Information Theory SS 2025

Institut für Diskrete Mathematik (5050), TU Graz

Exercise sheet 2 (27.03.2025)

Exercise 2.1. Let X be a binomially distributed random variable with parameters $n \in \mathbb{N}$ and $q \in [0, 1]$, i.e. $X \sim Bin(n, q)$. Show:

$$\mathbb{E}\left(\frac{1}{1+X}\right) = \frac{1 - (1-q)^{n+1}}{(n+1)q}.$$

Exercise 2.2. Let (X, Y) be a discrete two-dimensional random variable, where X takes values from $\{-2, -1, 0\}$ and Y from $\{-1, 1\}$. The following probabilities are known:

$$\mathbb{P}[X = -2, Y = -1] = 0.1, \qquad \mathbb{P}[X = -1] = 0.3,$$

$$\mathbb{P}[X = -2, Y = 1] = 0.2, \qquad \mathbb{P}[Y = -1] = 0.4,$$

$$\mathbb{P}[X = -1, Y = 1] = 0.3.$$

- (a) Calculate the complete table of probabilities of the random vector (X, Y), including the marginal distributions of X and Y.
- (b) Calculate the expectation and the variance of X and Y.
- (c) Are X and Y independent?
- (d) Calculate the covariance Cov(X,Y) of X and Y, which is defined by

$$Cov(X, Y) = \mathbb{E}((X - E(X))(Y - \mathbb{E}(Y))).$$

Exercise 2.3. Let $(X_n)_{n\in\mathbb{N}}$ be an infinite sequence of independent random variables with $\mathbb{P}[X_n=1]=p_n$ and $\mathbb{P}[X_n=0]=1-p_n$. Show:

- (a) $X_n \to 0$ in probability if and only if $p_n \to 0$.
- (b) $X_n \to 0$ almost surely if and only if $\sum_{n>1} p_n < \infty$.

Remark: For the second part, you may use the Borel-Cantelli Lemma without proof, although it can be shown directly.

Exercise 2.4. Show that a random variable $X : \Omega \to \mathbb{R}$ is almost surely constant, if and only if

$$\mathbb{V}(X) = 0$$
.

Remark: A random variable X is called almost surely constant, if $\mathbb{P}[X = a] = 1$ holds for some $a \in \mathbb{R}$.

Exercise 2.5. Let $X_1, X_2, ...$ be a sequence of i.i.d. random variables and let N be an integer-valued random variable independent of the X_i . Let

$$S = X_1 + \dots + X_N = \sum_{i=1}^{\infty} X_i \mathbb{1}_{i \le N}.$$

Show that

$$\mathbb{V}(S) = \mathbb{V}(X_1)\mathbb{E}(N) + (\mathbb{E}(X_1))^2 \,\mathbb{V}(N).$$

Exercise 2.6. Given a non-negative integer-valued random variable X, show that

(a)
$$\sum_{i=0}^{\infty} i \mathbb{P}[X \ge i] = \frac{\mathbb{E}(X^2) + \mathbb{E}(X)}{2},$$

(b)
$$\sum_{i=0}^{\infty} i (\mathbb{P}[X \ge i] + \mathbb{P}[X > i]) = \mathbb{E}(X^2).$$