadratic number fields satisfy GE_{2}, but it is an open problem which ones satisfy $\mathrm{ID}_{2}[1]$.

References

[1] L. Cossu and P. Zanardo, Idempotent factorizations of singular 2×2 matrices over quadratic integer rings, Linear Multilinear Algebra 70 (2022), No. 2, 297-309.
[2] L. Cossu and P. Zanardo, Factorizations into idempotent factors of matrices over Prüfer domains, Comm. Algebra 47 (2019), No. 4, 1818-1828.
[3] L. Cossu, P. Zanardo, and U. Zannier, Products of elementary matrices and nonEuclidean principal ideal domains, J. Algebra 501 (2018), 182-205.
[4] P. M. Cohn, On the structure of the $G L_{2}$ of a ring, Inst. Hautes Études Sci. Publ. Math. 30 (1966), 5-53.
[5] J. A. Erdos, On products of idempotent matrices, Glasg. Math. J. 8 (1967), 118-122.
[6] J. Fountain, Products of idempotent integer matrices, Math. Proc. Camb. Phil. Soc. 110 (1991), No. 3, 431-441.
[7] T. J. Laffey, Products of idempotent matrices, Linear Multilinear Algebra 14 (1983), 309-314.
[8] W. Ruitenburg, Products of idempotents matrices over Hermite domains, Semigroup Forum 46 (1993), No. 3, 371-378.

[^0][9] L. Salce and P. Zanardo, Products of elementary and idempotent matrices over integral domains, Linear Algebra Appl. 452 (2014), 130-152.

Institute of Mathematics and Scientific Computing
University of Graz
Heinrichstrasse 36, 8010 Graz, Austria
Email address: laura.cossu@uni-graz.at
URL: https://sites.google.com/view/laura-cossu
Institute of Analysis and Number Theory
Graz University of Technology
Kopernikusgasse 24, 8010 Graz, Austria
Email address: frisch@math.tugraz.at
URL: http://blah.math.tugraz.at/~frisch/

[^0]: 2020 Mathematics Subject Classification. Primary 13F07; Secondary 11A05, 13F10, 15A23, 15B99, 16S50, 19B99, 20H25.

