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Disclaimer: We do not expect PhD candidates to necessarily already have a background in
topological methods and/or distributed graph algorithms. If a candidate has excellent mathematical
skills or a solid foundation in theoretical computer science, then the required knowledge can be obtained
during the initial part of the 4 year period

Scientific background Distributed systems and algorithms are omnipresent in our daily life and
there is no doubt that the future will be even more distributed. More than two decades ago, topolog-
ical methods (originating from Mathematics) have been used for analyzing distributed algorithms in
asynchronous shared memory systems. Due to the large interest of this prime application of topology
to a research area within computer science, many of these results have been summarized in a book by
Herlihy, Feichtner-Kozloz, and Rajsbaum [11].

Another branch of distributed computing deals with distributed graph algorithms in synchronous
message passing systems. There are many models to study these, with the LOCAL model, introduced
by Linial more than 30 years ago [12, 14], being one of the central models. In the model, a commu-
nication network is abstracted as a graph G with nodes being computing entities and edges forming
communication links. Then nodes communicate with each other in synchronous rounds in order to
solve some graph problem on G in as few communication rounds as possible. One central problem
of the area with many unresolved open questions concerns the graph coloring problem. Here, the
objective is to assign a color to each node of the graph such that adjacent vertices receive different
colors [2]. At the end of the computation each node of the network has to output its own color.
The problem has many variants, depending on the number of colors, the type of input graphs, and
whether we color nodes or edges. Many of these coloring problems are prototypical for a broader
class of local constraint satisfaction problems and are at the heart of distributed complexity theory.
In the last decade, the area of distributed graph algorithms has undergone a significant development
resulting in many faster algorithms and several new algorithmic lower bounds for such problems, e.g.,
[9, 7, 15, 8, 1]. Still, there is a gap between upper and lower bounds that seemingly cannot be bridged
with current techniques. The early topological techniques do not reason about models like the LOCAL
model. However, for selected problems, recent achievements, e.g., [3, 5, 4, 6], have been successful in
applying topological methods to such and similar settings and there is ample potential for extending
this line of research.

Aims. The objective of this dissertation is to use topological methods to obtain new results in the
area of distributed graph algorithms. We aim at devising new algorithms and new impossibility results.
The focus of our study are local constraint satisfaction problems like graph coloring problems. One
main focus lies on improving lower bounds for graph coloring problems, where (despite significant
progress on related problems) Linial’s 30 year old Ω(log∗n)-round lower bound is still the state of
the art for coloring graphs with a number of colors that exceeds the maximum degree of the graph
[12]. Another focus lies on understanding local constraint satisfaction problems in which the nodes of
the input graph are equipped with additional inputs [13]. This setting is particularly suited for the
investigation with topological methods and provides ample low-risk starting problems.

Approaches/Methods. One integral part of this dissertation project is to develop new topological
tools to reason on distributed algorithms. The high level approach is to formalize the input space

1



as well as the (feasible) output space of a distributed algorithm as topological objects I and O,
respectively. A (correct) distributed algorithm is a topological transformation of I to O where the
allowed transformations depend on the computational model. Then, topological properties of I, O,
and the allowed transformations imply the (non)-existence of efficient algorithms. The initial starting
point is to understand I, O for concrete problems such as the list coloring problem. In list coloring
problems, each node is equipped with a list of available colors and has to output one of these colors.
Almost all state of the art graph coloring algorithms actually solve the (possibly harder) list coloring
problem. The problem is approachable, as currently, the already developed topological methods are
most powerful in proving impossibilities when nodes are equipped with some input and the nodes’
lists serve as such an input.

Another orthogonal line of attack is given through so called neighborhood graphs that date back
to Linial’s first paper in the area [12, 10]. They are at the center of proving lower bounds for the
graph coloring problem. It is known that lower bounds on the chromatic number of these graphs
provide lower bounds on the complexity of the distributed graph coloring problem. The Borsuk-Ulam
theorem, a famous result in topology, relates the connectedness of certain simplicial complexes and
the chromatic number of these graphs. We will use these topological tools with the goal to determine
the complexity of the distributed graph coloring problem.

In general, the research theme for this dissertation is timely and builds up on a new line of research
of using topological methods for analyzing synchronous distributed graph algorithms [3, 5, 4, 6].
Introducing new tools is essential for the area to narrow the gap between existing upper and lower
bounds and topological tools will surely provide ample new insights.

Time Frame. This dissertation is planned for 4 years. The vast number of precise local constraint
satisfaction problems limits the risk for doctoral student. As an additional risk mitigation strategy
each graph problem can be restricted to a special graph class, often still yielding far reaching results
but being more approachable. Further, the topic offers ample possibilities for an academic career
of the PhD student afterwards. It is even likely, that the topic will be established as its own sub
community.

Primary researchers involved. This project is supervised by Michael Kerber and Yannic Maus.
Michael Kerber is a full professor at TU Graz and an internationally recognized expert in compu-

tational topology and geometry. He works mostly on fast algorithms for computing and comparing
persistence diagrams, and on multi-parameter persistent homology. Kerber was program committee
chair of the 2022 Symposium on Computational Geometry, the main conference in computational ge-
ometry and topology. Four PhD students have completed their thesis under his supervision. His group
currently consists of one postdoc and 4 PhD students.

Yannic Maus is an assistant professor (tenure-track) in the computer science department at TU
Graz. He is an expert for distributed graph algorithms and spent two years at the Technion. For his
PhD thesis, that laid the foundation for a generic and complexity theoretic treatment of distributed
graph algorithms, he received several prices including the ACM/EATCS Principles of Computing
Doctoral Dissertation Award and the GI Dissertation Award. He is co-supervising one PhD student
and by the end of 2023 his group will consist of two (additional) PhD students.
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