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Scientific background Topological data analysis (TDA) is a novel approach to gain insights on
complex data sets using tool from algebraic topology [3]. Since its advent around 25 years ago, the
range of application scenarios is ever increasing and nowadays comprises hundreds of papers [6]. One
reason of the success of TDA is a well-justified theory that yields simple and explainable summaries
on the data sets. The major idea is to split a data set in a collection of “topological features” and a
range of scales on which every feature is active. In mathematical terms, this translates into a direct
sum decomposition of a graded module obtained by applying homology. In the standard theory, all
summands are intervals, resulting in the persistent barcode that summarizes the data. Moreover, there
are efficient methods to compute such decompositions.

An often observed phenomenon is the discrepancy between the worst-case complexity versus the
empirically measured complexity on real-world instances, both for structural and algorithmic proper-
ties. For instance, while the barcode computation needs cubic time in the worst case, algorithms for
this task show a close-to-linear behavior on practical data sets [10]. Also, in the extension of multi-
parameter persistent homology, while arbitrarily complicated summands can occur in the decomposi-
tion, empirical measurements rather show that most data set admit a more tame decomposition [2].

A natural approach to shed light on such discrepancies is via the expected instead of the worst-case
complexity. Topological properties of random structures are well-studied by now, pioneered by the
work of Linial and Meshulam [9] and Kahle [8, 7]. These are extensions of connectivity questions of
random graphs, including the famous phase-transition results by Erdős and Rényi. Such results have
recently been used to show that the expected complexity of barcode computation is better than what
the worst case predicts [5]. It was also shown recently that under fairly general assumptions, a quarter
of all summands in a multi-parameter decomposition are simple [1].

Hypotheses/Aims The aforementioned discrepancy between worst-case bounds and empirical mea-
surements in topological data analysis leads to the hypothesis that worst-case instances are rare and
artificial (indeed, known worst-case constructions require a careful design to become “bad”, e.g. [5,
Sec.7]). We further hypothesize that with random models that share characteristics of real-world data
sets, we can prove that the worst case differs from the average case, providing provable evidence for
the first hypothesis. Initial results for this hypothesis have been published recently, and our goal is
a much deeper investigation of this phenomenon. This requires, in turn, a more extensive study of
topological and geometric properties of random graphs and simplicial complexes.

Approaches/Methods We have several direct follow-up questions in accordance to the project goal:
for instance, the expected complexity result from [5] is currently limited to 1-dimensional homology
because it uses results on the expected homology of random complexes which are only proved in
dimension 1 [4, 7]. An extension to higher dimensions would immediately generalize the result and
would be of independent interest. Also, while we proved that at least a quarter of all summands
in multi-parameter persistence are intervals (the simplest possible form), we observed experimentally
that typically, not all summands are intervals [1]. We have also identified a local geometric obstruction
to get an interval, and we conjecture that this implies that the probability of only having intervals
reaches 0 in the limit.

This research area is a fruitful interplay between experimental and theoretical approaches: both
initial results stem from initial experimental evaluations which led us to conjectures that we were able
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to prove later on. We foresee that this approach will lead to further conjectures and theorems. For
instance, can we identify and theoretically analyze a non-trivial multi-parameter random model for
which the probability of decomposing in intervals is large? This would be highly interesting because
there are numerous algorithms to treat modules with a simple decomposition structure more efficiently.

Time frame The PhD student in this topic must both acquire substantial knowledge in topological
data analysis and in the theory and techniques of random graphs and complexes. At the same time
they must have excellent mathematical skills but also the ability to do experimental evaluations. This
is a long list of requirements and we cannot expect that any PhD candidate brings a background in
all these fields. We therefore foresee an intensive training period of 12-18 months to bring the student
in the position to start working on the project goal.

Participating faculty members This project is supervised by Mihyun Kang and Michael Kerber.
Mihyun Kang is a full professor at TU Graz and leads the Combinatorics Group. Her main

research areas are combinatorics, discrete probability, and algorithms. She is best known for her
work on topological properties of random graphs. She received a prestigious Friedrich Wilhelm Bessel
Research Award of the Alexander von Humboldt Foundation. She serves on the editorial board of
leading journals, including Random Structures and Algorithms. She supervised five PhD students and
currently supervises two postdocs and two PhD students.

Michael Kerber is a full professor at TU Graz and an internationally recognized expert in compu-
tational topology and geometry. He works mostly on fast algorithms for computing and comparing
persistence diagrams, and on multi-parameter persistent homology. Kerber was program committee
chair of the 2022 Symposium on Computational Geometry, the main conference in computational ge-
ometry and topology. Four PhD students have completed their thesis under his supervision. His group
currently consists of one postdoc and 4 PhD students.
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