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This project about Generalized Euclidean Rings (GE-rings) uses methods
from ring theory, algebraic number theory, linear algebra, and algebraic K-
theory, to study rings satisfying weaker versions of Euclidean algorithm, and
matrices over such rings. Following Cohn [4], a GE-ring is a ring in which
every invertible matrix is a product of elementary matrices and dilations.
Similarly, a ring is an ID-ring if every singular matrix is a product of idem-
potent matrices. GE2-rings and ID2-rings satisfy the respective properties
for 2× 2 matrices.

The property GE2 can also be expressed as: any unimodular pair (a, b)
can be transformed into (1, 0) by a finite sequence of elementary operations
(adding a scalar multiple of a to b or vice versa). This suggests the stronger
property (called a “weak (Euclidean) algorithm”), that any pair (a, b) can
be transformed into (c, 0) by a series of elementary operations.

Recent results show relationships between the properties GE and ID [9, 2],
in particular, for Bézout-rings (rings in which every finitely generated ideal is
principal), the properties GE2, GE, ID2, and ID, and the existence of a weak
algorithm, are all equivalent [8]. Many questions remain open, however,
especially in the case of rings that are not a priori Bézout. For instance,
for integral domains, does ID2 imply Bézout? Similarly, there are classical
sufficient conditions and necessary conditions for both GE and ID [5, 7, 6, 3],
but a general characterization remains elusive. It is known which rings of
integers in quadratic number fields satisfy GE2, but it is an open problem
which ones satisfy ID2 [1].

References

[1] L. Cossu and P. Zanardo, Idempotent factorizations of singular 2 × 2 matrices over
quadratic integer rings, Linear Multilinear Algebra 70 (2022), No. 2, 297—309.

[2] L. Cossu and P. Zanardo, Factorizations into idempotent factors of matrices over
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